JPH0996241A - Combustion device for diesel engine - Google Patents

Combustion device for diesel engine

Info

Publication number
JPH0996241A
JPH0996241A JP7254942A JP25494295A JPH0996241A JP H0996241 A JPH0996241 A JP H0996241A JP 7254942 A JP7254942 A JP 7254942A JP 25494295 A JP25494295 A JP 25494295A JP H0996241 A JPH0996241 A JP H0996241A
Authority
JP
Japan
Prior art keywords
injection
fuel
diesel engine
pilot
combustion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP7254942A
Other languages
Japanese (ja)
Inventor
Kazutoshi Mori
一俊 森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Motors Corp
Original Assignee
Mitsubishi Motors Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Motors Corp filed Critical Mitsubishi Motors Corp
Priority to JP7254942A priority Critical patent/JPH0996241A/en
Publication of JPH0996241A publication Critical patent/JPH0996241A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B23/00Other engines characterised by special shape or construction of combustion chambers to improve operation
    • F02B23/02Other engines characterised by special shape or construction of combustion chambers to improve operation with compression ignition
    • F02B23/06Other engines characterised by special shape or construction of combustion chambers to improve operation with compression ignition the combustion space being arranged in working piston
    • F02B23/0645Details related to the fuel injector or the fuel spray
    • F02B23/0648Means or methods to improve the spray dispersion, evaporation or ignition
    • F02B23/0651Means or methods to improve the spray dispersion, evaporation or ignition the fuel spray impinging on reflecting surfaces or being specially guided throughout the combustion space
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B23/00Other engines characterised by special shape or construction of combustion chambers to improve operation
    • F02B23/02Other engines characterised by special shape or construction of combustion chambers to improve operation with compression ignition
    • F02B23/06Other engines characterised by special shape or construction of combustion chambers to improve operation with compression ignition the combustion space being arranged in working piston
    • F02B23/0696W-piston bowl, i.e. the combustion space having a central projection pointing towards the cylinder head and the surrounding wall being inclined towards the cylinder wall
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B23/00Other engines characterised by special shape or construction of combustion chambers to improve operation
    • F02B23/02Other engines characterised by special shape or construction of combustion chambers to improve operation with compression ignition
    • F02B23/06Other engines characterised by special shape or construction of combustion chambers to improve operation with compression ignition the combustion space being arranged in working piston
    • F02B23/0618Other engines characterised by special shape or construction of combustion chambers to improve operation with compression ignition the combustion space being arranged in working piston having in-cylinder means to influence the charge motion
    • F02B23/0621Squish flow
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B23/00Other engines characterised by special shape or construction of combustion chambers to improve operation
    • F02B23/02Other engines characterised by special shape or construction of combustion chambers to improve operation with compression ignition
    • F02B23/06Other engines characterised by special shape or construction of combustion chambers to improve operation with compression ignition the combustion space being arranged in working piston
    • F02B23/0645Details related to the fuel injector or the fuel spray
    • F02B23/0666Details related to the fuel injector or the fuel spray having a single fuel spray jet per injector nozzle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B23/00Other engines characterised by special shape or construction of combustion chambers to improve operation
    • F02B23/02Other engines characterised by special shape or construction of combustion chambers to improve operation with compression ignition
    • F02B23/06Other engines characterised by special shape or construction of combustion chambers to improve operation with compression ignition the combustion space being arranged in working piston
    • F02B23/0645Details related to the fuel injector or the fuel spray
    • F02B23/0669Details related to the fuel injector or the fuel spray having multiple fuel spray jets per injector nozzle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B3/00Engines characterised by air compression and subsequent fuel addition
    • F02B3/06Engines characterised by air compression and subsequent fuel addition with compression ignition
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Abstract

PROBLEM TO BE SOLVED: To improve fuel consumption while generation of black smoke and NOx is suppressed, by protruding a protrusion in almost the center of a bottom surface in a combustion chamber hollowly provided in a piston top surface, injecting fuel toward this protrusion, also controlling the fuel so as to be pilot injected before a prescribed time of main injection. SOLUTION: A cavity 901 in a top surface of a piston 9 in a Diesel engine is hollowly provided, a collision member 902 is protrusively provided in a bottom part center of this cavity. A fuel injection valve 10 supported to a cylinder head 801 is arranged so that a jet 12 of a nozzle 16 is opposed to a just above side of the collision member 902 relating to its collision wall 903. When the engine is operated, fuel of an accumulator 36 is atomizingly injected in a combustion chamber C by turning on a first three-way solenoid valve 34, two times repetition of this atomization performs pilot/main injection, but here, so as to start the pilot injection 3msec or more before start timing of the main injection, the three-way solenoid valve 34 is switch controlled by an ECU66.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は衝突拡散燃焼方式を
採用するディーゼルエンジンの燃焼装置、特に、燃料噴
射系が蓄圧式を採用し、ディーゼルエンジンの全運転領
域での噴射時期と噴射圧力および噴射量を可変でき、か
つ、パイロット噴射も可能なディーゼルエンジンの燃焼
装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a combustion apparatus for a diesel engine which adopts a collision diffusion combustion system, and more particularly, when a fuel injection system adopts a pressure accumulation system, injection timing, injection pressure and injection in the entire operating range of the diesel engine. The present invention relates to a combustion device for a diesel engine, the amount of which can be changed and pilot injection can be performed.

【0002】[0002]

【従来の技術】ディーゼルエンジンはその燃焼方式とし
て、直噴式(DI)と予燃焼室式や渦流室式(IDI)
とに大別でき、直噴式ディーゼルエンジンは燃費が良好
であるが、着火遅れによる急激な燃焼に伴う熱発生率の
急増が生じ、これが騒音レベルを高めると共に燃焼温度
の上昇によるNOXの急増を招く。一方、予燃焼室式ま
たは渦流室式(IDI)ディーゼルエンジンは予燃焼室
や渦流室で燃料が予燃焼されてから主燃焼室で主燃焼が
なされるため、着火遅れが少なく、初期の熱発生率を比
較的低く押えられ、NOxの発生が低いが、熱損失やポ
ンプ損失が大きく燃費が比較的低い。
2. Description of the Related Art Diesel engines have direct combustion (DI), pre-combustion chamber and swirl chamber (IDI) combustion systems.
The direct injection diesel engine has good fuel efficiency, but a rapid increase in heat generation rate due to a rapid combustion due to ignition delay raises the noise level and causes a rapid increase in NO X due to an increase in combustion temperature. Invite. On the other hand, in a pre-combustion chamber type or swirl chamber (IDI) diesel engine, fuel is pre-combusted in the pre-combustion chamber or swirl chamber, and then main combustion is performed in the main combustion chamber. The rate is held relatively low and NOx generation is low, but heat loss and pump loss are large and fuel consumption is relatively low.

【0003】直噴式(DI)ディーゼルエンジンの燃焼
方式の一例として衝突拡散燃焼方式がある。例えば、特
開昭59−79031号公報には、ピストン頂面に凹設
されたキャビティーからなる燃焼室に突起を形成し、突
起に噴射ノズルより燃料を直接噴射して燃料粒を衝突拡
散させ、これにより燃焼促進を図るという技術が開示さ
れる。更に、図20(a)、(b)に示すような衝突拡
散燃焼方式のものでは、ディーゼルエンジンのピストン
1の頂面にキャビティー2を凹設し、シリンダヘッド3
のシリンダ対向壁4に噴射ノズル5を設ける。特にシリ
ンダ対向壁4には噴射ノズル5の近傍に取付部6を固定
される衝突部材7を垂下するように装備する。この場
合、ピストンの位置に関係無く、噴射ノズル5からの燃
料噴霧は一定位置の衝突部材7に衝突して衝突拡散し、
キャビティー2内で空気と混合し、燃焼行程に進む。と
ころで、比較的燃費の良い直噴式(DI)ディーゼルエ
ンジンでは、特にNOXの低減、騒音の低減が要求され
ており、その解決策の一つにパイロット噴射方式が有効
とされ、その改良が進められている。
An example of a combustion system of a direct injection (DI) diesel engine is a collision diffusion combustion system. For example, in Japanese Unexamined Patent Publication No. 59-79031, a protrusion is formed in a combustion chamber composed of a cavity formed in the top face of a piston, and fuel is directly injected from the injection nozzle to collide and diffuse fuel particles. A technique for promoting combustion by this is disclosed. Further, in the collision-diffusion combustion type as shown in FIGS. 20 (a) and 20 (b), a cavity 2 is recessed on the top surface of a piston 1 of a diesel engine, and a cylinder head 3 is formed.
An injection nozzle 5 is provided on the cylinder facing wall 4. Particularly, the cylinder facing wall 4 is equipped with a collision member 7 having a mounting portion 6 fixed near the injection nozzle 5 so as to hang down. In this case, regardless of the position of the piston, the fuel spray from the injection nozzle 5 collides with the collision member 7 at a fixed position to collide and diffuse,
It mixes with air in the cavity 2 and proceeds to the combustion stroke. By the way, the direct injection (DI) diesel engine, which has relatively good fuel consumption, is required to reduce NO X and noise in particular, and the pilot injection method is effective as one of the solutions, and its improvement is proceeding. Has been.

