JP3894058B2 - Fuel injection control device for in-cylinder injection type spark ignition internal combustion engine - Google Patents

Fuel injection control device for in-cylinder injection type spark ignition internal combustion engine Download PDF

Info

Publication number
JP3894058B2
JP3894058B2 JP2002188147A JP2002188147A JP3894058B2 JP 3894058 B2 JP3894058 B2 JP 3894058B2 JP 2002188147 A JP2002188147 A JP 2002188147A JP 2002188147 A JP2002188147 A JP 2002188147A JP 3894058 B2 JP3894058 B2 JP 3894058B2
Authority
JP
Japan
Prior art keywords
fuel injection
fuel
injection valve
compression stroke
main
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002188147A
Other languages
Japanese (ja)
Other versions
JP2004028024A (en
Inventor
卓 角岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2002188147A priority Critical patent/JP3894058B2/en
Publication of JP2004028024A publication Critical patent/JP2004028024A/en
Application granted granted Critical
Publication of JP3894058B2 publication Critical patent/JP3894058B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Landscapes

  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、筒内噴射式火花点火内燃機関の燃料噴射制御装置に関する。
【0002】
【従来の技術】
圧縮行程において気筒内へ直接的に燃料を噴射することにより、点火時点において点火プラグ近傍だけに着火性の良好な混合気(以下、可燃混合気)を形成し、気筒内全体としては希薄な混合気の燃焼を可能にする成層燃焼が公知である。この成層燃焼は、希薄燃焼に加えて、スロットル弁により吸気を絞る必要がないためにポンピング損失が少なく、均質燃焼に比較して、燃料消費をかなり低減することができる。このような成層燃焼を実施する筒内噴射式火花点火内燃機関において、燃料噴射弁は、圧縮行程における高い筒内圧に対して燃料を噴射するために高圧の燃料を噴射しなければならず、そのために、燃料噴射弁は、機関駆動式の高圧ポンプにより加圧された高圧燃料を蓄える蓄圧室から燃料供給されるようになっている。
【0003】
機関始動時には、機関駆動式の高圧ポンプが良好に作動せず、蓄圧室内の燃料圧力が十分に高まる以前に燃料噴射を開始しなければならない。それにより、圧縮行程噴射は困難であるとして、一般的には、成層燃焼ではなく、吸気行程で気筒内へ燃料を噴射して気筒内に形成される均質混合気を燃焼させる均質燃焼が実施される。
【0004】
しかしながら、機関始動時には筒内温度が低く、吸気行程で気筒内へ噴射された燃料は、シリンダボア及びピストン頂面等の気筒内壁に付着して点火までに十分に気化せず、確実な着火性を確保する均質混合気を気筒内に形成するためには、気筒内壁への燃料付着量を考慮して多量に燃料を噴射することが必要となり、燃料消費率を悪化させる。さらに、付着燃料は未燃燃料として排出され排気エミッションを悪化させる。
【0005】
このような問題を解決することを意図して、特開2001−73854号公報には、気筒内へ燃料を噴射する主燃料噴射弁とは別にサージタンク内へ燃料を噴射する副燃料噴射弁を設け、機関始動時には、副燃料噴射弁によりサージタンクを介して気筒内へ燃料を供給し、初爆前後において、主燃料噴射弁により気筒内への燃料噴射を開始することが開示されている。
【0006】
【発明が解決しようとする課題】
前述の従来技術において、初爆前後では、蓄圧室内の燃料圧力は十分に高められておらず、主燃料噴射弁による燃料噴射は吸気行程で実施されることとなる。主燃料噴射弁により燃料噴射が開始される時には、副燃料噴射弁により噴射された燃料が気筒内へ供給されているために、均質燃焼に際して主燃料噴射弁により噴射される燃料量を少なくすることがでる。それにより、確かに、気筒内壁への付着燃料は減少し、燃料消費率及び排気エミッションを改善することができる。しかしながら、機関始動時の燃料消費率及び排気エミッションをさらに改善する余地が残されている。
【0007】
従って、本発明の目的は、筒内噴射式火花点火内燃機関において機関始動時の燃料消費率及び排気エミッションを十分に改善することができる燃料噴射制御装置を提供することである。
【0008】
【課題を解決するための手段】
本発明による請求項1に記載の筒内噴射式火花点火内燃機関の燃料噴射制御装置は、気筒内へ直接的に燃料を噴射する主燃料噴射弁と、機関吸気系へ燃料を噴射する副燃料噴射弁と、前記主燃料噴射弁へ高圧燃料を供給するための蓄圧室とを具備し、成層燃焼のためには前記主燃料噴射弁により圧縮行程後半においてピストン頂面のキャビティ内へ燃料を噴射する筒内噴射式火花点火内燃機関の燃料噴射制御装置であって、機関始動時には、当初、前記主燃料噴射弁により燃料を噴射することなく前記副燃料噴射弁により燃料噴射を開始して均質燃焼を実施し、初爆後における前記蓄圧室内の燃料圧力の上昇に伴って前記主燃料噴射弁により圧縮行程後半の燃料噴射が可能となった以降で前記主燃料噴射弁による圧縮行程後半の燃料噴射により前記キャビティ内への燃料付着量が設定量未満となると推定される時に、前記主燃料噴射弁による圧縮行程後半の燃料噴射を開始して成層燃焼を実施し、前記主燃料噴射弁による圧縮行程後半の燃料噴射を開始して成層燃焼を実施するに先だって前記主燃料噴射弁は吸気行程前半又は圧縮行程後半において少量の燃料を噴射することを特徴とする。
【0011】
また、本発明による請求項に記載の筒内噴射式火花点火内燃機関の燃料噴射制御装置は、請求項に記載の筒内噴射式火花点火内燃機関の燃料噴射制御装置において、前記主燃料噴射弁による圧縮行程後半の燃料噴射を開始して成層燃焼を実施する時に、これまでの前記副燃料噴射弁の燃料噴射により機関吸気系へ付着する燃料によって必要以上に機関回転数が上昇することを防止するために、前記主燃料噴射弁による燃料噴射量を減少させることを特徴とする。
【0012】
【発明の実施の形態】
図1は本発明による燃料噴射制御装置が取り付けられた筒内噴射式火花点火内燃機関を示す概略縦断面図であり、図2は図1におけるピストンの平面図である。これらの図において、1は吸気ポート、2は排気ポートである。吸気ポート1は吸気弁3を介して、排気ポート2は排気弁4を介して、それぞれ気筒内へ通じている。5はピストンであり、凹状のキャビティ8がピストン頂面に形成されている。6は気筒上部中心近傍に配置された点火プラグである。7は気筒上部周囲の吸気ポート側に配置された主燃料噴射弁である。本筒内噴射式火花点火内燃機関では、この主燃料噴射弁7に加えて、吸気ポート1内へ燃料を噴射する副燃料噴射弁9が設けられている。
【0013】
主燃料噴射弁7は、スリット状の噴孔を有し、比較的厚さの薄い略扇形状噴霧10として燃料を噴射するものである。成層燃焼を実施するためには、図1及び2に示すように、圧縮行程後半において燃料をピストン5頂面に形成されたキャビティ8内へ噴射する。こうしてキャビティ8内へ噴射された斜線で示す液状燃料10は、飛行中に気筒内の吸気との摩擦によって微粒化されてキャビティ8内へ侵入し、キャビティ8の底壁8aに沿って進行してキャビティ8の燃料噴射弁に対向する対向側壁8bによって点火プラグ6近傍に導かれるまでには気化し、点火時点においては、ドットで示すように点火プラグ6近傍だけに可燃混合気を形成する。この可燃混合気を着火燃焼させることにより、成層燃焼として気筒内全体としてはリーンな混合気が燃焼可能となる。
【0014】
厚さの薄い扇状の燃料噴霧は、キャビティ8の底壁8aに沿って進行する際に幅方向に拡がるために、キャビティ8の底壁8aの広範囲部分から良好に熱を吸収することができる。キャビティ8の底壁8a上を幅方向に拡がった燃料において、燃料中央部は、キャビティ8の対向側壁8bによって上方向に向かう速度成分が付与されて点火プラグ6近傍へ向かい、燃料両側部は、ピストン平面視において円弧状とされたキャビティ8の対向側壁8bに対してそれぞれ鋭角に衝突して、上方向へ向かう速度成分が付与されると共に中央方向へ向かう速度成分も付与され、点火プラグ6近傍へ向かう。
【0015】
こうして、厚さの薄い扇状の燃料噴霧は、従来の円錐状の燃料噴霧に比較して、点火プラグ6近傍に気化程度の良好な一塊の可燃混合気を形成することができる。それにより、成層燃焼時の燃料噴射量を増加させることが可能となり、燃料消費率の良好な成層燃焼を高負荷側へ拡大することができる。必要燃料量が多量となる機関高負荷時には、吸気行程で燃料を噴射して均質混合気を気筒内に形成し、均質燃焼を実施するようにしても良い。
【0016】
20は、高圧ポンプ(図示せず)により加圧された高圧燃料を蓄える蓄圧室であり、各気筒の主燃料噴射弁7へ接続される。各主燃料噴射弁7には蓄圧室20内の高圧燃料が供給され、こうして、各気筒の主燃料噴射弁7は、圧縮行程後半の高い筒内圧に対して前述したように燃料を噴射することが可能となる。21は、蓄圧室20内の燃料圧力を監視するための圧力センサである。
【0017】
前述の高圧ポンプは、一般的には、機関駆動式であり、機関運転中には蓄圧室20内の燃料圧力を所望高圧力(例えば、12MPa)に維持することができる。しかしながら、機関始動時には、蓄圧室20内の燃料圧力は、通常、大気圧まで低下しており、高圧ポンプによって蓄圧室20内の燃料圧力を圧縮行程後半の燃料噴射を可能とする圧力(例えば、8MPa)に瞬間的に昇圧することができない。それにより、一般的には、主燃料噴射弁7により筒内圧の低い吸気行程で燃料を噴射して均質燃焼を実施することとなる。
【0018】
こうして、特に、吸気行程後半で噴射された燃料は、ピストン頂面に加えてシリンダボアへも付着し、機関始動時には気筒内温度が低いために、これら付着燃料は点火までに気化せず、スモーク等のように未燃燃料として排出され、排気エミッションを悪化させる。また、気筒内への燃料付着量を考慮して確実に着火する均質混合気を形成するためには、多量の燃料を噴射しなければならず、燃料消費率も悪化させる。
【0019】
本燃料噴射制御装置では、機関始動時において、図3に示すフローチャートによって主燃料噴射弁7及び副燃料噴射弁9による燃料噴射を制御し、燃料消費率及び排気エミッションの悪化を防止している。
【0020】
先ず、ステップ101において、機関始動時であるか否かが判断される。ここで、機関始動時とは、クランクキング、初爆、及び、早期暖機のための燃料増量運転を含んでいる。冷却水温が設定温度以下又は機関回転数が設定回転数以下等の条件から機関始動時であるか否かが判断される。この判断が否定される時、すなわち、機関始動時ではない時には、ステップ108に進み、通常の成層燃焼を実施するために、機関負荷及び機関回転数等によって定まる機関状態に基づき、主燃料噴射弁7の燃料噴射量Q1が算出され、ステップ109において、前述した成層燃焼を実施するために主燃料噴射弁7により圧縮行程後半に燃料が噴射される。
【0021】
ステップ101における判断が肯定される時、すなわち、機関始動時である時には、当初、ステップ102において、副燃料噴射弁8によって初爆に適した量の燃料が噴射され、均質燃焼が実施される。副燃料噴射弁8による燃料噴射は、吸気弁3の開弁以前の吸気非同期噴射とすることが好ましい。こうして、主な燃料が吸気弁3の開弁以前に吸気ポート1内に噴射されていれば、吸気弁3の開弁後に吸気流によって微粒化及び気化された燃料しか気筒内へ供給されない。それにより、気筒内へ供給された燃料は、シリンダボア又はピストン頂面に付着し難く、付着燃料による排気エミッションの悪化を十分に抑制することができる。
【0022】
この時の副燃料噴射弁8による燃料噴射は、吸気非同期噴射でなく、吸気弁1の開弁後に主な燃料が噴射される吸気同期噴射としても良い。吸気同期噴射でも、噴射された燃料は、直接的ではなく、吸気ポート1内壁に付着してから吸気により気筒内へ供給されることとなるために、やはり、微粒化及び気化された燃料しか気筒内へ供給されない。燃料噴射終了から点火までの燃料気化時間を考えれば、良好な均質燃焼には前述の吸気非同期噴射が有利であるが、吸気同期噴射でも気筒内への燃料付着を十分に抑制することができる。
【0023】
次いで、ステップ103では、圧力センサ21の出力に基づき蓄圧室20内の燃料圧力Pが設定圧力P’以上に昇圧されたか否かが判断される。この設定圧力P’は、主燃料噴射弁7により圧縮行程後半の高圧の気筒内への燃料噴射を可能とする燃料圧力の下限値である。前述の副燃料噴射弁8の燃料噴射によって初爆が完了して機関回転数が設定回転数まで上昇すれば、機関駆動式の高圧ポンプが良好に作動して蓄圧室20内の燃料圧力を設定圧力に昇圧することができる。こうして、ステップ103における判断は、機関回転数又は初爆からの経過時間等に基づいても判断可能である。
【0024】
当初は、ステップ103における判断は否定され、副燃料噴射弁8による燃料噴射によって前述の均質燃焼が継続される。この均質燃焼の継続によって機関回転数が上昇し、ステップ103における判断が肯定されると、ステップ104に進む。この時において、蓄圧室20内の燃料圧力Pは設定圧力P’まで昇圧されており、主燃料噴射弁7による圧縮行程後半での燃料噴射が可能である。しかしながら、冷間始動時のように、この段階においては依然として筒内温度が低い場合があり、この場合において、通常時のように主燃料噴射弁7によって圧縮行程後半での燃料噴射を開始すると、噴射燃料は、ピストン5頂面のキャビティ8内へ侵入するが、キャビティ8からの受熱が不十分であるために良好に気化せず、多量の液状燃料がキャビティ8内に付着したままとなる。この付着燃料は、燃焼せずに未燃燃料として排出され、意図するように排気エミッションを改善することができない。