【0004】従来、直噴式(DI)ディーゼルエンジン
でパイロット噴射を行う場合、図18(a),(b)に
示すように、燃焼室Cにはクランク角のTDC近傍で燃
料噴射弁Iによって比較的少燃料量のパイロット噴射が
成され、次いで、図19(a),(b)に示すように、
比較的多燃料量の主噴射が成される。この場合、燃焼室
Cには吸気系の働きでスワールSが発生しており、パイ
ロット噴射された燃料噴霧f1は燃焼し、かつその火炎
は燃焼室CでスワールSの作用を受け、図19(a),
(b)に符号f1’で示すようにスワールS方向に位置
をずらせており、そこに、主噴射された燃料噴霧f2が
混入し、先に着火燃焼しているパイロット火炎f1’や
既に燃えた既燃ガスが主噴射された燃料噴霧f2の内部
に導入されることとなる。そのため噴霧内への新しい空
気の導入が抑制され黒煙が増大する。
Conventionally, when performing pilot injection in a direct injection (DI) diesel engine, as shown in FIGS. 18 (a) and 18 (b), the combustion chamber C is compared by a fuel injection valve I near the crank angle TDC. A pilot injection of a small amount of fuel is performed, and then, as shown in FIGS. 19 (a) and 19 (b),
A relatively large amount of fuel is injected. In this case, the swirl S is generated in the combustion chamber C by the action of the intake system, the pilot-injected fuel spray f1 burns, and the flame thereof receives the action of the swirl S in the combustion chamber C, and the swirl S is generated as shown in FIG. a),
As indicated by reference sign f1 ′ in (b), the position is displaced in the swirl S direction, and the main injected fuel spray f2 is mixed there, and the pilot flame f1 ′ that has been ignited and burned earlier or has already burned. The burned gas will be introduced into the main fuel injection f2. Therefore, the introduction of new air into the spray is suppressed and black smoke increases.

【0005】一方、直噴式の一例である衝突拡散燃焼方
式のディーゼルエンジンでは実際上なかなか困難である
が、もしパイロット噴射を行うことが出来た場合、図2
0(a),(b)に示すように、燃焼室2にはTDC近
傍で燃料噴射弁5によってパイロット噴射が成され、次
いで、図21(a),(b)に示すように、主噴射が成
される。この場合、パイロット噴射された燃料噴霧f3
は燃焼室2に拡散し燃焼するが、それを追い掛けて燃料
噴霧f4が主噴射され、先に着火燃焼しているパイロッ
ト燃料噴霧f3の火炎がこの燃料噴霧f4の燃焼促進を
抑制することとなる。
On the other hand, it is quite difficult in practice to use a collision-diffusion combustion type diesel engine, which is an example of a direct injection type, but if pilot injection can be performed, then FIG.
0 (a), (b), pilot injection is performed in the combustion chamber 2 by the fuel injection valve 5 in the vicinity of TDC, and then, as shown in FIGS. 21 (a), (b), main injection is performed. Is done. In this case, the pilot sprayed fuel spray f3
Is diffused into the combustion chamber 2 and burned, but the fuel spray f4 is main-injected by chasing it, and the flame of the pilot fuel spray f3 which is ignited and burned first suppresses the combustion promotion of this fuel spray f4. .

【0006】[0006]

【発明が解決しようとする課題】図19(a),(b)
に示すように、直噴式(DI)ディーゼルエンジンの場
合、パイロット燃料噴霧f3の火炎を主噴射された燃料
噴霧f2が取り囲むため、主噴射燃料の空気との混合が
不良となり、黒鉛発生の要因と成っている。一方、図2
1(a),(b)に示すように、衝突拡散燃焼方式のデ
ィーゼルエンジンでは、パイロット噴霧f3の火炎が主
噴射された燃料噴霧f4によって燃焼室の内周壁面側に
押し込まれ、混合が不良となり、黒鉛発生の要因と成っ
ている。
Problems to be Solved by the Invention FIGS. 19 (a) and 19 (b)
As shown in FIG. 3, in the case of a direct injection (DI) diesel engine, the flame of the pilot fuel spray f3 is surrounded by the main sprayed fuel spray f2, so that mixing of the main injected fuel with air becomes poor, which causes graphite generation. Made of On the other hand, FIG.
As shown in FIGS. 1 (a) and 1 (b), in the diesel engine of the collision diffusion combustion system, the flame of the pilot spray f3 is pushed into the inner peripheral wall surface side of the combustion chamber by the main sprayed fuel spray f4, resulting in poor mixing. And is a cause of graphite generation.

【0007】このように、通常の直噴式ディーゼルエン
ジンのみならず燃焼室での燃料の拡散性が良い衝突拡散
燃焼方式のディーゼルエンジンを用い、これにパイロッ
ト噴射方式を適用することによって、比較的燃費が良
く、NOXの低減、騒音の低減を図れる衝突拡散燃焼方
式のディーゼルエンジンを得ようとするには、黒煙発生
という問題が生じており、その改善が望まれている。本
発明の目的は、黒煙発生を抑え、燃費が良く、NOX
低減、騒音の低減を図れる衝突拡散燃焼方式のディーゼ
ルエンジンを提供することにある。
As described above, not only the normal direct injection type diesel engine but also the collision diffusion combustion type diesel engine having good fuel diffusibility in the combustion chamber is used, and the pilot injection type is applied to the diesel engine so that the fuel consumption is comparatively low. However, in order to obtain a collision diffusion combustion type diesel engine capable of reducing NO x and noise, there is a problem of black smoke generation, and improvement thereof is desired. An object of the present invention is to suppress the black smoke generation, fuel consumption is good, a reduction in NO X, is to provide a diesel engine of a collision diffusion combustion system attained a reduction in noise.

【0008】[0008]

【課題を解決するための手段】上述の目的を達成するた
めに、請求項1記載の発明は、ディーゼルエンジンのピ
ストン頂面に凹設された燃焼室と同燃焼室の底面のほぼ
中央に隆起された燃料衝突用の突起と同突起に燃料を衝
突せしめるように対向して配置される噴孔を有する燃料
噴射弁と、同燃料噴射弁から噴射される燃料の噴射時期
と噴射圧力および噴射量を制御する燃料供給制御手段と
を備え、上記燃料供給制御手段によって主噴射時期の所
定時間以前にパイロット噴射を行うことを特徴とする。
In order to achieve the above-mentioned object, the invention according to claim 1 is such that a combustion chamber recessed in a piston top surface of a diesel engine and a bulge at approximately the center of the bottom surface of the combustion chamber. And a fuel injection valve having a fuel injection projection that is arranged so as to make fuel collide with the fuel injection projection, and the injection timing, injection pressure, and injection amount of the fuel injected from the fuel injection valve. And a fuel supply control means for controlling the fuel injection control means, wherein the fuel supply control means performs the pilot injection before a predetermined time of the main injection timing.

【0009】請求項2の発明は、請求項1に記載された
ディーゼルエンジンの燃焼装置において、ソレノイド通
電時間の制御によって供給量と噴射圧力が可変可能な供
給ポンプと、同供給ポンプから供給された燃料を一旦蓄
えておく蓄圧室と、同蓄圧室からの燃料を噴射と無噴射
とに切り換えるべく3方電磁弁とを有する燃料供給手段
とを備え、上記燃料供給手段により、燃料噴射時に上記
3方電磁弁を切り換え制御することによりパイロット噴
射及び主噴射をさせることを特徴とする。
According to a second aspect of the present invention, in the diesel engine combustion apparatus according to the first aspect, a supply pump whose supply amount and injection pressure can be varied by controlling a solenoid energization time, and the supply pump supplies the same. The fuel storage device is provided with a pressure accumulating chamber for temporarily storing fuel, and fuel supply means having a three-way solenoid valve for switching the fuel from the pressure accumulating chamber to injection or non-injection. It is characterized in that pilot injection and main injection are performed by switching and controlling the one-way solenoid valve.

【0010】請求項3の発明は、請求項2に記載された
ディーゼルエンジンの燃焼装置において、上記燃料供給
制御手段により主噴射の開始時期に対して3msec以
上前にパイロット噴射を開始するよう、前記3方電磁弁
を切り換え制御することを特徴とする。
According to a third aspect of the present invention, in the diesel engine combustion apparatus according to the second aspect, the fuel supply control means is configured to start the pilot injection at least 3 msec before the main injection start timing. It is characterized in that the three-way solenoid valve is switched and controlled.

【0011】請求項4の発明は、請求項1に記載された
ディーゼルエンジンの燃焼装置において、上記燃料噴射
弁の噴孔が上記突起に向かって鉛直下方に指向し、同噴
孔の長さが噴孔径の3倍より大きいことを特徴とする。
According to a fourth aspect of the present invention, in the diesel engine combustion apparatus according to the first aspect, the injection hole of the fuel injection valve is directed vertically downward toward the projection, and the length of the injection hole is long. It is characterized by being larger than three times the diameter of the injection hole.

【0012】[0012]

【実施例】図1のディーゼルエンジンの燃料噴射制御装
置は直列多気筒ディーゼルエンジン(以後単にエンジン
と記す)8に装備される。なお、ここでは各気筒とも同
様構成を採ることより第1気筒を主に説明する。エンジ
ン8の燃焼室Cには燃料噴射弁10の噴口12より燃料
が噴射され、この燃料噴射弁10が燃料供給手段A及び
燃料供給制御手段としてのエンジンコントロールユニッ
ト(以後単にECUと記す)66に接続される。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The fuel injection control device for a diesel engine of FIG. 1 is installed in an in-line multi-cylinder diesel engine (hereinafter simply referred to as engine) 8. The first cylinder will be mainly described here because each cylinder has the same configuration. Fuel is injected into a combustion chamber C of the engine 8 from an injection port 12 of a fuel injection valve 10, and the fuel injection valve 10 is supplied to a fuel supply unit A and an engine control unit (hereinafter simply referred to as ECU) 66 as a fuel supply control unit. Connected.