【0025】
それにより、ステップ104では、現在の機関温度(冷却水温)等に基づき、主燃料噴射弁7により圧縮行程後半に必要量(Q1)の燃料を噴射した場合のキャビティ8内の付着燃料量Sを推定し、この推定付着燃料量Sが設定量S’以下であるか否かが判断される。機関温度が低いと筒内温度も低く、この場合には、付着燃料量Sは多くなり、多量の未燃燃料が排出されるとして、ステップ104における判断は否定され、副燃料噴射弁8による燃料噴射によって前述の均質燃焼が依然として継続される。
【0026】
こうして、副燃料噴射弁8による燃料噴射によって均質燃焼が継続されれば、筒内温度も上昇して、推定付着燃料量Sが設定量S’とほぼ等しくなり、ステップ104における判断が肯定され、ステップ105に進む。ステップ105では、フラグFが1であるか否かが判断される。このフラグFは機関停止と共に0にリセットされるものであり、当初は、この判断は否定されてステップ106に進む。
【0027】
設定量S’は、多量の未燃燃料が排出されるとした付着燃料量の下限値であり、次回処理では、さらに筒内温度が上昇して、推定付着燃料量Sは、少量の未燃燃料しか排出されない量となる。それにより、最初にステップ104における判断が肯定された段階では、依然として、主燃料噴射弁7による圧縮行程後半の燃料噴射を開始しないが、次回の処理では、主燃料噴射弁7により圧縮行程後半の燃料噴射を開始して成層燃焼を実施することとなる。この成層燃焼の開始時において、機関暖機が完了したわけではなく、排気エミッションを大幅に悪化させる程度ではないが、依然としてキャビティ8には少量の燃料が付着することとなる。それにより、均質燃焼から成層燃焼へ切り換えるために、主燃料噴射弁7により圧縮行程後半で燃料を噴射しても、この少量の付着燃料分だけ点火プラグ6近傍に形成される可燃混合気が希薄となり、確実な着火性を確保することが困難となる。もし、失火が発生すれば、多量の未燃燃料が排出され、排気エミッションを返って悪化させてしまう。
【0028】
本フローチャートでは、これを防止するために、主燃料噴射弁7により成層燃焼のための燃料噴射が開始される直前に、主燃料噴射弁7により圧縮行程後半で少量の燃料を噴射し、予め少量の燃料をキャビティ8へ付着させるようにしている。それにより、ステップ106では、少量の燃料をキャビティ8へ付着させるための燃料噴射量Q1’が算出され、ステップ107においてフラグFを1にセットした後に、ステップ109において、ステップ106で算出された燃料噴射量Q1’がキャビティ8内へ確実に侵入するように主燃料噴射弁7によって圧縮行程後半に噴射される。この少量の燃料は、主燃料噴射弁7によって吸気行程前半に噴射されても良く、それによっても、キャビティ8内へ確実に侵入する。また、この少量の燃料は、複数回に分けて主燃料噴射弁7により圧縮行程後半又は吸気行程前半に噴射するようにしても良い。
【0029】
こうして、次回の処理では、ステップ104における判断は依然として肯定され、次いで、ステップ105における判断も肯定される。それにより、ステップ108において、主燃料噴射弁7により成層燃焼を実施するための燃料噴射量Q1が算出され、ステップ109において、主燃料噴射弁7により燃料噴射量Q1が圧縮行程後半に噴射されて成層燃焼が実施される。この主燃料噴射弁7による圧縮行程後半の燃料噴射の開始時からステップ102における副燃料噴射弁9による燃料噴射は停止される。
【0030】
この成層燃焼では、前述したように、キャビティ8内の付着燃料は少量となるために、スモーク等による排気エミッションの悪化を十分に抑制することができる。こうして、前述した副燃料噴射弁9による均質燃焼を含めて主燃料噴射弁7による成層燃焼は、未燃燃料の排出量が十分に抑制されるために、その分、燃料消費率をかなり改善することができる。また、均質燃焼に比較して燃料消費率が良好な成層燃焼をかなり早い時期から実施するようになっているために、これによっても燃料消費率をかなり改善することができる。
【0031】
前述のフローチャートにおいて、前述したように、主燃料噴射弁7により圧縮行程後半の燃料噴射を開始して成層燃焼を実施する際には、副燃料噴射弁9による燃料噴射を停止するようになっている。しかしながら、これまでの副燃料噴射弁9による燃料噴射によって吸気ポート1内へは燃料が付着しており、燃料噴射が副燃料噴射弁9から主燃料噴射弁7へ切り換えられても、吸気と共に吸気ポート1内の付着燃料が気化及び微粒化して気筒内へ供給され、この燃料により気筒内には希薄な均質混合気が形成される。
【0032】
この機関始動時の成層燃焼は、機関早期暖機及び機関排気系に設けられた触媒装置の早期暖機のために、通常の成層燃焼よりは燃料が増量される。しかしながら、点火プラグ6近傍の可燃混合気の回りが空気であるとして燃料噴射量を設定すると、実際には、前述したように可燃混合気回りは希薄な均質混合気であるために、必要以上に機関回転数が上昇してしまう。それにより、成層燃焼に切り換えられた直後は、吸気ポート1内の付着燃料がなくなるまで、吸気量に応じて気筒内には吸気ポート1内の付着燃料の一部が供給されることを考慮して、ステップ108において算出される主燃料噴射弁7の燃料噴射量Q1を減少させることが好ましい。
【0033】
また、機関始動時の成層燃焼における燃料増量分を、主燃料噴射弁7による燃料噴射量を増量せずに、副燃料噴射弁9により吸気ポート1を介して気筒内へ供給して、可燃混合気回りの希薄な均質混合気としても良く、この場合には、成層燃焼のために主燃料噴射弁7により圧縮行程後半での燃料噴射が開始されても、副燃料噴射弁9は、燃料噴射量を減少させるものの依然として吸気ポート1内に燃料を噴射することとなる。
【0034】
本発明による燃料噴射制御装置が適用される筒内噴射式火花点火内燃機関において、主燃料噴射弁により圧縮行程後半に噴射された燃料は、ピストン頂面に形成されたキャビティ内へ侵入して、点火プラグ近傍に可燃混合気を形成するようになっていれば良く、燃料噴霧形状は、扇形状である必要はなく、円錐形状又は柱状であっても良い。また、副燃料噴射弁9の燃料噴霧形状も任意であり、副燃料噴射弁9は、機関吸気系に配置されれば良く、気筒毎に吸気ポート1に配置せずに各気筒共通にサージタンクに配置しても良い。
【0035】
【発明の効果】
このように、本発明による筒内噴射式火花点火内燃機関の燃料噴射制御装置は、機関始動時において、当初、気筒内へ直接的に燃料を噴射する主燃料噴射弁により燃料を噴射することなく、機関吸気系へ燃料を噴射する副燃料噴射弁により燃料噴射を開始して均質燃焼を実施する。それにより、機関始動時の当初は、副燃料噴射弁により機関吸気系へ噴射された燃料により均質燃焼が実施され、気筒内へ直接的に燃料を噴射する場合に比較して気筒内への付着燃料量が少なく、未燃燃料の排出量を低減することができる。また、この均質燃焼により初爆して、その後、蓄圧室内の燃料圧力の上昇に伴って主燃料噴射弁により圧縮行程後半の燃料噴射が可能となった以降で主燃料噴射弁による圧縮行程後半の燃料噴射によりキャビティ内への燃料付着量が設定量未満となると推定される時に、主燃料噴射弁による圧縮行程後半の燃料噴射を開始して成層燃焼を実施するようになっている。それにより、主燃料噴射弁により吸気行程で燃料を噴射して均質燃焼を実施する場合に比較して、噴射燃料の付着はピストン頂面のキャビティ内に限られるために、付着燃料量を少なくすることができ、やはり、未燃燃料の排出量を低減することができる。こうして、機関始動時の未燃燃料による排気エミッションの悪化を十分に改善することができる。また、未燃燃料の排出量が少ない分、燃料消費率の悪化が改善可能であることに加えて、均質燃焼に比較して燃料消費率が良好な成層燃焼が機関始動時の早期から実施されるために、燃料消費率を十分に改善することができる。また、本発明による筒内噴射式火花点火内燃機関の燃料噴射制御装置は、主燃料噴射弁による圧縮行程後半の燃料噴射を開始して成層燃焼を実施するに先だって主燃料噴射弁は吸気行程前半又は圧縮行程後半において少量の燃料を噴射するようになっている。
【図面の簡単な説明】
【図1】本発明による燃料噴射制御装置が取り付けられる筒内噴射式火花点火内燃機関の概略縦断面図である。
【図2】図1のピストンの平面図である。
【図3】本発明による燃料噴射制御装置により実施される燃料噴射制御を示すフローチャートである。
【符号の説明】
5…ピストン
6…点火プラグ
7…主燃料噴射弁
8…キャビティ
9…副燃料噴射弁
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a fuel injection control device for a direct injection spark ignition internal combustion engine.
[0002]
[Prior art]
By directly injecting fuel into the cylinder during the compression stroke, a mixture with good ignitability (hereinafter referred to as a combustible mixture) is formed only near the spark plug at the time of ignition, and the mixture in the entire cylinder is lean. Stratified combustion is known which allows the combustion of gas. In this stratified combustion, in addition to lean combustion, it is not necessary to throttle the intake air by means of a throttle valve, so there is little pumping loss, and fuel consumption can be considerably reduced compared to homogeneous combustion. In an in-cylinder injection spark ignition internal combustion engine that performs such stratified combustion, the fuel injection valve must inject high-pressure fuel in order to inject fuel against a high in-cylinder pressure in the compression stroke. In addition, the fuel injection valve is supplied with fuel from a pressure accumulating chamber that stores high-pressure fuel pressurized by an engine-driven high-pressure pump.
[0003]
When starting the engine, the engine-driven high-pressure pump does not operate well, and fuel injection must be started before the fuel pressure in the pressure accumulating chamber is sufficiently increased. As a result, it is difficult to perform compression stroke injection. Generally, instead of stratified combustion, homogeneous combustion is performed in which fuel is injected into the cylinder in the intake stroke to burn a homogeneous mixture formed in the cylinder. The
[0004]
However, when the engine is started, the in-cylinder temperature is low, and the fuel injected into the cylinder during the intake stroke adheres to the cylinder inner walls such as the cylinder bore and the piston top surface and does not vaporize sufficiently until ignition, ensuring reliable ignitability. In order to form a homogeneous air-fuel mixture to be secured in the cylinder, it is necessary to inject a large amount of fuel in consideration of the amount of fuel adhering to the inner wall of the cylinder, which deteriorates the fuel consumption rate. Furthermore, the adhering fuel is discharged as unburned fuel, and exhaust emission is deteriorated.
[0005]