【0013】ここで、エンジン8は各気筒毎に燃焼室C
を備え、この燃焼室Cは図示しないシリンダブロックと
シリンダヘッド801及びシリンダブロック内で摺動す
るピストン9とにより形成され、ピストン9の頂面には
キャビティー901が凹設される。このキャビティー9
01の底部中央には衝突部材902が突設され、その衝
突部材の頂面を成す衝突壁903はピストン頂面より所
定量h低く形成され、これによりエンジンが上死点(T
DC)近傍位置に達っしていない下方に位置している時
においても、衝突燃料噴霧がピストン頂面とシリンダヘ
ッドのシリンダ対向壁との間の隙間tに飛散することを
抑制している。なお、衝突壁903は耐熱性、耐摩耗性
を考慮してセラミック等で形成することも可能である。
The engine 8 has a combustion chamber C for each cylinder.
The combustion chamber C is formed by a cylinder block (not shown), a cylinder head 801, and a piston 9 that slides in the cylinder block. A cavity 901 is provided in the top surface of the piston 9 as a recess. This cavity 9
A collision member 902 is provided at the center of the bottom of 01, and a collision wall 903 forming the top surface of the collision member is formed lower than the piston top surface by a predetermined amount h, whereby the engine top dead center (T
Even when it is located below the position near DC), the collision fuel spray is suppressed from scattering in the gap t between the piston top surface and the cylinder facing wall of the cylinder head. The collision wall 903 can be made of ceramic or the like in consideration of heat resistance and wear resistance.

【0014】このエンジンのシリンダヘッド801に支
持された燃料噴射弁10内のノズル16の噴口12は衝
突壁903に対し、その直上側に対向配備される。ここ
で、ノズル16の噴口12と衝突壁903の間隔や燃料
噴射圧力に応じて衝突壁903より衝突飛散する燃料噴
霧の分散特性が変化し、空気との混合蒸発が変化し、燃
焼も変化すると見做される。従って、衝突燃焼方式では
燃焼の最適化のため、この間隔が長い時には噴射圧力を
高く、短いときには圧力を低くするなど、噴射時期と噴
射圧力を独立に制御可能な噴射装置の適用が必要とな
る。燃料供給手段Aに接続される燃料噴射弁10はシリ
ンダヘッド801に支持されるノズルホルダ20を備
え、この下端にノズル16が一体的に支持される。ノズ
ル16内には燃料溜14と噴口12とを断続可能なノズ
ルニードル18が摺動自在に収容される。
The injection port 12 of the nozzle 16 in the fuel injection valve 10 supported by the cylinder head 801 of this engine is arranged immediately above the collision wall 903. Here, if the dispersion characteristic of the fuel spray that collides and scatters from the collision wall 903 changes according to the distance between the injection port 12 of the nozzle 16 and the collision wall 903 or the fuel injection pressure, the mixed evaporation with air changes, and the combustion also changes. Be regarded. Therefore, in the collision combustion method, in order to optimize combustion, it is necessary to apply an injection device that can independently control the injection timing and the injection pressure, such as increasing the injection pressure when the interval is long and decreasing the pressure when the interval is short. . The fuel injection valve 10 connected to the fuel supply means A includes a nozzle holder 20 supported by the cylinder head 801, and the nozzle 16 is integrally supported at the lower end of the nozzle holder 20. A nozzle needle 18 capable of connecting and disconnecting the fuel reservoir 14 and the injection port 12 is slidably accommodated in the nozzle 16.

【0015】噴口12は単一口であり、衝突壁903に
向かって鉛直下方に指向するように形成される。ここ
で、図6に示すように、噴口12の長さlは噴孔径dの
3倍より大きく設定される。このl/d≧3の設定に当
たっては、次のような特性を考慮して設定した。即ち、
図7に示すように、噴射圧力を150MPaに保ち、噴
口からの間隔70mmの位置での噴霧角θ°を、噴口1
2の長さlと噴孔径dの比率を変化させて、順次測定し
た。この結果、噴霧角θ°はl/d≧3において、十分
に狭まり、比較的細い噴霧が得られた。しかも、図8に
示すように、噴霧の流量分布を見た場合も、l/d=1
の場合と比較し、l/d=3では流量分布が十分に絞ら
れ、衝突拡散方式に適することが判明した。なお、図9
には噴口がl/d=2.0の場合と、l/d=3.8の
場合の噴射方向のずれ角の振れを測定回数に沿ってプロ
ットした線図を示した。ここでも、噴口がl/d=3.
8の場合、l/d=2.0の場合と比べ、そのずれ角の
振れが極めて小さくなり、噴射方向が安定することが明
らかである。
The injection port 12 is a single port and is formed so as to be directed vertically downward toward the collision wall 903. Here, as shown in FIG. 6, the length 1 of the injection port 12 is set to be larger than three times the injection hole diameter d. In setting l / d ≧ 3, the following characteristics were taken into consideration. That is,
As shown in FIG. 7, the injection pressure was maintained at 150 MPa, and the spray angle θ ° at a position at a distance of 70 mm from the nozzle was 1
The length 1 of 2 and the injection hole diameter d were changed, and the ratio was sequentially measured. As a result, when the spray angle θ ° was 1 / d ≧ 3, the spray angle was sufficiently narrowed, and a relatively fine spray was obtained. Moreover, as shown in FIG. 8, when looking at the flow rate distribution of the spray, 1 / d = 1
Compared with the case of, the flow rate distribution was sufficiently narrowed when 1 / d = 3, which proved to be suitable for the collision diffusion method. Note that FIG.
Shows a diagram in which the deviation of the deviation angle in the injection direction when the injection port is 1 / d = 2.0 and when the injection port is 1 / d = 3.8 is plotted along the number of measurements. Here again, the nozzle has a l / d = 3.
In the case of 8, the deviation of the deviation angle becomes extremely smaller than that in the case of 1 / d = 2.0, and it is clear that the injection direction is stable.

【0016】燃料噴射弁10のノズルニードル18はノ
ズルホルダ20内に収容されたプッシュロッド22を介
してコマンドピストン28の上側の油室26にかかる油
圧(燃料圧)で閉弁方向に押圧される。ノズルホルダ2
0内の油室26には、油圧ピストン28が摺動可能に嵌
挿されている。油室26の上端には互いに並列状態に配
設される一方弁30及びオリフィス32を介し第1三方
電磁弁34の出口bが接続される。第1三方電磁弁34
は畜圧器36に連通する入口a及び燃料タンク38に連
通する第2出口cを備える。入口aは電磁アクチュエー
タ40により駆動される弁体42により、第1出口b又
は第2出口cに選択的に接続され、電磁アクチュエータ
のオフ時に入口aと第1出口bが連通し、オン時に入口
bと第2出口cが連通するよう構成される。ノズルホル
ダ20及びノズル16内には燃料溜14を畜圧器36に
接続するフィードホール44が設けられている。
The nozzle needle 18 of the fuel injection valve 10 is pressed in the valve closing direction by the hydraulic pressure (fuel pressure) applied to the oil chamber 26 above the command piston 28 via the push rod 22 housed in the nozzle holder 20. . Nozzle holder 2
A hydraulic piston 28 is slidably fitted in the oil chamber 26 inside the valve. The outlet b of the first three-way solenoid valve 34 is connected to the upper end of the oil chamber 26 via a one-way valve 30 and an orifice 32 which are arranged in parallel with each other. First three-way solenoid valve 34
It has an inlet a communicating with the storage vessel 36 and a second outlet c communicating with the fuel tank 38. The inlet a is selectively connected to the first outlet b or the second outlet c by a valve body 42 driven by the electromagnetic actuator 40. The inlet a communicates with the first outlet b when the electromagnetic actuator is off, and the inlet a when the electromagnetic actuator is on. b is configured to communicate with the second outlet c. A feed hole 44 is provided in the nozzle holder 20 and the nozzle 16 to connect the fuel reservoir 14 to the accumulator 36.

【0017】畜圧器36には高圧燃料供給ポンプ46が
接続され、同ポンプはエンジン8の図示しないクランク
軸に連動し駆動されるカム48により往復動されるプラ
ンジャ50を備える。プランジャ50が嵌挿されたポン
プ室54には低圧のフィードポンプ52を介し燃料タン
ク38が接続され、プランジャ50の駆動時に、フィー
ドポンプ52から供給された燃料をポンプ室54で加圧
し、一方向弁56を介し畜圧器36に圧送する。
A high-pressure fuel supply pump 46 is connected to the accumulator 36, and the pump has a plunger 50 reciprocated by a cam 48 which is driven in conjunction with a crank shaft (not shown) of the engine 8. A fuel tank 38 is connected to a pump chamber 54 in which the plunger 50 is inserted via a low-pressure feed pump 52, and when the plunger 50 is driven, the fuel supplied from the feed pump 52 is pressurized in the pump chamber 54, and the fuel is supplied in one direction. The pressure is fed to the pressure storage device 36 via the valve 56.

【0018】ポンプ室54の吐出側通路58とフィード
ポンプ52に連通する吸い込み側通路60との間に、電
磁アクチュエータ62に駆動される第1電磁弁としての
スピル弁64が介装される。これら電磁アクチュエータ
62や電磁アクチュエータ40は各々ECU66に接続
され、特に、第1電磁弁としてのスピル弁64を開閉制
御することにより畜圧器36内に貯溜する燃料液圧を後
述の第一乃至第三の運転状態に対応する圧力に調整でき
る。なお、図1には第1気筒の燃料噴射弁10及びその
燃料供給系を示したが、その他の気筒も同様構成の燃料
噴射弁及びその燃料供給手段Aを備え、それらの各電磁
アクチュエータも各々ECU66に接続される。
A spill valve 64 as a first electromagnetic valve driven by an electromagnetic actuator 62 is interposed between a discharge side passage 58 of the pump chamber 54 and a suction side passage 60 communicating with the feed pump 52. The electromagnetic actuator 62 and the electromagnetic actuator 40 are respectively connected to the ECU 66, and in particular, by controlling the opening / closing of the spill valve 64 serving as the first electromagnetic valve, the fuel hydraulic pressure stored in the accumulator 36 is reduced to the first to the third described later. The pressure can be adjusted to correspond to the operating conditions of. Although FIG. 1 shows the fuel injection valve 10 of the first cylinder and its fuel supply system, the other cylinders are also provided with the fuel injection valve and the fuel supply means A of the same structure, and their respective electromagnetic actuators are also provided. It is connected to the ECU 66.