In order to solve such problems, Japanese Patent Laid-Open No. 2001-73854 discloses an auxiliary fuel injection valve that injects fuel into a surge tank separately from a main fuel injection valve that injects fuel into a cylinder. It is disclosed that when the engine is started, fuel is supplied into the cylinder through the surge tank by the auxiliary fuel injection valve, and fuel injection into the cylinder is started by the main fuel injection valve before and after the first explosion.
[0006]
[Problems to be solved by the invention]
In the above-described prior art, the fuel pressure in the pressure accumulating chamber is not sufficiently increased before and after the first explosion, and fuel injection by the main fuel injection valve is performed in the intake stroke. When fuel injection is started by the main fuel injection valve, the amount of fuel injected by the main fuel injection valve is reduced during homogeneous combustion because the fuel injected by the sub fuel injection valve is supplied into the cylinder. There ∎ You can at. As a result, the fuel adhering to the inner wall of the cylinder is reduced, and the fuel consumption rate and the exhaust emission can be improved. However, there is still room for further improvement in the fuel consumption rate and exhaust emission at the time of starting the engine.
[0007]
Accordingly, an object of the present invention is to provide a fuel injection control device that can sufficiently improve the fuel consumption rate and exhaust emission at the time of engine start in a direct injection spark ignition internal combustion engine.
[0008]
[Means for Solving the Problems]
According to a first aspect of the present invention, there is provided a fuel injection control device for a direct injection spark ignition internal combustion engine, wherein a main fuel injection valve that injects fuel directly into a cylinder and a secondary fuel that injects fuel into an engine intake system. An injection valve and a pressure accumulating chamber for supplying high-pressure fuel to the main fuel injection valve are provided. For stratified combustion, fuel is injected into the cavity on the piston top surface in the latter half of the compression stroke by the main fuel injection valve. A fuel injection control device for an in-cylinder injection spark ignition internal combustion engine, and at the time of engine start, initially, fuel injection is started by the sub fuel injection valve without injecting fuel by the main fuel injection valve, and homogeneous combustion After the first explosion, the fuel injection in the second half of the compression stroke is performed by the main fuel injection valve after the fuel injection in the second half of the compression stroke is enabled by the main fuel injection valve as the fuel pressure in the pressure accumulating chamber increases after the first explosion. By When it is estimated that the amount of fuel adhering to the cavity is less than a set amount, stratified combustion is performed by starting fuel injection in the latter half of the compression stroke by the main fuel injection valve, and the latter half of the compression stroke by the main fuel injection valve The main fuel injection valve is characterized in that a small amount of fuel is injected in the first half of the intake stroke or the second half of the compression stroke prior to starting the fuel injection and performing the stratified combustion .
[0011]
The fuel injection control apparatus for a direct injection spark ignition internal combustion engine according to claim 2 of the present invention, in the fuel injection control apparatus for a direct injection spark ignition internal combustion engine according to claim 1, wherein the main fuel When starting fuel injection in the latter half of the compression stroke by the injection valve and performing stratified combustion , the engine speed increases more than necessary due to the fuel adhering to the engine intake system due to the fuel injection of the sub fuel injection valve so far In order to prevent this, the fuel injection amount by the main fuel injection valve is reduced.
[0012]
DETAILED DESCRIPTION OF THE INVENTION
FIG. 1 is a schematic longitudinal sectional view showing a direct injection spark ignition internal combustion engine equipped with a fuel injection control device according to the present invention, and FIG. 2 is a plan view of a piston in FIG. In these figures, 1 is an intake port and 2 is an exhaust port. The intake port 1 communicates with the cylinder via the intake valve 3, and the exhaust port 2 communicates with the cylinder via the exhaust valve 4. Reference numeral 5 denotes a piston, and a concave cavity 8 is formed on the top surface of the piston. Reference numeral 6 denotes a spark plug disposed in the vicinity of the upper center of the cylinder. Reference numeral 7 denotes a main fuel injection valve disposed on the intake port side around the upper part of the cylinder. In the in-cylinder injection spark ignition internal combustion engine, in addition to the main fuel injection valve 7, a sub fuel injection valve 9 that injects fuel into the intake port 1 is provided.
[0013]
The main fuel injection valve 7 has a slit-shaped injection hole and injects fuel as a substantially fan-shaped spray 10 having a relatively small thickness. In order to perform stratified combustion, as shown in FIGS. 1 and 2, fuel is injected into a cavity 8 formed on the top surface of the piston 5 in the latter half of the compression stroke. The liquid fuel 10 indicated by the oblique lines injected into the cavity 8 in this way is atomized by the friction with the intake air in the cylinder during the flight and enters the cavity 8 and travels along the bottom wall 8 a of the cavity 8. It vaporizes until it is led to the vicinity of the spark plug 6 by the opposed side wall 8b facing the fuel injection valve of the cavity 8, and at the time of ignition, a combustible air-fuel mixture is formed only in the vicinity of the spark plug 6 as shown by dots. By igniting and combusting this combustible air-fuel mixture, a lean air-fuel mixture can be combusted as a whole in the cylinder as stratified combustion.
[0014]
The thin fan-shaped fuel spray spreads in the width direction as it travels along the bottom wall 8 a of the cavity 8, and thus can absorb heat well from a wide area of the bottom wall 8 a of the cavity 8. In the fuel that spreads in the width direction on the bottom wall 8a of the cavity 8, the fuel center portion is given an upward velocity component by the opposite side wall 8b of the cavity 8 toward the vicinity of the spark plug 6, and both sides of the fuel are The piston 8 collides with the opposite side wall 8b of the cavity 8 formed in an arc shape at an acute angle, and a speed component toward the upper direction and a speed component toward the center are also given, and the vicinity of the spark plug 6 Head to.
[0015]
Thus, the fan-shaped fuel spray having a small thickness can form a lump of combustible air-fuel mixture having a good degree of vaporization in the vicinity of the spark plug 6 as compared with the conventional conical fuel spray. Thereby, it becomes possible to increase the fuel injection amount at the time of stratified combustion, and stratified combustion with a good fuel consumption rate can be expanded to the high load side. At the time of high engine load where the required amount of fuel becomes large, fuel may be injected during the intake stroke to form a homogeneous mixture in the cylinder, and homogeneous combustion may be performed.
[0016]
A pressure accumulating chamber 20 stores high-pressure fuel pressurized by a high-pressure pump (not shown), and is connected to the main fuel injection valve 7 of each cylinder. Each main fuel injection valve 7 is supplied with high-pressure fuel in the pressure accumulating chamber 20, and thus the main fuel injection valve 7 of each cylinder injects fuel as described above with respect to a high in-cylinder pressure in the latter half of the compression stroke. Is possible. 21 is a pressure sensor for monitoring the fuel pressure in the pressure accumulation chamber 20.
[0017]
The above-described high-pressure pump is generally an engine-driven type, and the fuel pressure in the pressure accumulating chamber 20 can be maintained at a desired high pressure (for example, 12 MPa) during engine operation. However, when the engine is started, the fuel pressure in the pressure accumulating chamber 20 is usually reduced to atmospheric pressure, and the fuel pressure in the pressure accumulating chamber 20 is reduced to a pressure (for example, fuel injection in the latter half of the compression stroke by a high-pressure pump). The pressure cannot be increased instantaneously to 8 MPa). Thus, generally, the fuel is injected by the main fuel injection valve 7 in the intake stroke having a low in-cylinder pressure, and homogeneous combustion is performed.
[0018]
Thus, in particular, the fuel injected in the latter half of the intake stroke adheres to the cylinder bore in addition to the piston top surface, and since the temperature in the cylinder is low when the engine is started, these adhering fuels are not vaporized until ignition, smoke, etc. It is discharged as unburned fuel, and exhaust emissions are worsened. In addition, in order to form a homogeneous mixture that ignites reliably in consideration of the amount of fuel adhering to the cylinder, a large amount of fuel must be injected, and the fuel consumption rate is also deteriorated.
[0019]
In this fuel injection control device, when the engine is started, fuel injection by the main fuel injection valve 7 and the sub fuel injection valve 9 is controlled by the flowchart shown in FIG. 3 to prevent deterioration of the fuel consumption rate and the exhaust emission.
[0020]
First, in step 101, it is determined whether or not the engine is starting. Here, the time of engine start includes cranking, initial explosion, and fuel increase operation for early warm-up. It is determined whether or not the engine is starting from the condition that the coolant temperature is lower than the set temperature or the engine speed is lower than the set speed. When this determination is negative, that is, when the engine is not started, the routine proceeds to step 108, where the main fuel injection valve is operated based on the engine state determined by the engine load, the engine speed, etc., in order to perform normal stratified combustion. 7 is calculated, and in step 109, fuel is injected in the latter half of the compression stroke by the main fuel injection valve 7 in order to carry out the stratified combustion described above.
[0021]
When the determination in step 101 is affirmative, that is, when the engine is being started, initially, in step 102, an amount of fuel suitable for the first explosion is injected by the auxiliary fuel injection valve 8, and homogeneous combustion is performed. The fuel injection by the auxiliary fuel injection valve 8 is preferably intake asynchronous injection before the intake valve 3 is opened. Thus, if the main fuel is injected into the intake port 1 before the intake valve 3 is opened, only the fuel atomized and vaporized by the intake air flow after the intake valve 3 is opened is supplied into the cylinder. As a result, the fuel supplied into the cylinder is unlikely to adhere to the cylinder bore or the top surface of the piston, and deterioration of exhaust emission due to the attached fuel can be sufficiently suppressed.
[0022]
The fuel injection by the sub fuel injection valve 8 at this time may be not the intake asynchronous injection but the intake synchronous injection in which main fuel is injected after the intake valve 1 is opened. Even in the intake-synchronized injection, the injected fuel is not directly attached but is supplied to the cylinder by the intake air after adhering to the inner wall of the intake port 1, so that only the atomized and vaporized fuel is used in the cylinder. Not supplied in. Considering the fuel vaporization time from the end of fuel injection to ignition, the above-described intake asynchronous injection is advantageous for good homogeneous combustion, but the fuel adhesion to the cylinder can be sufficiently suppressed even with the intake synchronous injection.
[0023]
Next, at step 103, it is determined based on the output of the pressure sensor 21 whether or not the fuel pressure P in the pressure accumulating chamber 20 has been increased to a set pressure P ′ or higher. The set pressure P ′ is a lower limit value of the fuel pressure that enables the main fuel injection valve 7 to inject fuel into a high-pressure cylinder in the latter half of the compression stroke. If the first explosion is completed by the fuel injection of the auxiliary fuel injection valve 8 and the engine speed increases to the set speed, the engine-driven high-pressure pump operates satisfactorily and sets the fuel pressure in the pressure accumulating chamber 20. The pressure can be increased. Thus, the determination in step 103 can also be determined based on the engine speed or the elapsed time from the first explosion.