【0019】ECU66は多気筒エンジンの個々のシリ
ンダを判別する気筒判別装置68、エンジン回転数及び
クランク角検知装置70、エンジン負荷検知装置72及
び畜圧器36の内部の燃料圧を検知する燃料圧力センサ
74、並びに必要に応じてエンジンの運転状況に影響を
及ぼす、気温Ta、大気圧Pa、燃料温度Tf等の補助
情報を大気温センサ80、大気圧センサ81、燃料温セ
ンサ82等より取り込み、電磁アクチュエータ40,6
2を制御する。ここで、ECU66は、燃料噴射弁10
から噴射される燃料の噴射時期Tと噴射圧力および噴射
量Qを制御する燃料供給制御手段としての機能を備え、
燃料噴射時に第1三方電磁弁34を切り換え制御するこ
とによりパイロット噴射及び主噴射をさせる。特に、主
噴射の開始時期に対して3msec以上前にパイロット
噴射を開始するよう、第1三方電磁弁34を切り換え制
御する。
The ECU 66 includes a cylinder discriminating device 68 for discriminating individual cylinders of a multi-cylinder engine, an engine speed and crank angle detecting device 70, an engine load detecting device 72, and a fuel pressure sensor for detecting the fuel pressure inside the accumulator 36. 74 and, if necessary, auxiliary information such as temperature Ta, atmospheric pressure Pa, fuel temperature Tf, etc., which influences the operating condition of the engine, is fetched from the atmospheric temperature sensor 80, atmospheric pressure sensor 81, fuel temperature sensor 82, etc. Actuator 40, 6
Control 2 Here, the ECU 66 controls the fuel injection valve 10
A fuel supply control means for controlling the injection timing T, the injection pressure and the injection amount Q of the fuel injected from
Pilot injection and main injection are performed by switching and controlling the first three-way solenoid valve 34 at the time of fuel injection. In particular, the first three-way solenoid valve 34 is switched and controlled so that the pilot injection is started 3 msec or more before the start timing of the main injection.

【0020】ここでECU66の図示しないリードオン
リーメモリ(ROM)には図14に示すような噴射時期
T、パイロット噴射間隔Δθ、パイロット噴射量q及び
主噴射量Qの算出用の噴射マップMpおよび図示しない
噴射圧力マップが記憶処理される。この噴射マップMp
は例えばエンジン回転数Neに沿った3つの閾値Ne
i,Ne1,Ne2と、エンジン負荷Lに応じた3つの
閾値Lo(無負荷),L1,L2で仕切られた9つの領
域毎に各制御値が設定される。図示しない噴射圧力マッ
プはエンジン負荷Lが低負荷か高負荷かに応じて噴射圧
力pを大小所定の設定値としてそれぞれ算出出来るよう
に設定される。なお、ここでの噴射マップMp、図示し
ない噴射圧力マップの領域は状況に応じて更に細かく分
割され、それぞれの各制御値が設定される。
An unillustrated read only memory (ROM) of the ECU 66 has an injection map Mp for calculating the injection timing T, pilot injection interval Δθ, pilot injection amount q and main injection amount Q as shown in FIG. No injection pressure map is stored. This injection map Mp
Is, for example, three threshold values Ne along the engine speed Ne.
i, Ne1, Ne2, and three threshold values Lo (no load) according to the engine load L, and each control value is set for each of the nine areas partitioned by L1 and L2. An injection pressure map (not shown) is set so that the injection pressure p can be calculated as a predetermined set value depending on whether the engine load L is low load or high load. The regions of the injection map Mp and the injection pressure map (not shown) here are further finely divided according to the situation, and respective control values are set.

【0021】ここでは、常時所定圧を確保する畜圧器3
6の燃料を第1三方電磁弁34のオン時に燃料噴射弁1
0によって燃焼室Cに噴霧し、かつそれを2度繰り返
し、パイロット噴射と主噴射の両方を噴射することが可
能で、しかもその間隔を自由に設定出来る噴射系を用い
る。このため、図5に破線で示すように、蓄圧式でない
従来の燃料噴射系と比較し、実線で示すように、主噴射
及びパイロット噴射の時期や噴射率を噴射期間内で自由
に設定出来る。しかも、蓄圧式でない従来の燃料噴射系
の場合、噴射圧力は低回転域ほど低くなり、低回転時に
は燃料の微粒化特性が低下し、黒煙発生量も多くなると
いう問題があったが、蓄圧式である本装置では回転域に
よらず噴射圧力を高く設定可能なため、燃料の微粒化特
性が良好で黒煙の発生量を抑制できる。
Here, the storage device 3 for always ensuring a predetermined pressure.
No. 6 fuel is supplied to the fuel injection valve 1 when the first three-way solenoid valve 34 is turned on.
An injection system is used which is capable of spraying into the combustion chamber C by 0 and repeating it twice to inject both pilot injection and main injection, and can set the interval freely. Therefore, as shown by the broken line in FIG. 5, compared with the conventional fuel injection system that is not the pressure accumulation type, as shown by the solid line, the timing and injection rate of the main injection and pilot injection can be freely set within the injection period. Moreover, in the case of the conventional fuel injection system that is not the pressure accumulation type, there is a problem that the injection pressure becomes lower in the low rotation speed range, the atomization characteristic of the fuel deteriorates at the low rotation speed, and the black smoke generation amount increases. Since the injection pressure can be set high irrespective of the rotation range in this device of the formula, the atomization characteristics of the fuel are good and the amount of black smoke generated can be suppressed.

【0022】一方、本装置では、各運転域毎に噴射時期
Tが設定されるが、ここでは、図5に示すように、各噴
射時期の設定に当たっては、噴射開始時期tp1,t1
に加え噴射終了時期tp2、t2も設定され、これに伴
い、パイロット噴射期間(tp1−tp2)および主噴
射期間(t1−t2)、即ち噴射量も設定されることと
なる。さらに、パイロット噴射時期tp1と主噴射時期
t1との間隔(クランク角でΔθ、或いは時間間隔Δ
t)を少なくとも3msec以上離して設定することと
している。これによって、パイロット噴射された燃料噴
霧の燃焼を完了した上で、主噴射を行い、黒煙を抑制
し、NOXの低減を図る。更に、騒音の低減、燃費の改
善を図るべく、各運転域での最適値が実験的に選択され
る。
On the other hand, in this device, the injection timing T is set for each operation range, but here, as shown in FIG. 5, when setting each injection timing, the injection start timings tp1, t1 are set.
In addition to the injection end timings tp2 and t2, the pilot injection period (tp1-tp2) and the main injection period (t1-t2), that is, the injection amount is also set. Furthermore, the interval between the pilot injection timing tp1 and the main injection timing t1 (Δθ in crank angle or time interval Δ
t) is set to be separated by at least 3 msec or more. Thus, after completing the combustion of fuel spray that is pilot injection, performs main injection, suppressing black smoke, reduced NO X. Further, in order to reduce noise and improve fuel efficiency, optimum values in each driving range are experimentally selected.

【0023】なお、この噴射マップMpの設定に当たっ
て用いられたデータの一例を図10〜図12に示す。た
だし、このデータは本燃料噴射装置を通常の直噴式ディ
ーゼルエンジンに適用し、パイロット噴射を実施した場
合の例である。即ち、図10には1620rpmで20
%負荷の運転域E1(図14参照)でのエンジン運転時
の筒内平均温度K℃、熱発生率J/deg、筒内圧力M
Paの各クランク角変化に応じた燃焼特性線図が示され
る。ここで、噴射管圧は40MPa、パイロット噴射量
は3mm3/stであった。
Incidentally, an example of data used for setting the injection map Mp is shown in FIGS. However, this data is an example when the present fuel injection device is applied to a normal direct injection diesel engine and pilot injection is performed. That is, in FIG. 10, 20 at 1620 rpm
In-cylinder average temperature K ° C, heat release rate J / deg, in-cylinder pressure M during engine operation in the operating range E1 of% load (see FIG. 14)
The combustion characteristic diagram according to each crank angle change of Pa is shown. Here, the injection pipe pressure was 40 MPa, and the pilot injection amount was 3 mm 3 / st.

【0024】この1620rpmで20%負荷の運転域
E1では、パイロット噴射が主噴射より、クランク角間
隔でΔθ1=34.0deg、時間間隔でΔt=3.5
0msecだけ早く行われた。この場合、特に、熱発生
率において、実線で示す非パイロット噴射に対し、破線
(Δθ1=34.0deg)や一転鎖線(Δθ1=1
5、0deg)で示すパイロット噴射の方が低く抑えら
れ、最高の筒内圧力MPaも実線で示す非パイロット噴
射に対し、破線(Δθ1=34.0deg)や一転鎖線
(Δθ1=15、0deg)で示すパイロット噴射の方
がなだらかとなっており、NOXや騒音低減を期待でき
る。
In the operating range E1 of 20% load at 1620 rpm, pilot injection is carried out from the main injection in Δθ1 = 34.0 deg at crank angle intervals and Δt = 3.5 at time intervals.
It was done 0msec earlier. In this case, in particular, in the heat release rate, for the non-pilot injection shown by the solid line, the broken line (Δθ1 = 34.0 deg) and the chain line (Δθ1 = 1)
The pilot injection shown by (5, 0 deg) is suppressed to a lower level, and the maximum in-cylinder pressure MPa is also indicated by a broken line (Δθ1 = 34.0 deg) and a chain line (Δθ1 = 15, 0 deg) with respect to the non-pilot injection shown by a solid line. The pilot injection shown is gentler, and NO X and noise reduction can be expected.