[0024]
Initially, the determination in step 103 is denied, and the above-described homogeneous combustion is continued by fuel injection by the auxiliary fuel injection valve 8. If the engine speed increases due to the continuation of the homogeneous combustion and the determination in step 103 is affirmed, the routine proceeds to step 104. At this time, the fuel pressure P in the pressure accumulating chamber 20 is increased to the set pressure P ′, and fuel injection in the latter half of the compression stroke by the main fuel injection valve 7 is possible. However, as in the cold start, the in-cylinder temperature may still be low at this stage. In this case, when fuel injection in the latter half of the compression stroke is started by the main fuel injection valve 7 as in normal time, The injected fuel enters the cavity 8 on the top surface of the piston 5, but does not vaporize well due to insufficient heat received from the cavity 8, and a large amount of liquid fuel remains attached to the cavity 8. This adhering fuel is not burned and discharged as unburned fuel, and exhaust emissions cannot be improved as intended.
[0025]
Accordingly, in step 104, the amount of fuel adhered in the cavity 8 when the required amount (Q1) of fuel is injected in the latter half of the compression stroke by the main fuel injection valve 7 based on the current engine temperature (cooling water temperature) or the like. It is estimated, and it is determined whether or not the estimated attached fuel amount S is equal to or less than a set amount S ′. If the engine temperature is low, the in-cylinder temperature is also low. In this case, the amount of attached fuel S increases, and a large amount of unburned fuel is discharged. The aforementioned homogeneous combustion is still continued by the injection.
[0026]
Thus, if homogeneous combustion is continued by fuel injection by the auxiliary fuel injection valve 8, the in-cylinder temperature also rises, the estimated attached fuel amount S becomes substantially equal to the set amount S ′, and the determination in step 104 is affirmed, Proceed to step 105. In step 105, it is determined whether or not the flag F is 1. This flag F is reset to 0 when the engine is stopped. Initially, this determination is denied and the routine proceeds to step 106.
[0027]
The set amount S ′ is a lower limit value of the attached fuel amount that a large amount of unburned fuel is discharged. In the next processing, the in-cylinder temperature further increases, and the estimated attached fuel amount S becomes a small amount of unburned fuel. Only the amount of fuel is discharged. Thereby, at the stage where the determination in step 104 is affirmed first, fuel injection in the latter half of the compression stroke by the main fuel injection valve 7 is not yet started, but in the next processing, the fuel injection valve 7 in the latter half of the compression stroke is not started. The fuel injection is started and stratified combustion is performed. At the start of the stratified combustion, the engine warm-up is not completed and the exhaust emission is not greatly deteriorated, but a small amount of fuel still adheres to the cavity 8. Accordingly, even when fuel is injected in the latter half of the compression stroke by the main fuel injection valve 7 in order to switch from homogeneous combustion to stratified combustion, the combustible air-fuel mixture formed in the vicinity of the spark plug 6 by the small amount of adhering fuel is lean. Thus, it is difficult to ensure reliable ignitability. If a misfire occurs, a large amount of unburned fuel is discharged and exhaust emissions are returned and worsened.
[0028]
In this flowchart, in order to prevent this, a small amount of fuel is injected by the main fuel injection valve 7 in the latter half of the compression stroke immediately before the fuel injection for stratified combustion is started by the main fuel injection valve 7, and a small amount in advance. The fuel is attached to the cavity 8. Accordingly, in step 106, the fuel injection amount Q1 ′ for attaching a small amount of fuel to the cavity 8 is calculated. After setting the flag F to 1 in step 107, the fuel calculated in step 106 is determined in step 109. The main fuel injection valve 7 injects the injection amount Q1 ′ into the latter half of the compression stroke so as to surely enter the cavity 8. This small amount of fuel may be injected in the first half of the intake stroke by the main fuel injection valve 7, thereby also reliably entering the cavity 8. The small amount of fuel may be injected into the latter half of the compression stroke or the first half of the intake stroke by the main fuel injection valve 7 in a plurality of times.
[0029]
Thus, in the next processing, the determination in step 104 is still affirmed, and then the determination in step 105 is also affirmed. Accordingly, in step 108, the fuel injection amount Q1 for performing stratified combustion is calculated by the main fuel injection valve 7, and in step 109, the fuel injection amount Q1 is injected by the main fuel injection valve 7 in the latter half of the compression stroke. Stratified combustion is performed. From the start of fuel injection in the latter half of the compression stroke by the main fuel injection valve 7, the fuel injection by the sub fuel injection valve 9 in step 102 is stopped.
[0030]
In this stratified combustion, as described above, the amount of fuel adhering in the cavity 8 is small, so that deterioration of exhaust emission due to smoke or the like can be sufficiently suppressed. Thus, the stratified combustion by the main fuel injection valve 7 including the homogeneous combustion by the auxiliary fuel injection valve 9 described above sufficiently suppresses the amount of unburned fuel, so that the fuel consumption rate is considerably improved accordingly. be able to. In addition, since the stratified combustion with a good fuel consumption rate compared with the homogeneous combustion is performed from a considerably early stage, the fuel consumption rate can be considerably improved by this.