【0025】図11には1620rpmで40%負荷の
運転域E2(図14参照)でのエンジン運転時の筒内平
均温度K℃、熱発生率J/deg、筒内圧力MPaの各
クランク角変化に応じた燃焼特性線図が示される。ここ
で、噴射管圧は40MPa、パイロット噴射量は3mm
3/stであった。この1620rpmで40%負荷の
運転域E2では、パイロット噴射が主噴射より、クラン
ク角間隔でΔθ2=34.0deg、時間間隔でΔt=
3.50msecだけ早く行われた。この場合、最高の
筒内圧力MPaはパイロット噴射に対しなだらかであっ
た。しかも、熱発生率において、実線で示す非パイロッ
ト噴射に対し、破線(Δθ2=34.0deg)や一転
鎖線(Δθ2=15、0deg)で示すパイロット噴射
の方が低く抑えられ、やはりNOXや騒音の低減を期待
できる。
FIG. 11 shows the crank angle changes of the cylinder average temperature K ° C., the heat release rate J / deg, and the cylinder pressure MPa during engine operation in the operating range E2 (see FIG. 14) at 1620 rpm and 40% load. A combustion characteristic diagram corresponding to is shown. Here, the injection pipe pressure is 40 MPa, and the pilot injection amount is 3 mm.
It was 3 / st. In the operating range E2 where the load is 40% at 1620 rpm, the pilot injection is more than the main injection at the crank angle interval Δθ2 = 34.0 deg, and at the time interval Δt =.
It was done earlier by 3.50 msec. In this case, the maximum in-cylinder pressure MPa was gentle with respect to the pilot injection. Moreover, in the heat release rate, the pilot injection indicated by the broken line (Δθ2 = 34.0 deg) and the chain line (Δθ2 = 15, 0 deg) is suppressed to be lower than the non-pilot injection indicated by the solid line, and NO X and noise are also reduced. Can be expected to be reduced.

【0026】図12には1620rpmで80%負荷の
運転域E3(図14参照)でのエンジン運転時の筒内温
度K℃、熱発生率J/deg、筒内圧力MPaの各クラ
ンク角変化に応じた燃焼特性線図が示される。ここで、
噴射管圧は55MPa、パイロット噴射量は3mm3
stであった。この1620rpmで80%負荷の運転
域E3では、パイロット噴射が主噴射より、クランク角
間隔でΔθ3=32.0deg、時間間隔でΔt=3.
29msecだけ早く行われた。この場合、熱発生率に
おいて、実線で示す非パイロット噴射、破線(Δθ3=
32.0deg)や一転鎖線(Δθ3=15、0de
g)で示すパイロット噴射との間に大きな相違は無く、
実線で示す非パイロット噴射に対し、破線や一転鎖線で
示すパイロット噴射の方が筒内温度の立上りが早く、筒
内圧力の上昇も大きい点のみ相違している。このため、
このポイントではNOXの低減はこのパイロット噴射条
件では期待出来ない。例えば、パイロット噴射間隔をさ
らに大きくするとか、パイロット噴射量を低減するとか
の方法を用いれば、このポイントでもNOXや騒音低減
が期待できる。
FIG. 12 shows the crank angle changes of the cylinder temperature K ° C., the heat release rate J / deg, and the cylinder pressure MPa during engine operation in the operating range E3 (see FIG. 14) at 1620 rpm and 80% load. A corresponding combustion characteristic diagram is shown. here,
Injection pipe pressure is 55 MPa, pilot injection amount is 3 mm 3 /
It was st. In the operating range E3 where the load is 80% at 1620 rpm, the pilot injection is carried out more than the main injection Δθ3 = 32.0 deg in the crank angle interval, and Δt = 3.
It took 29 msec earlier. In this case, in the heat release rate, the non-pilot injection shown by the solid line and the broken line (Δθ3 =
32.0 deg) and one-dot chain line (Δθ3 = 15, 0 deg)
There is no big difference with the pilot injection shown in g),
The non-pilot injection shown by the solid line is different from the pilot injection shown by the broken line and the chain-broken line only in that the in-cylinder temperature rises faster and the in-cylinder pressure increases more. For this reason,
At this point, NO X reduction cannot be expected under this pilot injection condition. For example, if a method of further increasing the pilot injection interval or reducing the pilot injection amount is used, NO X and noise reduction can be expected at this point as well.

【0027】その他の運転域でも同様にデータが採取さ
れ、これらのデータを考慮し、特に、全運転域でパイロ
ット噴射が主噴射より時間間隔Δtで3msec以上前
に行われるように設定した。その理由は、パイロット噴
射された燃料の燃焼を主噴射が行われる前に完了させ、
燃焼室の内部に適量の既燃ガスを分散させ、主噴射が行
われる時には完全な内部EGR効果を持たせることによ
り、NOXや騒音の十分な低減を図るためである。さら
に、図15にはパイロット噴射量qの特性線図を示し
た。ここでは、低負荷時の最大パイロット噴射量qma
xを3mm3/stとし、高負荷域に向かうに従い3m
3/st以下に設定し、黒煙低減を図った。図15の
パイロット噴射量qに沿って図14の噴射マップMp中
のパイロット噴射量qが設定されている。なお、図14
の噴射時期及び噴射圧力算出マップでは9つの運転域を
設定したが、その他の数に運転域を区分して設定しても
良い。
Data was similarly sampled in other operating regions, and in consideration of these data, the pilot injection was set to be performed 3 msec or more before the main injection at the time interval Δt in all operating regions. The reason is that combustion of pilot injected fuel is completed before main injection is performed,
This is because an appropriate amount of burnt gas is dispersed inside the combustion chamber and a complete internal EGR effect is provided when the main injection is performed, so that NO X and noise are sufficiently reduced. Further, FIG. 15 shows a characteristic diagram of the pilot injection amount q. Here, the maximum pilot injection amount qma at low load
x is 3 mm 3 / st, 3 m toward the high load area
It was set to m 3 / st or less to reduce black smoke. The pilot injection amount q in the injection map Mp of FIG. 14 is set along the pilot injection amount q of FIG. Note that FIG.
Although the nine operating ranges are set in the injection timing and injection pressure calculation map of, the operating ranges may be set to other numbers.

【0028】このようなエンジン1が駆動された場合、
ECU66は所定のメインルーチンを実行し、その途中
で、図16に示す噴射量演算ルーチンに達する。ここで
は、ステップs1〜s2において、各エンジンの運転情
報を各センサより取り込み、現在の運転域が算出され
る。この場合、ECU66は現在のエンジン回転数Ne
及びエンジン負荷Lを取り込む。次いで、各運転域E毎
に設定されているそれぞれ隣合う運転域との間でのエン
ジン回転数の閾値Ne1、Ne2(図14参照)と現在
のエンジン回転数Neが比較され、Neがどのエンジン
回転数の閾値間に有るかを判断する。同様に各運転域E
毎に設定されているそれぞれ隣合う運転域との間でのエ
ンジン負荷の閾値L1、L2(図14参照)と現在のエ
ンジン負荷Lが比較され、Lがどのエンジン負荷の閾値
間に有るかを判断する。これらエンジン回転数と負荷と
で決まる運転域上での位置より現在の運転域Enを判断
する。
When such an engine 1 is driven,
The ECU 66 executes a predetermined main routine, and reaches the injection amount calculation routine shown in FIG. 16 in the middle thereof. Here, in steps s1 and s2, the operating information of each engine is fetched from each sensor and the current operating range is calculated. In this case, the ECU 66 determines the current engine speed Ne.
And the engine load L are taken in. Next, the engine speed thresholds Ne1 and Ne2 (see FIG. 14) between the adjacent operation ranges set for each operation range E and the current engine speed Ne are compared, and which engine is Ne is determined. It is determined whether the rotation speed is between the threshold values. Similarly, each operating range E
The engine load thresholds L1 and L2 (see FIG. 14) between the adjacent operation ranges set for each of them are compared with the current engine load L to determine which engine load L is between which thresholds. to decide. The current operating range En is determined from the position on the operating range determined by the engine speed and the load.

【0029】ステップs3では、このように算出された
現在の運転域Enに基づき、図14の噴射マップMpよ
りその時の噴射時期T、パイロット噴射時期tp1と主
噴射時期t1との間隔Δθ(Δt)、パイロット噴射量
q、主噴射量Q及び噴射圧力pが順次算出され、これら
のデータに応じて、パイロット噴射開始時期tp1、パ
イロット噴射停止時期tp2、主噴射開始時期t1、主
噴射終了時期t2が算出され、図示しないメインルーチ
ンにリターンする。この間、継続してECU66はクラ
ンク角dθをカウントしており、各気筒の基準クランク
角位置θ0を検出する。
In step s3, based on the current operating range En calculated in this way, from the injection map Mp of FIG. 14, the injection timing T at that time, the interval Δθ (Δt) between the pilot injection timing tp1 and the main injection timing t1. , The pilot injection amount q, the main injection amount Q, and the injection pressure p are sequentially calculated, and the pilot injection start timing tp1, the pilot injection stop timing tp2, the main injection start timing t1, and the main injection end timing t2 are calculated according to these data. It is calculated and returns to the main routine (not shown). During this period, the ECU 66 continuously counts the crank angle dθ and detects the reference crank angle position θ0 of each cylinder.