[0031]
In the above-described flowchart, as described above, when the stratified combustion is performed by starting the fuel injection in the latter half of the compression stroke by the main fuel injection valve 7, the fuel injection by the auxiliary fuel injection valve 9 is stopped. Yes. However, since fuel has been deposited in the intake port 1 due to the fuel injection by the sub fuel injection valve 9 so far, even if the fuel injection is switched from the sub fuel injection valve 9 to the main fuel injection valve 7, the intake air is taken together with the intake air. The adhering fuel in the port 1 is vaporized and atomized and supplied into the cylinder, and a lean homogeneous mixture is formed in the cylinder by this fuel.
[0032]
In this stratified combustion at the time of engine start, the amount of fuel is increased as compared with normal stratified combustion because of the early warm-up of the engine and the early warm-up of the catalyst device provided in the engine exhaust system. However, when the amount of fuel injection is set assuming that the combustible mixture near the spark plug 6 is air, the combustible mixture is actually a lean homogeneous mixture as described above. The engine speed will increase. Thus, immediately after switching to stratified combustion, it is considered that a part of the fuel adhering in the intake port 1 is supplied to the cylinder according to the intake air amount until there is no fuel adhering in the intake port 1. Thus, it is preferable to reduce the fuel injection amount Q1 of the main fuel injection valve 7 calculated in step 108.
[0033]
Further, the fuel increase amount in the stratified combustion at the time of engine start is supplied to the cylinder through the intake port 1 by the auxiliary fuel injection valve 9 without increasing the fuel injection amount by the main fuel injection valve 7, and combustible mixing is performed. In this case, even if fuel injection in the latter half of the compression stroke is started by the main fuel injection valve 7 for stratified combustion, the auxiliary fuel injection valve 9 Although the amount is reduced, fuel is still injected into the intake port 1.
[0034]
In a cylinder injection spark ignition internal combustion engine to which the fuel injection control device according to the present invention is applied, fuel injected in the latter half of the compression stroke by the main fuel injection valve enters into a cavity formed on the piston top surface, It is sufficient that a combustible air-fuel mixture is formed in the vicinity of the spark plug, and the fuel spray shape does not have to be a fan shape but may be a conical shape or a column shape. Further, the fuel spray shape of the auxiliary fuel injection valve 9 is also arbitrary, and the auxiliary fuel injection valve 9 may be disposed in the engine intake system, and is not disposed in the intake port 1 for each cylinder, and is a common surge tank for each cylinder. You may arrange in.
[0035]
【The invention's effect】
As described above, the fuel injection control device for a cylinder injection type spark ignition internal combustion engine according to the present invention does not inject fuel by the main fuel injection valve that injects fuel directly into the cylinder at the start of the engine. Then, fuel injection is started by an auxiliary fuel injection valve that injects fuel into the engine intake system, and homogeneous combustion is performed. As a result, at the beginning of the engine start, homogeneous combustion is performed by the fuel injected into the engine intake system by the auxiliary fuel injection valve, and the fuel adheres to the cylinder as compared with the case where the fuel is directly injected into the cylinder. The amount of fuel is small, and the amount of unburned fuel discharged can be reduced. In addition, after the initial explosion by this homogeneous combustion, fuel injection in the latter half of the compression stroke becomes possible by the main fuel injection valve as the fuel pressure in the accumulator increases, and then the latter half of the compression stroke by the main fuel injection valve When it is estimated that the amount of fuel adhering to the cavity is less than the set amount due to fuel injection, fuel injection in the latter half of the compression stroke by the main fuel injection valve is started to perform stratified combustion. Thereby, compared with the case where the fuel is injected in the intake stroke by the main fuel injection valve and the homogeneous combustion is performed, the adhesion of the injected fuel is limited within the cavity of the piston top surface, so the amount of the adhered fuel is reduced. It is also possible to reduce the amount of unburned fuel discharged. Thus, it is possible to sufficiently improve the deterioration of exhaust emission due to unburned fuel when the engine is started. Moreover, in addition to being able to improve the deterioration of the fuel consumption rate due to the small amount of unburned fuel emissions, stratified combustion with a better fuel consumption rate compared to homogeneous combustion is carried out early in the start of the engine. Therefore, the fuel consumption rate can be sufficiently improved. Further, the fuel injection control device for a cylinder injection type spark ignition internal combustion engine according to the present invention starts the fuel injection in the latter half of the compression stroke by the main fuel injection valve and performs the stratified combustion before the main fuel injection valve is in the first half of the intake stroke. Alternatively, a small amount of fuel is injected in the latter half of the compression stroke.
[Brief description of the drawings]
1 is a schematic longitudinal sectional view of a direct injection spark ignition internal combustion engine to which a fuel injection control device according to the present invention is attached;
FIG. 2 is a plan view of the piston of FIG.
FIG. 3 is a flowchart showing fuel injection control performed by the fuel injection control device according to the present invention.
[Explanation of symbols]
5 ... Piston 6 ... Spark plug 7 ... Main fuel injection valve 8 ... Cavity 9 ... Sub fuel injection valve