【0030】メインルーチンの制御途中で、基準クラン
ク角位置θ0が検出されると、ECU66は割込み処理
として、図17の電磁弁駆動ルーチンに進む。ここでは
基準クランク角位置θ0に達した該当気筒の噴射時期制
御回路に最新のカウント値をセットする。即ち、ステッ
プa1では、噴射時期制御回路内のパイロットオンカウ
ンタにパイロット噴射開始時期tp1が、パイロットオ
フカウンタにパイロット噴射停止時期tp2がそれぞ
れ、セットされる。更に、ステップa2では、噴射時期
制御回路内の主噴射開始カウンタに主噴射開始時期t1
が、主噴射終了カウンタに主噴射終了時期t2がそれぞ
れセットされ、ステップa3で各カウンタがスタートさ
れ、図示しないメインルーチンにリターンする。
When the reference crank angle position θ0 is detected during the control of the main routine, the ECU 66 proceeds to the solenoid valve drive routine of FIG. 17 as an interrupt process. Here, the latest count value is set in the injection timing control circuit of the corresponding cylinder that has reached the reference crank angle position θ0. That is, at step a1, the pilot on-counter in the injection timing control circuit is set to the pilot injection start timing tp1, and the pilot off counter is set to the pilot injection stop timing tp2. Further, in step a2, the main injection start timing t1 is set in the main injection start counter in the injection timing control circuit.
However, the main injection end timing t2 is set in the main injection end counter, each counter is started in step a3, and the process returns to the main routine (not shown).

【0031】この結果、各カウンタがカウントを完了
し、パイロット噴射開始時期tp1に達すると、第1三
方電磁弁34の電磁アクチュエータ40をオン駆動し、
常閉のノズルニードル18を開弁作動させ、パイロット
噴射終了時期tp2までのパイロット噴射期間に設定噴
射量の噴射を行う。次いで、パイロット噴射時期tp1
と主噴射時期t1との時間間隔Δt(間隔Δθ相当の時
間)を経過後、主噴射開始時期t1に達すると、第1三
方電磁弁34の電磁アクチュエータ40をオン駆動し、
常閉のノズルニードル18を開弁作動させ、主噴射終了
時期t2までの主噴射期間に設定噴射量の噴射を行うこ
ととなる。
As a result, when each counter completes counting and the pilot injection start timing tp1 is reached, the electromagnetic actuator 40 of the first three-way electromagnetic valve 34 is turned on,
The normally closed nozzle needle 18 is opened to perform the injection of the set injection amount during the pilot injection period until the pilot injection end timing tp2. Next, pilot injection timing tp1
When the main injection start timing t1 is reached after the time interval Δt (the time corresponding to the interval Δθ) between the main injection timing t1 and the main injection timing t1, the electromagnetic actuator 40 of the first three-way solenoid valve 34 is driven on.
The normally closed nozzle needle 18 is opened, and the set injection amount is injected during the main injection period until the main injection end timing t2.

【0032】更に、ECU66は図示しない電磁アクチ
ュエータ62を介しスピル弁64を駆動し、燃料圧力セ
ンサ74の圧力が図示しない噴射圧力Pnマップで設定
される圧力となるように制御する。これにより、現在の
運転域Enに応じ設定された噴射圧力Pnで、設定され
た噴射時期Tに燃料噴射弁10よりパイロット噴射及び
主噴射を、時間間隔Δt(間隔Δθ相当の時間)を隔て
行うこととなる。
Further, the ECU 66 drives the spill valve 64 via an electromagnetic actuator 62 (not shown) to control the pressure of the fuel pressure sensor 74 so as to be a pressure set by an injection pressure Pn map (not shown). As a result, at the injection pressure Pn set according to the current operating range En, the pilot injection and the main injection are performed from the fuel injection valve 10 at the set injection timing T with a time interval Δt (a time corresponding to the interval Δθ). It will be.

【0033】この結果、全運転域E1〜E9において、
図2(a),(b)に示すように、燃料噴射弁10がパ
イロット噴射した燃料が指向性良く、衝突壁面903に
衝突して、燃焼室C内に拡散分布された後燃焼を完了
し、次いで、図3(a),(b)に示すように、時間間
隔Δt(間隔Δθ相当の時間)の経過後に、噴射された
主噴射燃料は衝突壁面903に衝突し、その燃料粒はス
キッシュ流SKを受け、燃焼室Cに拡散する。図4
(a),(b)に示すように、衝突壁面903に衝突し
て、燃焼室C内に拡散分布された主噴射燃料は燃焼室内
の空気と混合し主燃焼が行われる。この主燃焼はパイロ
ット噴射燃料が燃焼してできた既燃ガスが内部EGR効
果を引きだすこととなり、NOX低減を図れる。
As a result, in all operating ranges E1 to E9,
As shown in FIGS. 2 (a) and 2 (b), the fuel injected by the fuel injection valve 10 has good directivity, collides with the collision wall surface 903, and is diffused and distributed in the combustion chamber C to complete the combustion. Then, as shown in FIGS. 3A and 3B, after the time interval Δt (the time corresponding to the interval Δθ) elapses, the injected main injected fuel collides with the collision wall surface 903, and the fuel particles squish. It receives the flow SK and diffuses into the combustion chamber C. FIG.
As shown in (a) and (b), the main injection fuel that collides with the collision wall surface 903 and is diffused and distributed in the combustion chamber C mixes with the air in the combustion chamber to perform main combustion. In this main combustion, the burnt gas produced by burning the pilot injected fuel brings out the internal EGR effect, and NO X can be reduced.

【0034】またパイロット噴射により着火遅れを短縮
することより、騒音低減を図れ、有利である。なお、図
13(a)〜(c)には、図10〜図12の各運転条件
(運転域E1、E2、E3)において、クランク角間隔
Δθの変化に応じて得られたNOX発生量g/kWhの
特性線図を示す。ここで、図13(a),(b)に示す
20%、40%負荷の各場合において、クランク角間隔
Δθが25deg以上でNOXの低減効果は明らかであ
り、図13(c)に示す80%負荷の場合、NOXの増
減変化は無いが、この結果より、本発明でも中低負荷域
でのNOXの低減効果を図れることが明らかと考えられ
る。
Further, by shortening the ignition delay by the pilot injection, noise reduction can be achieved, which is advantageous. 13 (a) to 13 (c), the NO x generation amount obtained according to the change of the crank angle interval Δθ under the respective operating conditions (operating ranges E1, E2, E3) of FIGS. 10 to 12. The characteristic diagram of g / kWh is shown. Here, in each of the cases of 20% and 40% load shown in FIGS. 13A and 13B, the effect of reducing NO X is clear when the crank angle interval Δθ is 25 deg or more, and is shown in FIG. 13C. When the load is 80%, there is no increase or decrease in NO X , but from this result, it is clear that the present invention can also achieve the effect of reducing NO X in the medium to low load range.

【0035】以上のように、図1のディーゼルエンジン
の燃焼装置は、燃料噴射弁10からの燃料を突起902
に衝突させて拡散するよう構成しておき、その上で、そ
の燃料の噴射時期Tと噴射量Qを制御するECU66に
よって、主噴射時期の所定時間以前Δθにパイロット噴
射を行う。このため、燃焼室Cにパイロット噴射された
燃料噴霧は十分に燃焼室内空気と混合しかつ燃焼を完了
し、その後に主噴射が成されることにより、内部EGR
の効果を期待出来、着火遅れの短縮が図れると共に燃焼
がマイルドに成り、低NOX、低騒音を達成出来る。
As described above, the diesel engine combustion apparatus of FIG. 1 projects the fuel from the fuel injection valve 10 to the projection 902.
Is made to collide with and diffuse the fuel, and then the ECU 66 for controlling the injection timing T and the injection amount Q of the fuel performs pilot injection at Δθ before a predetermined time of the main injection timing. Therefore, the fuel spray pilot-injected into the combustion chamber C sufficiently mixes with the air in the combustion chamber and completes the combustion, and then the main injection is performed, so that the internal EGR is performed.
The effect of can be expected, ignition delay can be shortened, combustion can be mild, and low NO x and low noise can be achieved.

【0036】特に、図1のディーゼルエンジンの燃焼装
置は、供給ポンプ38から供給された燃料を一旦蓄えて
おく蓄圧室36と、蓄圧室36からの燃料を噴射と無噴
射とに切り換える第1三方電磁弁34を有する燃料供給
手段Aとを備え、ECU66により燃料噴射時に第1三
方電磁弁34を切り換え制御することによりパイロット
噴射及び主噴射をさせる。このため、主噴射時期とパイ
ロット噴射を確実に実行出来、内部EGRの効果を期待
出来、着火遅れの短縮が図れると共に燃焼がマイルドに
成り、低NOX、低騒音を達成できる。
In particular, the diesel engine combustion apparatus shown in FIG. 1 has a pressure accumulating chamber 36 in which the fuel supplied from the supply pump 38 is temporarily stored, and a first three-way type in which the fuel from the pressure accumulating chamber 36 is switched between injection and non-injection. A fuel supply unit A having a solenoid valve 34 is provided, and pilot injection and main injection are performed by switching control of the first three-way solenoid valve 34 during fuel injection by the ECU 66. Therefore, the main injection timing and the pilot injection can be surely executed, the effect of the internal EGR can be expected, the ignition delay can be shortened, the combustion becomes mild, and the low NO x and the low noise can be achieved.

【0037】更に、図1のディーゼルエンジンの燃焼装
置は、ECU66により主噴射の開始時期に対して3m
sec以上前にパイロット噴射を開始するよう、第1三
方電磁弁34を切り換え制御する。このため、主噴射時
期より十分前にパイロット噴射された燃料粒を確実に燃
焼完了させることが出来、十分に内部EGRの効果を期
待出来、着火遅れの短縮が図れると共に燃焼がマイルド
に成り、低NOX、低騒音を達成できる。更に、図1の
ディーゼルエンジンの燃焼装置は、燃料噴射弁10の噴
孔12が突起902に向かって鉛直下方に指向し、同噴
孔12の長さlが噴孔径dの3倍より大きい。このた
め、噴射時の噴霧分布のバラツキを防止出来、突起90
2との衝突後の燃焼粒の拡散を安定化出来、燃料粒を確
実に燃焼させることが出来、十分に内部EGRの効果を
期待出来、着火遅れの短縮が図れると共に燃焼がマイル
ドに成り、低NOX、低騒音を達成できる。
Further, the combustion device of the diesel engine of FIG. 1 is 3 m away from the start timing of the main injection by the ECU 66.
The first three-way solenoid valve 34 is switched and controlled so that the pilot injection is started before sec or more. Therefore, it is possible to surely complete the combustion of the fuel particles pilot-injected well before the main injection timing, to expect the effect of internal EGR sufficiently, to shorten the ignition delay, and to make the combustion mild and reduce the NO x and low noise can be achieved. Further, in the diesel engine combustion device of FIG. 1, the injection hole 12 of the fuel injection valve 10 is directed vertically downward toward the projection 902, and the length 1 of the injection hole 12 is larger than three times the injection hole diameter d. Therefore, it is possible to prevent variations in the spray distribution at the time of injection, and
2 can stabilize the diffusion of combustion particles after collision with the fuel particles, can reliably burn the fuel particles, can expect the effect of internal EGR sufficiently, can shorten the ignition delay, and make the combustion mild and low. NO x and low noise can be achieved.

【0038】[0038]

【発明の効果】以上のように、請求項1の発明は、燃焼
室の底面のほぼ中央に燃料衝突用の突起を隆起させ、燃
料噴射弁からの燃料を突起に衝突させて拡散するよう構
成しておき、その上で、その燃料の噴射時期と噴射圧力
を及び噴射量を制御する燃料供給制御手段によって、主
噴射時期の所定時間以前にパイロット噴射を行う。この
ため、主噴射時期とパイロット噴射の間が所定時間以上
時間差があり、パイロット噴射された燃料噴霧が燃焼を
完了し拡散した後で主噴射が成され、内部EGRの効果
を期待出来、着火遅れの短縮が図れ、かつマイルドな燃
焼が可能となり、低NOX、低騒音を達成出来る。
As described above, according to the first aspect of the present invention, the projection for fuel collision is raised at approximately the center of the bottom surface of the combustion chamber, and the fuel from the fuel injection valve is made to collide with the projection and diffused. In addition, after that, pilot injection is performed before the predetermined time of the main injection timing by the fuel supply control means that controls the injection timing, the injection pressure, and the injection amount of the fuel. For this reason, there is a time lag between the main injection timing and the pilot injection for a predetermined time or more, and the main injection is performed after the pilot-injected fuel spray has completed combustion and diffused, and the effect of internal EGR can be expected, and the ignition delay is delayed. Can be shortened, mild combustion is possible, and low NO x and low noise can be achieved.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例としてのディーゼルエンジン
の燃焼装置の概略構成図である。
FIG. 1 is a schematic configuration diagram of a diesel engine combustion apparatus as an embodiment of the present invention.

【図2】図1のディーゼルエンジンの燃焼装置のパイロ
ット噴射時の噴射作動説明図であり、(a)はその側断
面図、(b)は平面図である。
2A and 2B are injection operation explanatory views of the diesel engine combustion apparatus of FIG. 1 during pilot injection, in which FIG. 2A is a side sectional view thereof, and FIG.

【図3】図1のディーゼルエンジンの燃焼装置のパイロ
ット噴射後の主噴射された噴霧のスキッシュ流による拡
散作動説明図であり、(a)はその側断面図、(b)は
平面図である。
3A and 3B are explanatory views of a diffusion operation of a main-injected spray after a pilot injection of the diesel engine combustion apparatus of FIG. 1 by a squish flow, in which FIG. 3A is a side sectional view thereof, and FIG. .

【図4】図1のディーゼルエンジンの燃焼装置の主噴射
時の噴射作動説明図であり、(a)はその側断面図、
(b)は平面図である。
FIG. 4 is an explanatory view of injection operation during main injection of the combustion device for the diesel engine of FIG. 1, in which (a) is a side sectional view thereof,
(B) is a plan view.

【図5】図1のディーゼルエンジンの燃焼装置のパイロ
ット噴射と主噴射の噴射時期と噴射間隔及び噴射率を説
明する特性線図である。
5 is a characteristic diagram illustrating injection timings, injection intervals, and injection rates of pilot injection and main injection of the diesel engine combustion device of FIG.

【図6】図1のディーゼルエンジンの燃焼装置が用いる
燃料噴射弁の針弁部の部分断面図である。
FIG. 6 is a partial cross-sectional view of a needle valve portion of a fuel injection valve used in the diesel engine combustion device of FIG.

【図7】図1のディーゼルエンジンの燃焼装置が用いる
燃料噴射弁の噴孔の形状設定で用いた噴霧角−L/D特
性線図である。
7 is a spray angle-L / D characteristic diagram used in setting the shape of the injection hole of the fuel injection valve used in the combustion device of the diesel engine of FIG. 1. FIG.

【図8】図1のディーゼルエンジンの燃焼装置が用いる
燃料噴射弁の噴孔の形状設定で用いた流量分布−角度特
性線図である。
8 is a flow rate distribution-angle characteristic diagram used for setting the shape of the injection hole of the fuel injection valve used in the combustion device of the diesel engine of FIG.

【図9】図1のディーゼルエンジンの燃焼装置が用いる
燃料噴射弁の噴孔の形状設定で用いた噴射方向のずれ角
−測定回数の特性線図である。
9 is a characteristic diagram of deviation angle in the injection direction used in setting the shape of the injection hole of the fuel injection valve used in the combustion device of the diesel engine of FIG. 1-measurement number of times.

【図10】通常のディーゼルエンジンの燃焼装置の制御
装置が採用したパイロット噴射時期と主噴射時期との間
隔の設定において用いた、クランク角変化に応じた温
度、熱発生率及び筒内圧力の特性線図であり、20%負
荷域での特性線図を示す。
FIG. 10 is a graph showing characteristics of temperature, heat generation rate, and cylinder pressure according to changes in crank angle, which are used in setting an interval between pilot injection timing and main injection timing adopted by a control device for a normal diesel engine combustion device. It is a diagram and shows a characteristic diagram in a 20% load region.

【図11】通常のディーゼルエンジンの燃焼装置の制御
装置が採用したパイロット噴射時期と主噴射時期との間
隔の設定において用いた、クランク角変化に応じた温
度、熱発生率及び筒内圧力の特性線図であり、40%負
荷域での特性線図を示す。
FIG. 11 is a graph showing characteristics of temperature, heat release rate and in-cylinder pressure according to crank angle change, which are used in setting an interval between pilot injection timing and main injection timing adopted by a control device for a normal diesel engine combustion device. It is a diagram and shows the characteristic diagram in a 40% load range.

【図12】通常のディーゼルエンジンの燃焼装置の制御
装置が採用したパイロット噴射時期と主噴射時期との間
隔の設定において用いた、クランク角変化に応じた温
度、熱発生率及び筒内圧力の特性線図であり、80%負
荷域での特性線図を示す。
FIG. 12 shows characteristics of temperature, heat release rate, and cylinder pressure according to crank angle changes, which are used in setting the interval between the pilot injection timing and the main injection timing adopted by the control device for the combustion apparatus of a normal diesel engine. It is a diagram and shows a characteristic diagram in an 80% load region.

【図13】通常のディーゼルエンジンの燃焼装置の運転
時におけるNOX発生率のデータであり、(a)は20
%負荷域(図10に相当)でのデータ、(b)は40%
負荷域(図11に相当)でのデータ、(c)は80%負
荷域(図12に相当)でのデータである。
FIG. 13 is data of NO X generation rate during operation of a normal diesel engine combustion device, (a) of 20
Data in% load range (corresponding to FIG. 10), 40% in (b)
Data in the load range (corresponding to FIG. 11) and (c) are data in the 80% load range (corresponding to FIG. 12).

【図14】図1のディーゼルエンジンの燃焼装置の制御
装置に採用する噴射マップの概略図の一例である。
FIG. 14 is an example of a schematic diagram of an injection map adopted in the control device for the combustion device of the diesel engine of FIG. 1.

【図15】図1のディーゼルエンジンの燃焼装置の制御
装置に採用するパイロット噴射量マップの概略図の一例
である。
FIG. 15 is an example of a schematic diagram of a pilot injection amount map adopted in the control device of the combustion device of the diesel engine of FIG. 1.

【図16】図1のディーゼルエンジンの燃焼装置の制御
装置が用いる噴射量算出プログラムのフローチャートで
ある。
16 is a flowchart of an injection amount calculation program used by the control device for the diesel engine combustion device of FIG. 1. FIG.