Claims (2)

気筒内へ直接的に燃料を噴射する主燃料噴射弁と、機関吸気系へ燃料を噴射する副燃料噴射弁と、前記主燃料噴射弁へ高圧燃料を供給するための蓄圧室とを具備し、成層燃焼のためには前記主燃料噴射弁により圧縮行程後半においてピストン頂面のキャビティ内へ燃料を噴射する筒内噴射式火花点火内燃機関の燃料噴射制御装置であって、機関始動時には、当初、前記主燃料噴射弁により燃料を噴射することなく前記副燃料噴射弁により燃料噴射を開始して均質燃焼を実施し、初爆後における前記蓄圧室内の燃料圧力の上昇に伴って前記主燃料噴射弁により圧縮行程後半の燃料噴射が可能となった以降で前記主燃料噴射弁による圧縮行程後半の燃料噴射により前記キャビティ内への燃料付着量が設定量未満となると推定される時に、前記主燃料噴射弁による圧縮行程後半の燃料噴射を開始して成層燃焼を実施し、前記主燃料噴射弁による圧縮行程後半の燃料噴射を開始して成層燃焼を実施するに先だって前記主燃料噴射弁は吸気行程前半又は圧縮行程後半において少量の燃料を噴射することを特徴とする筒内噴射式火花点火内燃機関の燃料噴射制御装置。A main fuel injection valve for directly injecting fuel into the cylinder, a sub fuel injection valve for injecting fuel into the engine intake system, and a pressure accumulating chamber for supplying high-pressure fuel to the main fuel injection valve, For stratified combustion, a fuel injection control device for an in-cylinder injection spark ignition internal combustion engine in which fuel is injected into the cavity of the piston top surface in the latter half of the compression stroke by the main fuel injection valve. Without injecting fuel by the main fuel injection valve, fuel injection is started by the auxiliary fuel injection valve to perform homogeneous combustion, and the main fuel injection valve is increased as the fuel pressure in the pressure accumulating chamber increases after the first explosion when it is estimated that the amount of fuel adhered to the cavity by the fuel injection of the latter half of the compression stroke by the main fuel injection valve and later became possible injection of the latter half of the compression stroke becomes less than the set amount by said main fuel The fuel injection in the latter half of the compression stroke by the injection valve is started to perform stratified combustion, and the fuel injection valve in the latter half of the compression stroke by the main fuel injection valve is started to perform stratified combustion before the main fuel injection valve is in the intake stroke A fuel injection control device for a direct injection spark ignition internal combustion engine, wherein a small amount of fuel is injected in the first half or the second half of the compression stroke . 前記主燃料噴射弁による圧縮行程後半の燃料噴射を開始して成層燃焼を実施する時に、これまでの前記副燃料噴射弁の燃料噴射により機関吸気系へ付着する燃料によって必要以上に機関回転数が上昇することを防止するために、前記主燃料噴射弁による燃料噴射量を減少させることを特徴とする請求項1に記載の筒内噴射式火花点火内燃機関の燃料噴射制御装置。 When stratified combustion is carried out by starting fuel injection in the latter half of the compression stroke by the main fuel injection valve, the engine speed is increased more than necessary due to the fuel adhering to the engine intake system by the fuel injection of the sub fuel injection valve so far. The fuel injection control device for a direct injection spark ignition internal combustion engine according to claim 1 , wherein the fuel injection amount by the main fuel injection valve is reduced in order to prevent the fuel injection from rising .
JP2002188147A 2002-06-27 2002-06-27 Fuel injection control device for in-cylinder injection type spark ignition internal combustion engine Expired - Fee Related JP3894058B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002188147A JP3894058B2 (en) 2002-06-27 2002-06-27 Fuel injection control device for in-cylinder injection type spark ignition internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002188147A JP3894058B2 (en) 2002-06-27 2002-06-27 Fuel injection control device for in-cylinder injection type spark ignition internal combustion engine