【図17】図1のディーゼルエンジンの燃焼装置の制御
装置が用いる噴射駆動プログラムのフローチャートであ
る。
FIG. 17 is a flowchart of an injection drive program used by the control device for the diesel engine combustion device in FIG. 1.

【図18】直噴式ディーゼルエンジンのパイロット噴射
時の噴射作動説明図であり、(a)はその側断面図、
(b)は平面図である。
FIG. 18 is an injection operation explanatory view at the time of pilot injection of the direct injection type diesel engine, (a) is a side sectional view thereof,
(B) is a plan view.

【図19】直噴式ディーゼルエンジンの主噴射時の噴射
作動説明図であり、(a)はその側断面図、(b)は平
面図である。
FIG. 19 is an injection operation explanatory view at the time of main injection of a direct injection diesel engine, (a) is a side sectional view thereof, and (b) is a plan view.

【図20】従来の衝突拡散式ディーゼルエンジンのパイ
ロット噴射時の噴射作動説明図であり、(a)はその側
断面図、(b)は平面図である。
FIG. 20 is an injection operation explanatory diagram of a conventional collision diffusion type diesel engine at the time of pilot injection, in which (a) is a side sectional view and (b) is a plan view.

【図21】従来の衝突拡散式ディーゼルエンジンの主噴
射時の噴射作動説明図であり、(a)はその側断面図、
(b)は平面図である。
FIG. 21 is an injection operation explanatory view of the conventional collision diffusion type diesel engine at the time of main injection, in which (a) is a side sectional view thereof,
(B) is a plan view.

【符号の説明】[Explanation of symbols]

8 エンジン 801 シリンダヘッド 9 ピストン 901 キャビティー 902 衝突部材 10 燃料噴射弁 12 噴口 16 ノズル 34 第1三方電磁弁 36 畜圧器 40 電磁アクチュエータ 46 畜圧器燃料供給ポンプ 62 電磁アクチュエータ 64 スピル弁 66 ECU 68 気筒判別装置 70 エンジン回転数及びクランク角検知装置 72 エンジン負荷検知装置 h 間隔 A 燃料供給手段 C 燃焼室 8 Engine 801 Cylinder Head 9 Piston 901 Cavity 902 Collision Member 10 Fuel Injection Valve 12 Injection Port 16 Nozzle 34 First Three-way Solenoid Valve 36 Energy Storage 40 Electromagnetic Actuator 46 Energy Storage Fuel Supply Pump 62 Electromagnetic Actuator 64 Spill Valve 66 ECU 68 Cylinder Discrimination Device 70 Engine speed and crank angle detection device 72 Engine load detection device h Interval A Fuel supply means C Combustion chamber

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 F02M 61/14 310 F02M 61/14 310D 61/18 320 61/18 320Z ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification code Internal reference number FI Technical display location F02M 61/14 310 F02M 61/14 310D 61/18 320 61/18 320Z

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】ディーゼルエンジンのピストン頂面に凹設
された燃焼室と同燃焼室の底面のほぼ中央に隆起された
燃料衝突用の突起と同突起に燃料を衝突せしめるように
対向して配置される噴孔を有する燃料噴射弁と、同燃料
噴射弁から噴射される燃料の噴射時期と噴射圧力および
噴射量を制御する燃料供給制御手段とを備え、上記燃料
供給制御手段によって主噴射時期の所定時間以前にパイ
ロット噴射を行うことを特徴とするディーゼルエンジン
の燃焼装置。
1. A combustion chamber recessed in the top surface of a piston of a diesel engine, a fuel collision projection that is raised at approximately the center of the bottom surface of the combustion chamber, and a fuel collision projection that is arranged so as to oppose the fuel. And a fuel supply control means for controlling the injection timing and the injection pressure and the injection amount of the fuel injected from the fuel injection valve. The fuel supply control means controls the main injection timing of the main injection timing. A combustion device for a diesel engine, which performs pilot injection before a predetermined time.
【請求項2】ソレノイド通電時間の制御によって供給量
と噴射圧力が可変可能な供給ポンプと、同供給ポンプか
ら供給された燃料を一旦蓄えておく蓄圧室と、同蓄圧室
からの燃料を噴射と無噴射とに切り換えるべく3方電磁
弁とを有する燃料供給手段とを備え、上記燃料供給制御
手段により、燃料噴射時に上記3方電磁弁を切り換え制
御することによりパイロット噴射及び主噴射をさせるこ
とを特徴とする請求項1に記載されたディーゼルエンジ
ンの燃焼装置。
2. A supply pump capable of varying a supply amount and an injection pressure by controlling a solenoid energization time, a pressure accumulating chamber for temporarily accumulating fuel supplied from the supply pump, and an injection of fuel from the pressure accumulating chamber. A fuel supply unit having a three-way electromagnetic valve for switching to non-injection, wherein the fuel supply control unit controls pilot switching and main injection by switching the three-way electromagnetic valve during fuel injection. The combustion device for a diesel engine according to claim 1, wherein the combustion device is a diesel engine.
【請求項3】上記燃料供給制御手段により主噴射の開始
時期に対して3msec以上前にパイロット噴射を開始
するよう、前記3方電磁弁を切り換え制御することを特
徴とする請求項2に記載されたディーゼルエンジンの燃
焼装置。
3. The three-way solenoid valve is switched and controlled by the fuel supply control means so as to start the pilot injection 3 msec or more before the start timing of the main injection. Diesel engine combustion device.
【請求項4】上記燃料噴射弁の噴孔が上記突起に向かっ
て鉛直下方に指向し、同噴孔の長さが噴孔径の3倍より
大きいことを特徴とする請求項1に記載されたディーゼ
ルエンジンの燃焼装置。
4. The injection hole of the fuel injection valve is directed vertically downward toward the protrusion, and the length of the injection hole is larger than three times the diameter of the injection hole. Diesel engine combustion device.
JP7254942A 1995-10-02 1995-10-02 Combustion device for diesel engine Withdrawn JPH0996241A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7254942A JPH0996241A (en) 1995-10-02 1995-10-02 Combustion device for diesel engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7254942A JPH0996241A (en) 1995-10-02 1995-10-02 Combustion device for diesel engine

Publications (1)

Publication Number Publication Date
JPH0996241A true JPH0996241A (en) 1997-04-08

Family

ID=17272005

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7254942A Withdrawn JPH0996241A (en) 1995-10-02 1995-10-02 Combustion device for diesel engine

Country Status (1)

Country Link
JP (1) JPH0996241A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002502931A (en) * 1998-02-07 2002-01-29 ダイムラークライスラー アーゲー Method for operating a four-stroke internal combustion engine
WO2013152871A1 (en) * 2012-04-13 2013-10-17 Mwm Gmbh Piston of an internal combustion engine
US9464593B2 (en) 2012-04-13 2016-10-11 Caterpillar Energy Solutions Gmbh Piston of an internal combustion engine
US9476381B2 (en) 2012-04-13 2016-10-25 Caterpillar Energy Solutions Gmbh Piston of an internal combustion engine
US9670829B2 (en) 2012-04-13 2017-06-06 Caterpillar Energy Solutions Gmbh Piston of an internal combustion engine

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002502931A (en) * 1998-02-07 2002-01-29 ダイムラークライスラー アーゲー Method for operating a four-stroke internal combustion engine
WO2013152871A1 (en) * 2012-04-13 2013-10-17 Mwm Gmbh Piston of an internal combustion engine
CN104428508A (en) * 2012-04-13 2015-03-18 卡特彼勒能源方案有限公司 Piston of an internal combustion engine
US9464593B2 (en) 2012-04-13 2016-10-11 Caterpillar Energy Solutions Gmbh Piston of an internal combustion engine
US9476381B2 (en) 2012-04-13 2016-10-25 Caterpillar Energy Solutions Gmbh Piston of an internal combustion engine
US9670829B2 (en) 2012-04-13 2017-06-06 Caterpillar Energy Solutions Gmbh Piston of an internal combustion engine

Similar Documents

Publication Publication Date Title
CN101351632B (en) Method and apparatus for operating a spark-ignited direct fuel injection engine
US6557532B1 (en) Fuel injection apparatus and method for cylinder injection type internal combustion engine
EP2339158B1 (en) Control apparatus for direct injection type internal combustion engine
JP4621411B2 (en) Method and apparatus for supplying multi-fuel injection to an engine cylinder
US6595182B2 (en) Direct fuel injection and ignition system for internal combustion engines
US20040154581A1 (en) Compression ignition internal combustion engine
KR20030022040A (en) Controller for spark ignition type direct injection engine
JP2008202483A (en) Cylinder injection type internal combustion engine and injector used therefor
US10436134B2 (en) Control device for internal combustion engine
US20100147261A1 (en) Gasoline engine
JP2005330961A (en) Fuel supply device for internal combustion engine
CN100368672C (en) Fuel jetting controller
GB2367588A (en) Accumulator type fuel injector
JP2010048212A (en) Direct injection type gasoline engine
JPH10176563A (en) Fuel injection controller for internal combustion engine of cylinder injection type
JPH0996241A (en) Combustion device for diesel engine
US10202928B2 (en) Control device for internal combustion engine
JP3894058B2 (en) Fuel injection control device for in-cylinder injection type spark ignition internal combustion engine
US10378464B2 (en) Control device for internal combustion engine
JPH10331690A (en) Compression ignition type engine
JP2792407B2 (en) Fuel injection device for diesel engine and control method therefor
JP2003106195A (en) Control system for spark ignition type direct injection engine
JP2953324B2 (en) Fuel injection control method and device for diesel engine
JP3800725B2 (en) Fuel injection device for direct injection internal combustion engine
JP3196674B2 (en) In-cylinder injection spark ignition engine

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20021203