Publications (2)

Publication Number Publication Date
JP2004028024A JP2004028024A (en) 2004-01-29
JP3894058B2 true JP3894058B2 (en) 2007-03-14

Family

ID=31182979

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002188147A Expired - Fee Related JP3894058B2 (en) 2002-06-27 2002-06-27 Fuel injection control device for in-cylinder injection type spark ignition internal combustion engine

Country Status (1)

Country Link
JP (1) JP3894058B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4501107B2 (en) * 2004-04-14 2010-07-14 トヨタ自動車株式会社 Fuel injection control method for internal combustion engine
JP4253613B2 (en) * 2004-04-23 2009-04-15 トヨタ自動車株式会社 Fuel injection control device for internal combustion engine
WO2006100952A1 (en) 2005-03-18 2006-09-28 Toyota Jidosha Kabushiki Kaisha Internal combustion engine
RU2365779C2 (en) 2005-03-18 2009-08-27 Тойота Дзидося Кабусики Кайся Motor with fuel injection by two sprayers
US7426918B2 (en) 2006-03-20 2008-09-23 Ford Global Technologies, Llc Engine having multiple injector locations
JP4232818B2 (en) 2006-11-29 2009-03-04 トヨタ自動車株式会社 Ignition control system for internal combustion engine
JP4656222B2 (en) * 2008-10-20 2011-03-23 トヨタ自動車株式会社 Ignition control system for internal combustion engine

Also Published As

Publication number Publication date
JP2004028024A (en) 2004-01-29

Similar Documents

Publication Publication Date Title
JP3870692B2 (en) In-cylinder injection spark ignition internal combustion engine
KR100576245B1 (en) Cylinder injection type engine
JP4609357B2 (en) Sub-chamber internal combustion engine
JP4148233B2 (en) Engine fuel injection control device
JP4134038B2 (en) Method of operating an internal combustion engine by direct fuel injection
US7204228B2 (en) Method of operating an internal combustion engine with direct fuel injection
WO2005124129A1 (en) Engine start control system of internal combustion engine
JP4085900B2 (en) Fuel injection control device for in-cylinder direct injection spark ignition engine
US20180163687A1 (en) Internal combustion engine control device and internal combustion engine control method
JP3894058B2 (en) Fuel injection control device for in-cylinder injection type spark ignition internal combustion engine
KR100474127B1 (en) In-cylinder injection type spark ignition internal combustion engine
JP4357800B2 (en) Fuel supply device for internal combustion engine
JP4432667B2 (en) In-cylinder direct injection internal combustion engine
JP3953346B2 (en) Sub-chamber lean combustion gas engine
JPH0633769A (en) Subsidiary chamber ignition internal combustion engine
JP2001107809A (en) Gas fuel internal combustion engine
JP4254657B2 (en) In-cylinder injection spark ignition internal combustion engine control device
JP3843732B2 (en) In-cylinder injection spark ignition internal combustion engine
JP4609227B2 (en) Internal combustion engine
RU2435065C2 (en) Engines with high performance characteristics and low emissions, multi-cylinder engines and methods of their operation
JP2003106195A (en) Control system for spark ignition type direct injection engine
JP4396038B2 (en) In-cylinder injection spark ignition internal combustion engine
JP2002332888A (en) Combustion controller of in-cylinder injection internal combustion engine
JP2000297682A (en) Internal combustion engine of cylinder injection type
JP3858774B2 (en) In-cylinder injection spark ignition internal combustion engine control device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050210

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060509

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060428

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060615

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061121

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061204

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101222

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101222

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111222

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111222

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121222

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131222

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees