JPH0995851A - Nonwoven fabric of polylactate-based filament and its production - Google Patents

Nonwoven fabric of polylactate-based filament and its production

Info

Publication number
JPH0995851A
JPH0995851A JP25608095A JP25608095A JPH0995851A JP H0995851 A JPH0995851 A JP H0995851A JP 25608095 A JP25608095 A JP 25608095A JP 25608095 A JP25608095 A JP 25608095A JP H0995851 A JPH0995851 A JP H0995851A
Authority
JP
Japan
Prior art keywords
fiber
polylactic acid
nonwoven fabric
long
polymer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP25608095A
Other languages
Japanese (ja)
Other versions
JP3710175B2 (en
Inventor
Koichi Nagaoka
孝一 長岡
Fumio Matsuoka
文夫 松岡
Naoji Ichinose
直次 一瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Unitika Ltd
Original Assignee
Unitika Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Unitika Ltd filed Critical Unitika Ltd
Priority to JP25608095A priority Critical patent/JP3710175B2/en
Priority to EP96114791A priority patent/EP0765959B1/en
Priority to EP05022050.8A priority patent/EP1612314B2/en
Priority to EP99108935A priority patent/EP0949371B1/en
Priority to KR1019960042661A priority patent/KR100406244B1/en
Publication of JPH0995851A publication Critical patent/JPH0995851A/en
Priority to US09/324,368 priority patent/US6787493B1/en
Priority to US09/351,413 priority patent/US6607996B1/en
Application granted granted Critical
Publication of JP3710175B2 publication Critical patent/JP3710175B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To obtain a new multifunctional polylactate-based filament nonwoven fabric decomposable in natural environment, having a certain flexibility while keeping excellent mechanical strength and exhibiting air-shielding property and water-shielding property. SOLUTION: This polylactate-based filament nonwoven fabric is produced by using a polylactate-based polymer having a melt flow rate of 1-100g/10min measured in conformity to ASTM D-1238(E) at 190 deg.C, melting the polymer at a temperature between (Tm+15) deg.C and (Tm+50) deg.C (Tm is the melting point of the polymer), extruding the molten polymer through a spinneret, thinning down the extruded fiber by drawing with a sucking apparatus at a take-up speed of 1,000-6,000m/min, depositing the fibers on a moving collection face under opening to form a web and heat-bonding one or both surfaces of the web as a whole with a full-face heat-bonding apparatus at <=(Tm+5) deg.C under a linear pressure of a roll of >=0.01kg/cm.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、自然環境下におい
て分解性を有する長繊維不織布およびその製造方法に関
する。さらに詳しくは、ポリ乳酸系重合体を用いて特定
条件により得られる新規な多機能性の分解性長繊維不織
布およびその製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a long-fiber nonwoven fabric having degradability in a natural environment and a method for producing the same. More specifically, it relates to a novel multifunctional degradable long-fiber nonwoven fabric obtained by using a polylactic acid-based polymer under specific conditions, and a method for producing the same.

【0002】[0002]

【従来の技術】従来から、医療・衛生材料や一般生活関
連材あるいは一部の産業資材用の素材としてポリエチレ
ンやポリプロピレン、ポリエステル、ポリアミドなどの
熱可塑性重合体からなる不織布が知られている。これら
の不織布は、通常の自然環境下では化学的に安定な前記
重合体から構成されるため自己分解性がなく、従って、
使い捨て用途では、焼却あるいは埋め立てという方法で
処理されているのが実情である。焼却処理に関しては、
プラント建設や公害防止設備の設置に多大の費用が必要
とされ、しかも廃棄ガスにより公害を生じるなど、自然
・生活環境保護の観点からして問題である。一方、埋め
立てに関しては、前述したように素材が通常の自然環境
下で化学的に安定であるため土中で長期間にわたって元
の状態のまま保持されるという問題がある。これらの問
題を解決するために、分解性を有する素材からなる種々
の不織布が開発されている。
2. Description of the Related Art Nonwoven fabrics made of thermoplastic polymers such as polyethylene, polypropylene, polyester and polyamide have been conventionally known as materials for medical / sanitary materials, general life-related materials and some industrial materials. These non-woven fabrics are not self-degradable because they are composed of the above-mentioned polymers that are chemically stable under normal natural environment, and therefore,
In the single-use application, the fact is that they are treated by incineration or landfill. Regarding incineration,
This is a problem from the viewpoint of protection of the natural and living environment, such as a large amount of cost being required for plant construction and installation of pollution control equipment, and waste gas causing pollution. On the other hand, with respect to landfill, there is a problem in that the material is chemically stable in a normal natural environment as described above, so that it is kept in the original state for a long time in the soil. In order to solve these problems, various non-woven fabrics made of degradable materials have been developed.

【0003】分解性を有する不織布としては、従来か
ら、例えば天然繊維又は再生繊維由来の分解性不織布と
して、コットン、麻、羊毛、レーヨン、キチン、アルギ
ン酸等からなる不織布が知られている。
As a non-woven fabric having degradability, for example, a non-woven fabric made of cotton, hemp, wool, rayon, chitin, alginic acid or the like is known as a non-woven fabric derived from natural fibers or recycled fibers.

【0004】しかし、これらの分解性不織布は一般的に
親水性かつ吸水性であることから、例えば使い捨ておむ
つのトップシートのように遮水性かつ低吸水性を要し湿
潤時のドライ感が要求される用途には適さない。また、
これらの不織布は湿潤環境下での強力や寸法安定性の低
下が著しく一般産業用資材用途としての展開には限界が
あった。さらに、これらの不織布は非熱可塑性であるこ
とから、熱成形性を有さず加工性に劣るものであった。
However, since these degradable non-woven fabrics are generally hydrophilic and water-absorbing, they need to have water-blocking properties and low water-absorption properties such as the top sheet of disposable diapers, and a dry feeling when wet is required. It is not suitable for various uses. Also,
These non-woven fabrics are markedly deteriorated in strength and dimensional stability in a wet environment, and there is a limit in their development as general industrial material applications. Furthermore, since these nonwoven fabrics are non-thermoplastic, they have no thermoformability and are inferior in workability.

【0005】これらの問題を解決する分解性不織布とし
て、生分解性能を有する熱可塑性重合体、例えば脂肪族
ポリエステルを用いた溶融紡糸法による分解性不織布が
種々報告されている。そして、このような脂肪族ポリエ
ステルとしては、具体的には、微生物ポリエステルに代
表されるポリ−β−ヒドロキシアルカノエート、ポリカ
プロラクトンに代表されるポリ−ω−ヒドロキシアルカ
ノエート、例えばポリブチレンサクシネートのようなグ
リコールとジカルボン酸との重縮合体からなるポリアル
キレンジカルボキシレートまたはこれらの共重合体等が
知られている。
As degradable nonwoven fabrics for solving these problems, various degradable nonwoven fabrics by a melt spinning method using a thermoplastic polymer having biodegradability, for example, aliphatic polyester have been reported. And as such an aliphatic polyester, specifically, poly-β-hydroxyalkanoate represented by microbial polyester, poly-ω-hydroxyalkanoate represented by polycaprolactone, for example, polybutylene succinate. Polyalkylene dicarboxylates composed of such polycondensates of glycols and dicarboxylic acids or copolymers thereof are known.

【0006】しかし、一般にこれらの生分解性を有する
重合体は、融点や結晶化温度が低く、結晶化速度が遅い
ため、紡出糸条の冷却性および可紡性に劣り、溶融紡出
後の冷却、牽引細化、捕集、堆積工程において糸条間で
密着が発生し十分な開繊を行なうことができず、溶融押
出法により糸条を押出してスクリーン上にウエブを堆積
させる、いわゆるスパンボンド法による不織布の製造に
は適用し難いという問題があった。また、たとえこれら
重合体からなるスパンボンド不織布が得られたとして
も、その融点によって使用環境が制限されることとな
る。そこで、前記の脂肪族ポリエステルのなかで融点が
比較的高いポリ乳酸を用いたスパンボンド不織布が有用
であると考えられ、その実用化が期待されている。
However, these biodegradable polymers generally have a low melting point and a low crystallization temperature and a low crystallization rate, so that the spinnability of the spun yarn is poor and the spinnability is poor. In the cooling, traction thinning, collection, and deposition processes, the filaments cannot be sufficiently opened due to adhesion between the filaments, and the filaments are extruded by the melt extrusion method to deposit the web on the screen. There is a problem that it is difficult to apply to the production of nonwoven fabric by the spunbond method. Even if a spunbonded nonwoven fabric made of these polymers is obtained, the melting point of the nonwoven fabric limits the use environment. Therefore, spunbonded nonwoven fabric using polylactic acid having a relatively high melting point among the above aliphatic polyesters is considered to be useful, and its practical application is expected.

【0007】これまでにポリ乳酸を用いた不織布として
は、特開平7−126970号公報にポリ乳酸を主成分
とする短繊維不織布が示されており、また、ポリ乳酸短
繊維不織布の製造に有用なポリ乳酸の短繊維が特開平6
−212511号公報に開示されている。しかし、この
ような短繊維不織布は、繊維の溶融紡糸から不織布化ま
でに多数の製造工程を要することから、製造コストの低
減に限界がある。
As a non-woven fabric using polylactic acid, Japanese Unexamined Patent Publication (Kokai) No. 7-126970 discloses a short fiber non-woven fabric containing polylactic acid as a main component and is useful for producing a polylactic acid short fiber non-woven fabric. Polylactic acid short fiber
-212511. However, such a short-fiber non-woven fabric requires a large number of production steps from melt spinning of fibers to non-woven fabric, and thus there is a limit in reducing the production cost.

【0008】一方、スパンボンド法によるポリ乳酸長繊
維不織布に関しては、特開平7−48769号公報、特
開平6−264343号公報、International Nonwoven
s Journal,第7巻,2号,69頁(1995年)および
欧州特許公開0637641(A1)号に示唆されてい
る。しかし、特開平7−48769号公報においては、
ポリ乳酸重合体からスパンボンド法により不織布を作る
ことが可能である旨が示唆されているのみで具体的な製
造方法や得られる不織布の物性については何ら記載され
ていない。また、特開平6−264343号公報は生分
解性農業用繊維集合体に関するものであるが、最も重要
な製造条件である引取速度その他詳細な記載がなく、得
られた不織布の物性についても不明である。また、Inte
rnational Nonwovens Journal,第7巻,2号,69頁
(1995年)では、板状の硬くてもろいポリ乳酸スパ
ンボンド不織布しか得られていない。さらに、欧州特許
公開0637641(A1)号でも、本発明のように機
械的強度に優れたポリ乳酸スパンボンド不織布は得られ
ていない。
On the other hand, regarding the polylactic acid long fiber non-woven fabric by the spunbond method, JP-A-7-48769, JP-A-6-264343 and International Nonwoven are available.
s Journal, Vol. 7, No. 2, p. 69 (1995) and European Patent Publication No. 0637641 (A1). However, in JP-A-7-48769,
It only suggests that a non-woven fabric can be produced from a polylactic acid polymer by a spunbond method, and does not describe any specific manufacturing method or physical properties of the obtained non-woven fabric. Further, Japanese Patent Laid-Open No. 6-264343 relates to a biodegradable agricultural fiber assembly, but there is no detailed description of the take-up speed or other important production conditions, and the physical properties of the resulting nonwoven fabric are unknown. is there. Also, Inte
According to rnational Nonwovens Journal, Vol. 7, No. 2, p. 69 (1995), only a plate-like hard and brittle polylactic acid spunbonded nonwoven fabric is obtained. Further, even in European Patent Publication No. 0637641 (A1), a polylactic acid spunbonded nonwoven fabric excellent in mechanical strength as in the present invention has not been obtained.

【0009】[0009]

【発明が解決しようとする課題】本発明は、耐熱性が要
求される分野においても使用可能なポリ乳酸系重合体か
らなる分解性スパンボンド不織布であり、しかも、優れ
た機械的強力を有しつつ、一定の柔軟性をも備え、さら
に通気遮断性、遮水性をも具備する新規な多機能性のポ
リ乳酸系長繊維不織布を提供しようとするものである。
DISCLOSURE OF THE INVENTION The present invention is a degradable spunbonded nonwoven fabric made of a polylactic acid type polymer which can be used even in the field where heat resistance is required, and has excellent mechanical strength. At the same time, it is an object of the present invention to provide a novel multifunctional polylactic acid-based long-fiber non-woven fabric having a certain degree of flexibility, and also having air permeability and water impermeability.

【0010】[0010]

【課題を解決するための手段】前記の問題を解決するた
めに、本発明は以下の構成を要旨とするものである。 1.ポリ乳酸系重合体からなる長繊維から構成されるウ
エブの少なくとも片面が、全面的に熱圧着されてなる。
In order to solve the above problems, the present invention has the following structures. 1. At least one surface of a web composed of long fibers made of a polylactic acid polymer is thermocompression bonded over the entire surface.

【0011】2.ASTM−D−1238(E)に準じ
て温度190℃で測定したメルトフローレート値が1〜
100g/10分であるポリ乳酸系重合体を、この重合
体の融点をTm℃としたときに(Tm+15)℃〜(T
m+50)℃の温度で溶融して口金から吐出させ、この
吐出糸条を吸引装置にて1000〜6000m/分の引
取速度で牽引細化した後に、移動式捕集面上に開繊させ
ながら堆積させてウエブを形成し、このウエブの少なく
とも片面を全面熱圧着装置を用いて、前記重合体の融点
をTm℃としたときに(Tm+5)℃以下の温度で、ロ
ールの線圧を0.01kg/cm以上として全面的に熱
圧着させて、ポリ乳酸系長繊維不織布を得る。
2. The melt flow rate value measured at a temperature of 190 ° C. according to ASTM-D-1238 (E) is 1 to
When the melting point of this polylactic acid-based polymer is 100 g / 10 minutes and the melting point of this polymer is Tm ° C., (Tm + 15) ° C. to (T
m + 50) ° C., melted and discharged from the spinneret, the discharged yarn is drawn and thinned by a suction device at a take-up speed of 1000 to 6000 m / min, and then spread while being spread on the movable collecting surface. To form a web, and using at least one side of the web with a thermocompression bonding apparatus for the entire surface, when the melting point of the polymer is Tm ° C., the linear pressure of the roll is 0.01 kg at a temperature of (Tm + 5) ° C. or less. / Cm or more and thermocompression-bonded over the entire surface to obtain a polylactic acid-based long-fiber nonwoven fabric.

【0012】以上のように本発明の不織布は、長繊維で
形成されるウエブの少なくとも片面が全面的に熱圧着さ
れることにより不織布としての形態が保持されているの
で、内部に不織構造を保持しながら表面のみがフィルム
化された構造を有するものである。すなわち、本発明の
不織布は、表面のフィルム形状によって通気遮断性およ
び遮水性を発揮するとともに優れた機械的強力を具備す
るものであるが、同時に内部に不織構造が存在すること
により完全なフィルム状シートに比べて優れた柔軟性を
併せもつ新規な多機能性不織布である。しかも、ポリ乳
酸系長繊維を構成繊維としていることから、本発明の不
織布は自然環境下で分解し得るものとなる。
As described above, the non-woven fabric of the present invention retains its form as a non-woven fabric by thermocompression-bonding at least one side of the web formed of long fibers, so that a non-woven structure is formed inside. It has a structure in which only the surface is formed into a film while being held. That is, the nonwoven fabric of the present invention has excellent mechanical strength while exhibiting air-permeable and water-impervious properties depending on the shape of the film on the surface, but at the same time, it is a perfect film due to the presence of a non-woven structure inside. It is a new multifunctional non-woven fabric that has superior flexibility compared to sheet-shaped sheets. Moreover, since the polylactic acid-based long fiber is used as the constituent fiber, the nonwoven fabric of the present invention can be decomposed in a natural environment.

【0013】[0013]

【発明の実施の形態】本発明に適用される長繊維はポリ
乳酸系重合体からなるものである。ポリ乳酸系重合体と
しては、ポリ(D−乳酸)と、ポリ(L−乳酸)と、D
−乳酸とL−乳酸との共重合体と、D−乳酸とヒドロキ
シカルボン酸との共重合体と、L−乳酸とヒドロキシカ
ルボン酸との共重合体との群から選ばれる重合体のうち
融点が100℃以上の重合体あるいはこれらのブレンド
体が好ましい。
BEST MODE FOR CARRYING OUT THE INVENTION The long fibers applied to the present invention are made of a polylactic acid polymer. Examples of the polylactic acid-based polymer include poly (D-lactic acid), poly (L-lactic acid), D
-Melting point of polymers selected from the group consisting of a copolymer of lactic acid and L-lactic acid, a copolymer of D-lactic acid and hydroxycarboxylic acid, and a copolymer of L-lactic acid and hydroxycarboxylic acid Is preferably a polymer having a temperature of 100 ° C. or higher or a blend thereof.

【0014】ポリ乳酸系重合体としてポリ(D−乳酸)
やポリ(L−乳酸)のようなホモポリマーを用いる場合
には特に、製糸工程での製糸性の改善と得られる繊維並
びに不織布の柔軟性の向上を目的として、可塑剤を添加
することが望ましい。この場合の可塑剤としては、トリ
アセチン、乳酸オリゴマー、ジオクチルフタレート等が
用いられ、その添加量としては1〜30重量%、好まし
くは5〜20重量%とするのが良い。
Poly (D-lactic acid) as a polylactic acid type polymer
Especially when a homopolymer such as poly (L-lactic acid) is used, it is desirable to add a plasticizer for the purpose of improving the spinnability in the spinning step and improving the flexibility of the obtained fiber and nonwoven fabric. . As the plasticizer in this case, triacetin, lactic acid oligomer, dioctyl phthalate and the like are used, and the addition amount thereof is 1 to 30% by weight, preferably 5 to 20% by weight.

【0015】本発明においては、不織布の構成繊維の融
点が100℃以上であることが、得られた不織布の耐熱
性等の観点から好ましく、従って、これを形成するポリ
乳酸系重合体の融点が100℃以上であることが重要で
ある。すなわち、ポリ乳酸のホモポリマーであるポリ
(L−乳酸)やポリ(D−乳酸)の融点は約180℃で
あるが、ポリ乳酸系重合体として前記コポリマーを用い
る場合には、コポリマーの融点が100℃以上となるよ
うにモノマー成分の共重合量比を決定することが重要と
なる。コポリマーにおいてL−乳酸あるいはD−乳酸の
共重合量比が特定の範囲よりも低いと、ポリ乳酸系重合
体の融点ひいては不織布の構成繊維の融点が100℃未
満となるかあるいは重合体が非晶性ポリマーとなるため
に、製糸時の冷却性が低下するとともに、得られた不織
布の耐熱性が損なわれるためその使用用途が制限される
こととなり好ましくない。
In the present invention, it is preferable that the constituent fibers of the non-woven fabric have a melting point of 100 ° C. or higher from the viewpoint of the heat resistance of the obtained non-woven fabric. Therefore, the polylactic acid-based polymer forming the non-woven fabric has a melting point. It is important that the temperature is 100 ° C. or higher. That is, the melting point of poly (L-lactic acid) or poly (D-lactic acid), which is a homopolymer of polylactic acid, is about 180 ° C., but when the copolymer is used as the polylactic acid-based polymer, the melting point of the copolymer is It is important to determine the copolymerization ratio of the monomer components so that the temperature is 100 ° C. or higher. When the copolymerization amount ratio of L-lactic acid or D-lactic acid in the copolymer is lower than a specific range, the melting point of the polylactic acid-based polymer and thus the melting point of the constituent fibers of the nonwoven fabric becomes less than 100 ° C., or the polymer is amorphous. Since it becomes a water-soluble polymer, the cooling property at the time of spinning is lowered, and the heat resistance of the obtained nonwoven fabric is impaired, so that its use is restricted, which is not preferable.

【0016】また、乳酸とヒドロキシカルボン酸との共
重合体である場合におけるヒドロキシカルボン酸として
は、グリコール酸、ヒドロキシ酪酸、ヒドロキシ吉草
酸、ヒドロキシペンタン酸、ヒドロキシカプロン酸、ヒ
ドロキシヘプタン酸、ヒドロキシオクタン酸等が挙げら
れるが、これらの中でも特に、ヒドロキシカプロン酸ま
たはグリコール酸が分解性能および低コストの点から好
ましい。
The hydroxycarboxylic acid in the case of a copolymer of lactic acid and hydroxycarboxylic acid includes glycolic acid, hydroxybutyric acid, hydroxyvaleric acid, hydroxypentanoic acid, hydroxycaproic acid, hydroxyheptanoic acid and hydroxyoctanoic acid. Among these, hydroxycaproic acid or glycolic acid is particularly preferable from the viewpoints of decomposition performance and low cost.

【0017】また、本発明においては、以上のポリ乳酸
系重合体を単独で用いるほか、二種以上のポリ乳酸系重
合体を混合してブレンド体として用いることもできる。
ブレンド体として用いる場合には、製糸性等を勘案し
て、混合種、混合量等の条件を適宜設定すると良い。
In the present invention, the above polylactic acid-based polymer may be used alone, or two or more kinds of polylactic acid-based polymers may be mixed and used as a blend.
When used as a blended body, it is advisable to appropriately set the conditions such as mixing type and mixing amount in consideration of spinnability and the like.

【0018】なお、本発明において適用される前記重合
体には、各々、必要に応じて、例えば艶消し剤、顔料、
結晶核剤などの各種添加剤を本発明の効果を損なわない
範囲内で添加しても良い。とりわけ、タルク、窒化ホウ
素、炭酸カルシウム、酸化チタン等の結晶核剤は、紡出
・冷却工程での糸条間の融着(ブロッキング)を防止す
るために、0.1〜3重量%の範囲で用いると有用であ
る。
The above-mentioned polymers applied in the present invention may each contain, for example, a matting agent, a pigment,
Various additives such as a crystal nucleating agent may be added as long as the effects of the present invention are not impaired. In particular, a crystal nucleating agent such as talc, boron nitride, calcium carbonate, and titanium oxide is contained in a range of 0.1 to 3% by weight in order to prevent fusion (blocking) between yarns in the spinning / cooling process. It is useful when used in.

【0019】本発明に適用される長繊維は、中実断面、
その他任意の繊維横断面形態を採用しうるのであるが、
特に、中空断面、異形断面、芯鞘複合断面、分割型複合
断面のうちのいずれかであることが好ましい。
The long fiber applied to the present invention has a solid cross section,
Although any other fiber cross-sectional shape can be adopted,
In particular, it is preferably any one of a hollow cross section, a modified cross section, a core-sheath composite cross section, and a split type composite cross section.

【0020】長繊維の繊維横断面が図1に示すような中
空断面である場合、得られた不織布に優れた分解性能を
付与することができる。これは、外周部分から侵食をは
じめた微生物や水分が中空部1に侵入して貫通する孔が
形成される結果、単位ポリマー重量当りの表面積が大き
くなるため、微生物等による分解速度が促進されるから
である。さらに、中空断面繊維においては、製糸の際に
単位時間当りに冷却領域を通過するポリマー重量が少な
いため、また内部に比熱が小さい空気を含んでいるた
め、紡出糸条の冷却性を向上させるに著しい効果を発揮
する。
When the fiber cross section of the long fiber has a hollow cross section as shown in FIG. 1, excellent decomposition performance can be imparted to the obtained nonwoven fabric. This is because microorganisms such as erosion starting from the outer peripheral portion and water penetrate into the hollow portion 1 to form a penetrating hole, and as a result, the surface area per unit weight of the polymer is increased, so that the decomposition rate by microorganisms is accelerated. Because. Further, in the hollow cross-section fiber, since the weight of the polymer passing through the cooling region per unit time during spinning is small, and the inside contains air having a small specific heat, the cooling property of the spun yarn is improved. Exerts a remarkable effect on.

【0021】長繊維の繊維横断面が図2および図3に示
すような多角形状の異形断面あるいは扁平形状の異形断
面である場合にも、製糸の際の紡出糸条の冷却性、開繊
性に優れるとともに、得られた不織布の分解性能も向上
する。なぜなら、異形断面繊維においても、単位ポリマ
ー重量当りの表面積は大きくなるからである。
Even when the transverse cross section of the long fiber has a polygonal irregular cross section or a flat irregular cross section as shown in FIGS. 2 and 3, the spinnability of the spun yarn during spinning is improved and the fiber is opened. In addition to having excellent properties, the decomposition performance of the obtained nonwoven fabric is also improved. This is because the surface area per unit weight of the polymer is large even in the modified cross-section fiber.

【0022】長繊維の繊維横断面が芯鞘複合断面である
場合、ポリ乳酸系重合体あるいは二種以上のポリ乳酸系
重合体のブレンド体である二成分から形成され、この二
成分のうち融点の高い方の成分(以下、高融点成分とい
う)を芯に配し、融点の低い方の成分(以下、低融点成
分という)を鞘に配することが重要である。そして、こ
の場合の両成分の融点差が少なくとも5℃以上、好まし
くは10℃以上、さらに好ましくは20℃以上であるこ
とが肝要である。但し、二種以上のポリ乳酸系重合体の
ブレンド体を芯成分および/又は鞘成分として用いる場
合、芯成分としては、ブレンド体を構成する重合体のう
ち最も低い融点を有する重合体の融点を、鞘成分として
は、ブレンド体を構成する重合体のうち最も高い融点を
有する重合体の融点を基準にして融点差を判断すること
とする。これにより、ウエブを全面的に熱圧着する際
に、比較的融点の低い鞘成分の融点近傍の温度で熱圧着
を施すことができ、芯部の高融点成分に融解を生じるこ
となく、柔軟性の向上を図ることができる。
When the fiber cross section of the long fiber has a core-sheath composite cross section, it is formed from two components which are a polylactic acid-based polymer or a blend of two or more polylactic acid-based polymers. It is important to place the component with the higher melting point (hereinafter referred to as the high melting point component) in the core and the component with the lower melting point (hereinafter referred to as the low melting point component) in the sheath. In this case, it is important that the difference in melting point between both components is at least 5 ° C or higher, preferably 10 ° C or higher, more preferably 20 ° C or higher. However, when a blend of two or more polylactic acid-based polymers is used as a core component and / or a sheath component, the melting point of the polymer having the lowest melting point among the polymers constituting the blend is used as the core component. As the sheath component, the melting point difference is judged based on the melting point of the polymer having the highest melting point among the polymers constituting the blend. As a result, when the web is entirely thermocompressed, it can be thermocompressed at a temperature near the melting point of the sheath component having a relatively low melting point, and the high melting point component of the core is not melted, and the flexibility is high. Can be improved.

【0023】長繊維の繊維横断面が分割型複合断面であ
る場合、得られる不織布の分解性および柔軟性に優れた
効果を発揮することがきる。ここで、分割型複合断面と
は、ポリ乳酸系重合体あるいは二種以上のポリ乳酸系重
合体のブレンド体である二成分からなり、この二成分が
互いに分割された形態をもっており、かついずれもが繊
維軸方向に連続すると共に繊維表面に露出するような繊
維横断面をいい、具体的には、図4〜図6に示す断面が
挙げられる。詳しくは、図4は、両成分が放射状に互い
に分割区域を有する断面であり、図5は、高融点成分2
が低融点成分3に対して点対称に突起したような断面で
ある。これらの繊維横断面形態によれば、より分解性能
に優れた成分(通常は低融点成分3)の一部が分解され
ることにより繊維自体の分割が促進されるため、得られ
る不織布の分解性を向上させることができるのである。
さらに、図6においては、図4に示す断面において中空
部1を有しているので、分解性および紡出糸条の冷却
性、開繊性をより向上させることができる。また、分割
型複合断面においても、ウエブを全面的に熱圧着する際
に、低融点成分3の融点の近傍の温度で熱融着を施すこ
とができるため、高融点成分2に融解を生じることな
く、柔軟性の向上を図ることができる。
When the fiber cross section of the long fiber is a split type composite cross section, the resulting non-woven fabric can exhibit excellent effects on decomposability and flexibility. Here, the split-type composite cross section is composed of two components that are a polylactic acid-based polymer or a blend of two or more polylactic acid-based polymers, and the two components have a form in which they are divided from each other, and both are Is a fiber cross section which is continuous in the fiber axis direction and is exposed on the fiber surface, and specific examples include the cross sections shown in FIGS. 4 to 6. More specifically, FIG. 4 is a cross section in which both components radially divide from each other, and FIG.
Is a cross section in which the points are projected symmetrically with respect to the low melting point component 3. According to these fiber cross-sectional shapes, the decomposition of the fiber itself is promoted by the decomposition of a part of the component having a higher decomposition performance (usually the low melting point component 3), so that the decomposability of the resulting nonwoven fabric is improved. Can be improved.
Further, in FIG. 6, since the hollow portion 1 is provided in the cross section shown in FIG. 4, the decomposability, the cooling property of the spun yarn, and the fiber opening property can be further improved. Also in the split type composite cross section, when the web is entirely thermocompressed, the high melting point component 2 may be melted because the heat fusion can be performed at a temperature near the melting point of the low melting point component 3. Therefore, the flexibility can be improved.

【0024】なお、本発明においては、前述の断面以外
に、例えば丸型複合断面や、三角型、四角型、六角型、
扁平型、Y字型、T字型など種々の異形複合断面であっ
ても差し支えない。
In the present invention, in addition to the above-mentioned cross section, for example, a round composite cross section, a triangular shape, a square shape, a hexagonal shape,
It may be a flat type, a Y-shaped type, a T-shaped type, or any other type of complex composite cross section.

【0025】本発明の不織布は、長繊維で形成されるウ
エブの少なくとも片面が全面的に熱圧着されることによ
り不織布としての形態が保持されており、内部に不織構
造を保持しながら表面のみがフィルム化された構造を有
するものである。従って、本発明の不織布は、表面のフ
ィルム形状によって通気遮断性および遮水性を発揮する
とともに優れた機械的強力を有し、同時に内部に不織構
造が存在することにより完全なフィルム状シートに比べ
て優れた柔軟性をも具備させることができる。また、本
発明の不織布は、フィルム化した表面部と不織構造の内
部とが連続的に接合しているので、単に不織ウエブの表
面にフィルムを積層したものに比べて良好な層間剥離強
力を有するものである。
The non-woven fabric of the present invention retains its form as a non-woven fabric by thermocompressing at least one side of the web formed of long fibers, and only the surface is retained while retaining the non-woven structure inside. Has a filmed structure. Therefore, the non-woven fabric of the present invention has excellent mechanical strength while exhibiting air-permeable and water-impervious properties depending on the shape of the film on the surface, and at the same time has a non-woven structure inside it, compared to a perfect film-like sheet. It is also possible to provide excellent flexibility. Further, the nonwoven fabric of the present invention, since the filmed surface portion and the inside of the non-woven structure are continuously joined, a better delamination strength than that obtained by simply laminating the film on the surface of the non-woven web. Is to have.

【0026】本発明の不織布の構成長繊維の単糸繊度は
0.5〜10デニールであることが好ましい。単糸繊度
が0.5デニール未満であると、紡糸・引取工程におい
て単糸切断が頻発し、操業性とともに得られる不織布の
強度も劣る傾向となる。逆に、単糸繊度が10デニール
を超えると、紡出糸条の冷却性が不十分になるととも
に、得られる不織布の柔軟性が低下することとなり好ま
しくない。
The single filament fineness of the constituent long fibers of the nonwoven fabric of the present invention is preferably 0.5 to 10 denier. If the single yarn fineness is less than 0.5 denier, single yarn cutting frequently occurs in the spinning and take-up steps, and the nonwoven fabric obtained tends to be inferior in strength as well as operability. On the other hand, if the single yarn fineness exceeds 10 denier, the cooling property of the spun yarn becomes insufficient and the flexibility of the obtained nonwoven fabric decreases, which is not preferable.

【0027】本発明の不織布は前記の単糸繊度を満足す
る長繊維で構成され、かつ、その目付が10〜1000
g/m2 の範囲にあることが好ましい。目付が10g/
2未満であると、地合いおよび機械的強力に劣り実用
に耐えないものとなる。逆に、目付が1000g/m2
を超えると、柔軟性が低下することとなり好ましくな
い。
The nonwoven fabric of the present invention is composed of long fibers satisfying the above-mentioned single yarn fineness and has a basis weight of 10 to 1000.
It is preferably in the range of g / m 2 . Unit weight is 10g /
When it is less than m 2 , the texture and the mechanical strength are poor and it cannot be put to practical use. Conversely, the basis weight is 1000 g / m 2
When it exceeds, the flexibility is lowered and it is not preferable.

【0028】本発明の不織布は、目付100g/m2
換算時の引張強力が3kg/5cm幅以上であるのが好
ましい。ここで、引張強力とは、JIS−L−1096
に準じて測定した場合における引張破断強力の経方向お
よび緯方向の平均値を意味し、本発明においてはこれを
目付100g/m2 に比例換算したもので得られた不織
布を評価する。不織布の引張強力が3kg/5cm幅未
満であると、余りにも機械的強度に欠けるため、実用に
耐えない場合がある。
The nonwoven fabric of the present invention preferably has a tensile strength of 3 kg / 5 cm width or more when converted to a basis weight of 100 g / m 2 . Here, the tensile strength means JIS-L-1096.
Means the average value of the tensile breaking strength in the warp direction and the weft direction, and in the present invention, the non-woven fabric obtained is evaluated in proportion to a basis weight of 100 g / m 2 . If the tensile strength of the non-woven fabric is less than 3 kg / 5 cm width, the mechanical strength is so low that it may not be practical.

【0029】本発明の不織布は、柔軟性の指標である目
付当たりの圧縮剛軟度が10g/(g/m2 )以下であ
るのが好ましい。ここで、圧縮剛軟度は、試料長が10
cm、試料幅が5cmの試料片を横方向に曲げて円筒状
物としたものを、その軸方向について圧縮速度5cm/
分で圧縮し、得られた最大荷重値(g)を目付けで割っ
た値を5回求めて平均したものであり、値が小さいほど
柔軟であることを意味する。本発明においては、内部に
不織構造を有していることから、得られる不織布は一定
の柔軟性を保持するものであり、圧縮剛軟度は10g/
(g/m2 )以下となる。圧縮剛軟度が10g/(g/
2 )を超えると、不織布の風合いが硬くなり、完全な
フィルム状シートに近くなり、本発明の目的とするもの
ではない。
The nonwoven fabric of the present invention preferably has a compression stiffness per unit weight, which is an index of flexibility, of 10 g / (g / m 2 ) or less. Here, the compressive stiffness is 10 for the sample length.
cm, sample width 5 cm, the sample was bent in the lateral direction to form a cylindrical body, and the compression speed was 5 cm / cm in the axial direction.
It is a value obtained by compressing in minutes, dividing the obtained maximum load value (g) by the basis weight and averaging the values five times. A smaller value means more flexibility. In the present invention, since the nonwoven fabric has a non-woven structure inside, the obtained nonwoven fabric retains a certain degree of flexibility, and the compression stiffness is 10 g /
(G / m 2 ) or less. Compression stiffness is 10g / (g /
When it exceeds m 2 ), the texture of the non-woven fabric becomes hard and becomes close to a perfect film-like sheet, which is not the object of the present invention.

【0030】次に、本発明のポリ乳酸系長繊維不織布の
製造方法について説明する。本発明の長繊維不織布は、
いわゆるスパンボンド法にて効率良く製造することがで
きる。すなわち、ASTM−D−1238(E)に準じ
て温度190℃で測定したメルトフローレート値が1〜
100g/10分である前述のポリ乳酸系重合体組成物
を用いて、この重合体の融点をTm℃としたときに(T
m+15)℃〜(Tm+50)℃の範囲の紡糸温度で溶
融して、所望の繊維横断面となる紡糸口金を介して紡糸
し、得られた紡出糸条を従来公知の横型吹付や環状吹付
等の冷却装置を用いて冷却せしめた後、エアーサッカー
等の吸引装置を用いて、1000〜6000m/分の高
速気流で目的繊度となるように牽引細化させ、引き続
き、吸引装置から排出された糸条群を開繊させた後、ス
クリーンからなるコンベアーの如き移動堆積装置上に開
繊堆積させてウエブとする。次いで、この移動堆積装置
上に形成されたウエブに、必要に応じて部分的な仮熱圧
着処理および/又は三次元的交絡処理を施し、その後、
このウエブの少なくとも片面に、全面熱圧着装置を用い
て、前記重合体のうち最も高い融点を有する重合体の融
点をTm℃としたときに(Tm+5)℃以下の温度で、
ロールの線圧を0.01kg/cm以上として全面的に
熱圧着を施すことにより、長繊維不織布を得ることがで
きる。
Next, a method for producing the polylactic acid-based long-fiber nonwoven fabric of the present invention will be described. The long fiber non-woven fabric of the present invention,
It can be efficiently manufactured by a so-called spun bond method. That is, the melt flow rate value measured at a temperature of 190 ° C. according to ASTM-D-1238 (E) is 1 to
When the above-mentioned polylactic acid-based polymer composition of 100 g / 10 min was used and the melting point of this polymer was Tm ° C. (T
m + 15) ° C. to (Tm + 50) ° C., melted at a spinning temperature and spun through a spinneret having a desired fiber cross-section, and the obtained spun yarn is hitherto known as horizontal spray or annular spray. After having been cooled by using the cooling device of No. 3, the yarn is drawn and drawn to a target fineness with a high-speed air flow of 1000 to 6000 m / min by using a suction device such as an air sucker, and subsequently discharged from the suction device. After the filament group is opened, the filament is opened and deposited on a moving and accumulating device such as a conveyor composed of a screen to obtain a web. Then, the web formed on the moving deposition apparatus is subjected to partial provisional thermocompression bonding treatment and / or three-dimensional entanglement treatment, if necessary, and thereafter,
When the melting point of the polymer having the highest melting point among the polymers is set to Tm ° C. on at least one side of this web using a full-scale thermocompression bonding device, at a temperature of (Tm + 5) ° C. or less,
A long-fiber nonwoven fabric can be obtained by thermocompression-bonding the roll with a linear pressure of 0.01 kg / cm or more.

【0031】本発明において適用されるポリ乳酸系重合
体組成物のメルトフローレート値(以下、MFR値と称
す)は、前述のように、ASTM−D−1238(E)
に記載の方法に準じて190℃で測定して1〜100g
/10分であることが重要である。MFR値が1g/1
0分未満であると、溶融粘度が高過ぎるために高速製糸
性に劣る結果となり、逆に、MFR値が100g/10
分を超えると、溶融粘度が低すぎるために曳糸性が劣る
こととなり、安定した操業が困難となる。
The melt flow rate value (hereinafter referred to as MFR value) of the polylactic acid-based polymer composition applied in the present invention is, as described above, ASTM-D-1238 (E).
1 to 100 g measured at 190 ° C. according to the method described in 1.
It is important that it is / 10 minutes. MFR value is 1g / 1
If it is less than 0 minutes, the melt viscosity will be too high, resulting in inferior high-speed spinnability. On the contrary, the MFR value will be 100 g / 10.
If it exceeds the minute, the melt viscosity is too low, and thus the spinnability is deteriorated and stable operation becomes difficult.

【0032】本発明において溶融紡糸の際には、前述の
ように、用いる重合体の融点をTm℃としたときに(T
m+15)℃〜(Tm+50)℃の範囲の温度で溶融し
なければならない。但し、二種以上のポリ乳酸系重合体
のブレンド体を用いる場合、ブレンド体を構成する重合
体のうち最も高い融点を有する重合体の融点をTm℃と
する。紡糸温度が(Tm+15)℃より低いと、高速気
流による曳糸・引取性に劣り、逆に、(Tm+50)℃
を超えると、冷却過程での結晶化が遅れ、フィラメント
間で融着を生じたり開繊性に劣ったりするばかりでな
く、ポリマー自体の熱分解も進行するため、柔軟で均一
な地合いの不織布を得ることが困難となる。
In the present invention, during melt spinning, as described above, when the melting point of the polymer used is Tm ° C. (T
It must melt at a temperature in the range of m + 15) ° C to (Tm + 50) ° C. However, when a blend of two or more polylactic acid-based polymers is used, the melting point of the polymer having the highest melting point among the polymers constituting the blend is Tm ° C. If the spinning temperature is lower than (Tm + 15) ° C, the high-speed air flow will result in poor pulling and take-up properties, and conversely (Tm + 50) ° C
If it exceeds the above, not only the crystallization in the cooling process is delayed, fusion between filaments occurs and the openability is inferior, but also the thermal decomposition of the polymer itself proceeds, so a nonwoven fabric with a soft and uniform texture is formed. Hard to get.

【0033】本発明において吸引装置を用いて紡出糸条
を牽引細化する際には、前述のように、引取速度が10
00〜6000m/分となるようにすることが重要であ
る。吸引装置の引取速度は重合体のMFR値に応じて適
宜選択すればいいが、引取速度が1000m/分未満で
は、重合体の配向結晶化が促進されず糸条間で粘着を起
こし、得られる不織布は硬くて機械的強度が劣ったもの
となる傾向にある。逆に、引取速度が6000m/分を
超えると、曳糸限界を超えて糸切れが発生して、安定操
業性を損なうこととなる。
In the present invention, when the spun yarn is pulled and thinned by using the suction device, the take-up speed is 10 as described above.
It is important to set it to be 00 to 6000 m / min. The take-up speed of the suction device may be appropriately selected according to the MFR value of the polymer, but if the take-up speed is less than 1000 m / min, oriented crystallization of the polymer is not promoted and sticking occurs between yarns, which is obtained. Nonwoven fabrics tend to be hard and inferior in mechanical strength. On the other hand, when the take-up speed exceeds 6000 m / min, the yarn breakage occurs, exceeding the towing limit, and stable operability is impaired.

【0034】本発明においては、全面的熱圧着を施す前
に、移動堆積装置上に形成されたウエブに必要に応じて
部分的な仮熱圧着処理および/又は三次元的交絡処理を
施すことができる。これは、スパンボンド法により連続
して形成されたウエブを一旦巻き取った際にウエブ同士
が絡まり合い、部分的な仮熱圧着処理および/又は三次
元的交絡処理を施すために再び巻き出しすることが困難
となるのを防止するためである。従って、ここで行う部
分的な仮熱圧着処理および/又は三次元的交絡処理は、
巻き取った際の絡まり合いを防止することができる程度
の仮止め的な形態保持力を付与するものであれば良い。
In the present invention, the web formed on the moving deposition apparatus may be subjected to partial provisional thermocompression bonding treatment and / or three-dimensional entanglement treatment, if necessary, before the entire surface thermocompression bonding is performed. it can. This is because the webs continuously formed by the spunbond method are entangled with each other when the webs are once taken up, and are unwound to perform partial provisional thermocompression bonding treatment and / or three-dimensional entanglement treatment. This is to prevent it from becoming difficult. Therefore, the partial provisional thermocompression bonding process and / or the three-dimensional entanglement process performed here are
It may be any one as long as it can provide a temporary holding force for the shape such that it can prevent the entanglement when wound.

【0035】本発明においてウエブの全面的熱圧着は、
加熱された表面が平滑な金属ロールによってウエブの表
面付近の構成長繊維を融解させることによりフィルム化
させて行われる。
In the present invention, the full thermocompression bonding of the web is performed by
The heating is performed by melting the constituent long fibers near the surface of the web with a metal roll whose surface is heated to form a film.

【0036】全面的熱圧着を施す際の加工温度、すなわ
ち金属ロールの表面温度は、前述のように、用いる重合
体の融点をTm℃としたときに(Tm+5)℃以下の温
度で行わなければならない。但し、熱圧着を施すウエブ
が、二種以上のポリ乳酸系重合体のブレンド体よりなる
長繊維から形成されている場合、あるいは、二成分で構
成される例えば前述の芯鞘複合断面又は分割型複合断面
等の複合断面を有する長繊維から形成されている場合に
は、ブレンド体を構成する重合体のうち最も高い融点を
有する重合体の融点、あるいは、複合断面を構成する二
成分のうち最も高い融点を有する成分の融点を基準にす
ることとし、これらの融点をTm℃としたときに(Tm
+5)℃以下の温度を加工温度としなければならない。
この温度を超えると、熱圧着装置に重合体が固着し操業
性を著しく損なうばかりか、不織布が疎剛化して風合い
が悪化することとなる。
As described above, the processing temperature for the full thermocompression bonding, that is, the surface temperature of the metal roll must be lower than (Tm + 5) ° C. when the melting point of the polymer used is Tm ° C. I won't. However, when the web to be thermocompression-bonded is formed from long fibers made of a blend of two or more polylactic acid-based polymers, or is composed of two components, for example, the core-sheath composite cross section or split type described above. In the case of being formed from long fibers having a composite cross section such as a composite cross section, the melting point of the polymer having the highest melting point of the polymers forming the blend, or the most of the two components forming the composite cross section. When the melting point of a component having a high melting point is taken as a reference, and these melting points are set to Tm ° C. (Tm
The processing temperature must be +5) ° C or lower.
If this temperature is exceeded, not only the polymer will adhere to the thermocompression bonding device and the operability will be significantly impaired, but also the nonwoven fabric will become stiff and the texture will deteriorate.

【0037】さらに、熱圧着を施す際には、ロールの線
圧を0.01kg/cm以上とすることが重要である。
ロールの線圧が0.01kg/cm未満であると、熱圧
着処理効果が乏しく、得られた不織布の機械的強力およ
び寸法安定性が向上せず好ましくない。一方、ロールの
線圧が10kg/cmを超えると、熱圧着処理効果が過
大となるため、不織布全体がフィルム化し、疎剛化した
不織布しか得られない傾向となるため、ロールの線圧は
10kg/cm以下とすることが好ましい。
Further, when thermocompression bonding is applied, it is important that the linear pressure of the roll is 0.01 kg / cm or more.
When the linear pressure of the roll is less than 0.01 kg / cm, the thermocompression bonding effect is poor, and the mechanical strength and dimensional stability of the resulting nonwoven fabric are not improved, which is not preferable. On the other hand, if the linear pressure of the roll exceeds 10 kg / cm, the thermocompression bonding effect becomes excessive, and the entire nonwoven fabric tends to form a film, so that only a non-stiffened nonwoven fabric tends to be obtained. Therefore, the linear pressure of the roll is 10 kg. / Cm or less is preferable.

【0038】本発明においては、ウエブの少なくとも片
面に熱圧着が施されておれば良い。特に、ウエブの両面
に熱圧着を施した場合、表裏に通気遮断性、遮水性を有
するフィルム層を備え、その間に空気を含む不織布層を
備える三層構造を形成することとなるので、保温性に優
れた不織布を得ることができる。
In the present invention, at least one surface of the web may be thermocompression bonded. In particular, when thermocompression bonding is applied to both sides of the web, a three-layer structure including a film layer having air-permeable and water-impervious properties on the front and back sides and a non-woven fabric layer containing air between them is formed, so that heat retention is maintained. An excellent nonwoven fabric can be obtained.

【0039】なお、この熱圧着処理は連続工程あるいは
別工程のいずれであっても良い。
The thermocompression bonding process may be a continuous process or a separate process.

【0040】[0040]

【実施例】以下、実施例により本発明を具体的に説明す
る。なお、本発明はこれらの実施例のみに限定されるも
のではない。
The present invention will be described below in detail with reference to examples. The present invention is not limited to these examples.

【0041】実施例において、各物性値は次のようにし
て求めた。 ・メルトフローレート値(g/10分);ASTM−D
−1238(E)に記載の方法に準じて温度190℃で
測定した。
In the examples, each physical property value was determined as follows. Melt flow rate value (g / 10 minutes); ASTM-D
It measured at the temperature of 190 degreeC according to the method as described in -1238 (E).

【0042】・融点(℃);パーキンエルマ社製示差走
査型熱量計DSC−2型を用い、試料重量を5mg、昇
温速度を20℃/分として測定して得た融解吸熱曲線の
極値を与える温度を融点(℃)とした。
Melting point (° C.): extreme value of a melting endothermic curve obtained by using a differential scanning calorimeter DSC-2 manufactured by Perkin Elmer, measuring the sample weight at 5 mg and the heating rate at 20 ° C./min. Was given as the melting point (° C.).

【0043】・目付(g/m2 );標準状態の試料から
縦10cm×横10cmの試料片各10点を作製し平衡
水分に至らしめた後、各試料片の重量(g)を秤量し、
得られた値の平均値を単位面積当たりに換算し、目付
(g/m2 )とした。
-Basis weight (g / m 2 ); 10 pieces each of 10 cm in length × 10 cm in width were prepared from a sample in a standard state, and after reaching equilibrium moisture, the weight (g) of each piece was weighed. ,
The average value of the obtained values was converted per unit area to obtain a basis weight (g / m 2 ).

【0044】・KGSM引張強力(kg/5cm幅);
JIS−L−1096に記載のストリップ方法に準じて
測定した。すなわち、試料長が10cm、試料幅が5c
mの試料片各10点を作製し、各試料片毎に不織布の経
および緯方向について、定速伸張型引張試験機(東洋ボ
ールドウィン社製テンシロンUTM−4−1−100)
を用いて引張速度10cm/分で伸張し、得られた切断
時荷重値(kg/5cm幅)の平均値を100g/m2
の目付に換算した値をKGSM引張強力(kg/5cm
幅)とした。
KGSM tensile strength (kg / 5 cm width);
It was measured according to the strip method described in JIS-L-1096. That is, the sample length is 10 cm and the sample width is 5 c
10 pieces each of m sample pieces were prepared, and a constant-speed extension type tensile tester (Tensilon UTM-4-1-100 manufactured by Toyo Baldwin Co., Ltd.) was used for each sample piece in the warp and weft directions of the nonwoven fabric.
Was stretched at a tensile speed of 10 cm / min, and the average value of the load values during cutting (kg / 5 cm width) obtained was 100 g / m 2.
KGSM tensile strength (kg / 5cm
Width).

【0045】・不織布の圧縮剛軟度(g/(g/m
2 ));試料長が10cm、試料幅が5cmの試料片計
5点を作製し、各試料片毎に横方向に曲げて円筒状物と
し、各々その端部を接合したものを圧縮剛軟度測定試料
とした。次いで、測定試料毎に各々その軸方向につい
て、定速伸長型引張り試験機(東洋ボールドウィン社製
テンシロンUTM−4−1−100)を用い、圧縮速度
5cm/分で圧縮し、得られた最大荷重値(g)を目付
けで割った値の平均を圧縮剛軟度(g/(g/m2 ))
とした。従って、この圧縮剛軟度の値が小さいほど柔軟
性が優れることを意味する。
・ Compression stiffness of non-woven fabric (g / (g / m
2 )); 5 sample pieces with a sample length of 10 cm and a sample width of 5 cm were prepared, and each sample piece was bent laterally into a cylindrical object, and the ends were joined together by compression bending. The measurement sample was used. Then, the maximum load obtained by compressing at a compression rate of 5 cm / min using a constant-speed extension type tensile tester (Tensilon UTM-4-1-100 manufactured by Toyo Baldwin Co., Ltd.) in the axial direction of each measurement sample Compressive stiffness (g / (g / m 2 )) is the average of the values obtained by dividing the value (g) by the basis weight.
And Therefore, the smaller the value of this compression stiffness is, the better the flexibility is.

【0046】・不織布の生分解性能;不織布を約58℃
に維持された熟成コンポスト中に埋設し、3ヶ月後に取
り出し、不織布がその形態を保持していない場合、ある
いは、その形態を保持していても引張強力が埋設前の強
力初期値に対して50%以下に低下している場合、生分
解性能が良好であるとし、強力が埋設前の強力初期値に
対して50%を超える場合、生分解性能が不良であると
評価した。
・ Biodegradability of non-woven fabric: Non-woven fabric is about 58 ° C.
When the nonwoven fabric does not retain its shape after being embedded in the aged compost maintained for 3 months, or when the nonwoven fabric retains its shape, the tensile strength is 50 against the initial strength before embedding. If the strength is less than 50%, the biodegradability is considered to be good, and if the strength exceeds 50% of the initial strength before embedding, the biodegradability is evaluated to be poor.

【0047】実施例1 融点が168℃、MFR値が20g/10分であるL−
乳酸/ヒドロキシカプロン酸=90/10モル%のL−
乳酸−ヒドロキシカプロン酸共重合体を用い、孔径0.
5mmで48孔を有する丸型の紡糸口金より紡糸温度1
95℃、単孔吐出量1.35g/分で溶融紡糸した。次
に、紡出糸条を温度が20℃の冷却空気流にて冷却した
後、引き続いてエアーサッカーにて引取速度3500m
/分で引取り、開繊し、移動するコンベアーの捕集面上
に堆積させた後、145℃の加熱したエンボスロールに
て部分的に仮熱圧着を施してウエブを形成した。次い
で、このウエブを6枚積層し、#40のレギュラー針に
て、200パンチ/cm2 のニードルパンチを施し、構
成繊維間に三次元的交絡を形成した。この三次元的交絡
の施されたウエブを、表面温度が170℃、熱処理時間
が100秒、線圧が0.5kg/cmの条件のヤンキー
ドライヤー(熊谷理機工業製)にて、ウエブの片面のみ
を全面的に熱圧着し、目付170g/m2 の長繊維不織
布を得た。製造条件、操業性および不織布の物性、生分
解性能を表1に示す。
Example 1 L- having a melting point of 168 ° C. and an MFR value of 20 g / 10 minutes
Lactic acid / hydroxycaproic acid = 90/10 mol% L-
A lactic acid-hydroxycaproic acid copolymer was used, and the pore size was 0.
Spinning temperature 1 from a round spinneret with 5 mm and 48 holes
Melt spinning was performed at 95 ° C. and a single hole discharge rate of 1.35 g / min. Next, the spun yarn is cooled with a cooling air flow having a temperature of 20 ° C., and subsequently, with an air sucker, a take-up speed of 3500 m.
/ Minute, the fibers were opened, and the fibers were deposited on the collecting surface of the moving conveyor, and then partially pre-thermocompressed with an embossing roll heated at 145 ° C to form a web. Next, six of these webs were laminated and a 200 # / cm 2 needle punch was performed with a # 40 regular needle to form a three-dimensional entanglement between the constituent fibers. This three-dimensionally entangled web was subjected to a Yankee dryer (manufactured by Kumagai Riki Kogyo Co., Ltd.) under conditions of a surface temperature of 170 ° C., a heat treatment time of 100 seconds, and a linear pressure of 0.5 kg / cm. Only the whole was thermocompression-bonded to obtain a long-fiber nonwoven fabric having a basis weight of 170 g / m 2 . Table 1 shows production conditions, operability, physical properties of the nonwoven fabric, and biodegradability.

【0048】実施例2 L−乳酸−ヒドロキシカプロン酸共重合体におけるL−
乳酸とヒドロキシカプロン酸との共重合量比および紡糸
温度、加工温度を表1に示すように変更した以外は、実
施例1と同様にして長繊維不織布を得た。製造条件、操
業性および不織布の物性、生分解性能を表1に示す。
Example 2 L- in L-lactic acid-hydroxycaproic acid copolymer
A long-fiber nonwoven fabric was obtained in the same manner as in Example 1 except that the copolymerization ratio of lactic acid and hydroxycaproic acid, the spinning temperature, and the processing temperature were changed as shown in Table 1. Table 1 shows production conditions, operability, physical properties of the nonwoven fabric, and biodegradability.

【0049】実施例3 L−乳酸/D−乳酸=80/20モル%のL−乳酸とD
−乳酸との共重合体を用い、紡糸温度、加工温度を表1
に示すように変更した以外は、実施例1と同様にして長
繊維不織布を得た。製造条件、操業性および不織布の物
性、生分解性能を表1に示す。
Example 3 L-lactic acid / D-lactic acid = 80/20 mol% L-lactic acid and D
-Using a copolymer with lactic acid, the spinning temperature and processing temperature are shown in Table 1.
A long-fiber nonwoven fabric was obtained in the same manner as in Example 1 except that the change was made as shown in FIG. Table 1 shows production conditions, operability, physical properties of the nonwoven fabric, and biodegradability.

【0050】実施例4 ポリ(L−乳酸)重合体を用い、紡糸温度および加工温
度を表1に示すように変更したこと以外は、実施例1と
同様にして長繊維不織布を得た。製造条件、操業性およ
び不織布の物性、生分解性能を表1に示す。
Example 4 A long-fiber nonwoven fabric was obtained in the same manner as in Example 1 except that the spinning temperature and the processing temperature were changed as shown in Table 1 using a poly (L-lactic acid) polymer. Table 1 shows production conditions, operability, physical properties of the nonwoven fabric, and biodegradability.

【0051】実施例5 ポリ(L−乳酸)重合体に結晶核剤としてタルクを1重
量%添加した組成物を用いたこと以外は、実施例4と同
様にして長繊維不織布を得た。製造条件、操業性および
不織布の物性、生分解性能を表1に示す。
Example 5 A long-fiber nonwoven fabric was obtained in the same manner as in Example 4 except that a composition obtained by adding 1% by weight of talc as a crystal nucleating agent to a poly (L-lactic acid) polymer was used. Table 1 shows production conditions, operability, physical properties of the nonwoven fabric, and biodegradability.

【0052】実施例6 単孔吐出量を2.70g/分とし、引取速度を4500
m/分としたこと以外は、実施例1と同様にして、単糸
繊度が5.4デニールの長繊維からなる長繊維不織布を
得た。製造条件、操業性および不織布の物性、生分解性
能を表1に示す。
Example 6 The single hole discharge rate was 2.70 g / min, and the take-up speed was 4500.
A long fiber nonwoven fabric made of long fibers having a single yarn fineness of 5.4 denier was obtained in the same manner as in Example 1 except that m / min was set. Table 1 shows production conditions, operability, physical properties of the nonwoven fabric, and biodegradability.

【0053】実施例7 融点が111℃、MFR値が20g/10分であるL−
乳酸/グリコール酸=80/20モル%の共重合体をA
成分とし、融点が141℃、MFR値が20g/10分
であるL−乳酸/D−乳酸=90/10モル%のポリ
(D,L−乳酸)をB成分として、各成分をA成分/B
成分=1/1(重量比)の割合で用い、図5に示す分割
型複合断面においてA成分を芯部に、B成分を葉部に配
したような紡糸口金より、紡糸温度170℃、単孔吐出
量1.35g/分で溶融紡糸した。次に、紡出糸条を温
度が20℃の冷却空気流にて冷却した後、引き続いてエ
アーサッカーにて引取速度3500m/分で引取り、開
繊し、移動するコンベアーの捕集面上に堆積させて、3
00g/m2 のウエブを形成した。次いで、このウエブ
に#40のレギュラー針にて、200パンチ/cm2
ニードルパンチを施し、構成繊維間に三次元的交絡を形
成した。この三次元的交絡の施されたウエブを、表面温
度が125℃、熱処理時間が100秒、線圧が1.0k
g/cmの条件のヤンキードライヤー(熊谷理機工業
製)にて、ウエブの片面のみを全面的に熱圧着し、目付
280g/m2 の分割型複合長繊維不織布を得た。製造
条件、操業性および不織布の物性、生分解性能を表1に
示す。
Example 7 L- having a melting point of 111 ° C. and an MFR value of 20 g / 10 minutes
A copolymer of lactic acid / glycolic acid = 80/20 mol%
As a component, L-lactic acid / D-lactic acid having a melting point of 141 ° C. and an MFR value of 20 g / 10 min = 90/10 mol% of poly (D, L-lactic acid) is a B component, and each component is an A component / B
The component was used at a ratio of 1/1 (weight ratio), and the spinning temperature was 170 ° C. at a spinning temperature of 170 ° C. from a spinneret in which the component A was placed in the core and the component B was placed in the leaf in the split composite cross section shown in FIG. Melt spinning was performed at a hole discharge rate of 1.35 g / min. Next, after the spun yarn is cooled with a cooling air flow having a temperature of 20 ° C., the spun yarn is subsequently taken up with an air sucker at a take-up speed of 3500 m / min, opened, and placed on the collecting surface of a moving conveyor. Accumulate 3
A web of 00 g / m 2 was formed. Then, this web was needle punched at 200 punches / cm 2 with a # 40 regular needle to form a three-dimensional entanglement between the constituent fibers. This three-dimensionally entangled web has a surface temperature of 125 ° C., a heat treatment time of 100 seconds, and a linear pressure of 1.0 k.
Using a Yankee dryer (manufactured by Kumagai Riki Kogyo Co., Ltd.) under the condition of g / cm, only one side of the web was thermocompressed over the entire surface to obtain a split type composite long fiber nonwoven fabric having a basis weight of 280 g / m 2 . Table 1 shows production conditions, operability, physical properties of the nonwoven fabric, and biodegradability.

【0054】実施例8 実施例1と同様にして、片面のみに全面的熱圧着処理を
施した長繊維不織シートを得、さらに、このシートを反
転して、同一条件で再度、全面的熱圧着処理を施して、
目付150g/m2 の両面熱圧着タイプの長繊維不織布
を得た。製造条件、操業性および不織布の物性、生分解
性能を表1に示す。
Example 8 In the same manner as in Example 1, a long-fiber non-woven sheet having a single surface entirely subjected to thermocompression bonding was obtained. Further, this sheet was reversed, and the entire surface was again subjected to the same heat treatment under the same conditions. Apply crimping treatment,
A double-sided thermocompression-bonded long-fiber nonwoven fabric having a basis weight of 150 g / m 2 was obtained. Table 1 shows production conditions, operability, physical properties of the nonwoven fabric, and biodegradability.

【0055】[0055]

【表1】 [Table 1]

【0056】表1から明らかなように、実施例1〜9で
得られた長繊維不織布は、いずれも3kg/5cm幅以
上の優れた機械的強力を有し、かつ圧縮剛軟度が10g
/(g/m2 )以下の一定の柔軟性を具備するものであ
った。さらに、これらの不織布は優れた通気遮断性およ
び遮水性を有するものであり、しかも生分解性能につい
ても非常に良好であり、コンポスト中への埋設後に取り
出したところ、いずれの不織布も重量減少率、形態変化
が大きく、強力保持率が著しく低下していた。
As is clear from Table 1, the long-fiber nonwoven fabrics obtained in Examples 1 to 9 all have excellent mechanical strength of 3 kg / 5 cm width or more, and have compression stiffness of 10 g.
It had a certain flexibility of not more than / (g / m 2 ). Furthermore, these non-woven fabrics have excellent air-permeable and water-blocking properties, and also have very good biodegradability, and when taken out after embedding in a compost, both non-woven fabrics exhibited a weight reduction rate, The morphological change was large, and the strength retention was significantly reduced.

【0057】比較例1および比較例2 引取速度を表2に示すように変更した以外は、実施例1
と同様にして長繊維不織布化を試みた。製造条件および
操業性を表2に示す。
Comparative Example 1 and Comparative Example 2 Example 1 except that the take-up speed was changed as shown in Table 2.
An attempt was made to make a long-fiber non-woven fabric in the same manner as in. Table 2 shows the production conditions and operability.

【0058】比較例3および比較例4 重合体のMFR値を表2に示すように変更した以外は、
実施例1と同様にして長繊維不織布化を試みた。製造条
件および操業性を表2に示す。
Comparative Example 3 and Comparative Example 4 Except that the MFR value of the polymer was changed as shown in Table 2,
An attempt to make a long-fiber nonwoven fabric was made in the same manner as in Example 1. Table 2 shows the production conditions and operability.

【0059】比較例5および比較例6 紡糸温度を表2に示すように変更した以外は、実施例1
と同様にして長繊維不織布化を試みた。製造条件および
操業性を表2に示す。
Comparative Example 5 and Comparative Example 6 Example 1 except that the spinning temperature was changed as shown in Table 2.
An attempt was made to make a long-fiber non-woven fabric in the same manner as in. Table 2 shows the production conditions and operability.

【0060】比較例7 全面的熱圧着処理の際の加工温度を175℃としたこと
以外は、実施例1と同様にして長繊維不織布を得た。製
造条件、操業性および不織布の物性、生分解性能を表2
に示す。
Comparative Example 7 A long fiber non-woven fabric was obtained in the same manner as in Example 1 except that the processing temperature at the time of full-scale thermocompression bonding treatment was 175 ° C. Table 2 shows manufacturing conditions, operability, physical properties of non-woven fabric, and biodegradability.
Shown in

【0061】比較例8 全面的熱圧着処理の際の線圧を表2に示すように変更し
た以外は、実施例1と同様にして長繊維不織布を得た。
製造条件、操業性および不織布の物性、生分解性能を表
2に示す。
Comparative Example 8 A long fiber non-woven fabric was obtained in the same manner as in Example 1 except that the linear pressure at the time of full-scale thermocompression bonding treatment was changed as shown in Table 2.
Table 2 shows manufacturing conditions, operability, physical properties of the nonwoven fabric, and biodegradability.

【0062】比較例9 融点が168℃、MFR値が20g/10分であるL−
乳酸/ヒドロキシカプロン酸=90/10モル%のL−
乳酸−ヒドロキシカプロン酸共重合体を用い、実施例1
と同一の目付170g/m2 のシート状フィルムを形成
した。このフィルムの物性、生分解性能を表2に示す。
Comparative Example 9 L- having a melting point of 168 ° C. and an MFR value of 20 g / 10 min.
Lactic acid / hydroxycaproic acid = 90/10 mol% L-
Example 1 using a lactic acid-hydroxycaproic acid copolymer
The same sheet-like film having a basis weight of 170 g / m 2 was formed. Table 2 shows the physical properties and biodegradability of this film.

【0063】[0063]

【表2】 [Table 2]

【0064】一方、表2から明らかなように、比較例1
においては、引取速度が1000m/分よりも低いの
で、フィラメント間での融着が発生し、開繊性が不良と
なり、地合いの良好なシートが得られなかった。
On the other hand, as is clear from Table 2, Comparative Example 1
In the above, since the take-up speed was lower than 1000 m / min, fusion between filaments occurred, the openability was poor, and a sheet with a good texture could not be obtained.

【0065】比較例2においては、引取速度が6000
m/分よりも高いので、高速気流による曳糸性に劣り、
糸切れが多発してシート化ができなかった。
In Comparative Example 2, the take-up speed is 6000.
Since it is higher than m / min, it has poor spinnability due to high-speed air flow,
Thread breakage occurred frequently and it could not be made into a sheet.

【0066】比較例3においては、MFR値が100g
/10分を超えるため、高速気流による曳糸性に劣り、
糸切れが多発してシート化ができなかった。
In Comparative Example 3, the MFR value was 100 g.
Since it exceeds / 10 minutes, the spinnability due to high-speed air flow is poor,
Thread breakage occurred frequently and it could not be made into a sheet.

【0067】比較例4においては、MFR値が1g/1
0分未満であるため、高速気流による曳糸・引取性に劣
り、操業性を損なう結果となった。
In Comparative Example 4, the MFR value was 1 g / 1.
Since it was less than 0 minutes, the drawability and take-up property by the high-speed air flow were poor, and the operability was impaired.

【0068】比較例5においては、紡糸温度が重合体の
融点をTmとしたときに(Tm+15)℃よりも低いの
で、高速気流による曳糸・引取性に劣り、操業性を損な
う結果となった。
In Comparative Example 5, since the spinning temperature was lower than (Tm + 15) ° C. when the melting point of the polymer was Tm, the result was poor spinnability / take-off property due to high-speed air flow, resulting in impaired operability. .

【0069】比較例6においては、紡糸温度が重合体の
融点をTmとしたときに(Tm+50)℃よりも高いの
で、冷却過程での結晶化が遅くなり、重合体の熱分解も
進行して、フィラメント間での融着が発生し、開繊性が
不良となり、地合いの良好なシートが得られなかった。
In Comparative Example 6, since the spinning temperature was higher than (Tm + 50) ° C. when the melting point of the polymer was Tm, the crystallization in the cooling process was delayed and the thermal decomposition of the polymer proceeded. However, fusion between filaments occurred, the openability became poor, and a sheet with a good texture could not be obtained.

【0070】比較例7においては、全面的熱圧着時の加
工温度を重合体の融点よりも7℃高い温度としたため、
得られた不織布は柔軟性に欠けるフィルム化したもので
あった。
In Comparative Example 7, since the processing temperature at the time of thermocompression bonding was set to a temperature 7 ° C. higher than the melting point of the polymer,
The obtained non-woven fabric was formed into a film lacking flexibility.

【0071】比較例8においては、全面的熱圧着時の線
圧が高すぎるため、得られた不織布は柔軟性に欠けるフ
ィルム化したものであった。
In Comparative Example 8, since the linear pressure at the time of thermocompression bonding was too high, the obtained non-woven fabric was a film lacking in flexibility.

【0072】比較例9においては、完全なフィルムであ
り、内部に不織構造を有していないため、柔軟性に欠
け、本発明の目的とする用途においては実用不可能なも
のであった。
In Comparative Example 9, since it was a perfect film and did not have a non-woven structure inside, it lacked flexibility and was not practical for the intended use of the present invention.

【0073】[0073]

【発明の効果】本発明によれば、長繊維で形成されるウ
エブの少なくとも片面が全面的に熱圧着されることによ
り不織布としての形態が保持されているので、フィルム
化された表面によって通気遮断性および遮水性を発揮す
るとともに優れた機械的強力を具備し、同時に内部に不
織構造が存在することにより完全なフィルム状シートに
比べて優れた柔軟性を併せもつ多機能性の長繊維不織布
を提供することができる。しかも、本発明で得られる不
織布は、ポリ乳酸系長繊維を構成繊維としていることか
ら、自然環境下で分解し得るものとなる。
According to the present invention, since at least one side of a web formed of long fibers is thermocompressed over its entire surface, its shape as a non-woven fabric is maintained. And long-term non-woven fabric that has excellent mechanical strength and at the same time has a non-woven structure, which makes it more flexible than a perfect film sheet due to its non-woven structure. Can be provided. Moreover, since the nonwoven fabric obtained in the present invention comprises polylactic acid-based long fibers as constituent fibers, it can be decomposed in a natural environment.

【0074】従って、本発明の不織布は、例えば、水平
又は垂直ドレーンシートや遮水シート等の土木用資材、
ハウスカーテンあるいは植生補助シートや植木コンテナ
等の農・園芸業用資材、使い捨ておむつのバックシート
等の衛生材料用素材、その他分解性および遮水性、通気
遮断性が要求される一般産業用資材等の用途において有
効に適用することができ、自然環境保護の観点から有益
なものである。
Therefore, the non-woven fabric of the present invention can be used as a civil engineering material such as a horizontal or vertical drain sheet or a waterproof sheet,
Agricultural and horticultural materials such as house curtains or vegetation support sheets and planting containers, hygiene materials such as backsheets of disposable diapers, and other general industrial materials that require degradability, water impermeability, and ventilation impermeability. It can be effectively applied in applications and is beneficial from the viewpoint of protecting the natural environment.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の不織布を構成する長繊維の一例を示す
中空断面長繊維の繊維横断面のモデル図である。
FIG. 1 is a model view of a fiber cross section of a hollow cross section long fiber showing an example of a long fiber constituting a nonwoven fabric of the present invention.

【図2】本発明の不織布を構成する長繊維の他の例を示
す異形断面長繊維の繊維横断面のモデル図である。
FIG. 2 is a model view of a fiber cross section of a modified cross-section long fiber showing another example of the long fiber constituting the nonwoven fabric of the present invention.

【図3】本発明の不織布を構成する長繊維のさらに他の
例を示す異形断面長繊維の繊維横断面のモデル図であ
る。
FIG. 3 is a model view of a fiber cross section of a modified cross section long fiber showing still another example of the long fiber constituting the nonwoven fabric of the present invention.

【図4】本発明の不織布を構成する長繊維のさらに他の
例を示す分割型複合長繊維の繊維横断面のモデル図であ
る。
FIG. 4 is a model view of a fiber cross section of a splittable conjugate long fiber showing still another example of long fibers constituting the nonwoven fabric of the present invention.

【図5】本発明の不織布を構成する長繊維のさらに他の
例を示す分割型複合長繊維の繊維横断面のモデル図であ
る。
FIG. 5 is a model diagram of a fiber cross section of a splittable composite continuous fiber showing still another example of continuous fibers constituting the nonwoven fabric of the present invention.

【図6】本発明の不織布を構成する長繊維のさらに他の
例を示す分割型複合長繊維の繊維横断面のモデル図であ
る。
FIG. 6 is a model view of a fiber cross section of a splittable composite continuous fiber showing still another example of continuous fibers constituting the nonwoven fabric of the present invention.

【符号の説明】[Explanation of symbols]

1 中空部 2 高融点成分 3 低融点成分 1 Hollow part 2 High melting point component 3 Low melting point component

Claims (15)

【特許請求の範囲】[Claims] 【請求項1】 ポリ乳酸系重合体からなる長繊維から構
成されるウエブの少なくとも片面が、全面的に熱圧着さ
れてなることを特徴とするポリ乳酸系長繊維不織布。
1. A polylactic acid-based long-fiber non-woven fabric, characterized in that at least one side of a web composed of long fibers made of a polylactic acid-based polymer is thermocompression-bonded over the entire surface.
【請求項2】 ポリ乳酸系重合体が、ポリ(D−乳酸)
と、ポリ(L−乳酸)と、D−乳酸とL−乳酸との共重
合体と、D−乳酸とヒドロキシカルボン酸との共重合体
と、L−乳酸とヒドロキシカルボン酸との共重合体との
群から選ばれる重合体のうち融点が100℃以上の重合
体あるいはこれらのブレンド体であることを特徴とする
請求項1記載のポリ乳酸系長繊維不織布。
2. The polylactic acid-based polymer is poly (D-lactic acid).
, Poly (L-lactic acid), copolymer of D-lactic acid and L-lactic acid, copolymer of D-lactic acid and hydroxycarboxylic acid, copolymer of L-lactic acid and hydroxycarboxylic acid 2. The polylactic acid-based long-fiber nonwoven fabric according to claim 1, which is a polymer having a melting point of 100 ° C. or higher among the polymers selected from the group consisting of: and a blend thereof.
【請求項3】 ポリ乳酸系重合体に結晶核剤を添加する
ことを特徴とする請求項1または2記載のポリ乳酸系長
繊維不織布。
3. The polylactic acid-based long-fiber nonwoven fabric according to claim 1, wherein a crystal nucleating agent is added to the polylactic acid-based polymer.
【請求項4】 構成長繊維の繊維横断面が、中実断面あ
るいは中空断面であることを特徴とする請求項1から3
までのいずれか1項に記載のポリ乳酸系長繊維不織布。
4. The fiber cross section of the constituent long fiber is a solid cross section or a hollow cross section.
The polylactic acid-based long-fiber nonwoven fabric according to any one of items 1 to 6 above.
【請求項5】 構成長繊維の繊維横断面が、多角形状ま
たは扁平形状の異形断面であることを特徴とする請求項
1から3までのいずれか1項に記載のポリ乳酸系長繊維
不織布。
5. The polylactic acid-based long-fiber nonwoven fabric according to claim 1, wherein the fiber cross section of the constituent long fibers is a polygonal or flat-shaped irregular cross section.
【請求項6】 構成長繊維の繊維横断面が、長繊維を構
成する二成分からなる芯鞘複合断面であり、前記長繊維
を構成する二成分がポリ乳酸系重合体あるいは二種以上
のポリ乳酸系重合体のブレンド体であることを特徴とす
る請求項1から3までのいずれか1項に記載のポリ乳酸
系長繊維不織布。
6. The fiber cross section of the constituent long fibers is a core-sheath composite cross section composed of two components constituting the long fibers, and the two components constituting the long fibers are a polylactic acid polymer or two or more kinds of poly. The polylactic acid-based long-fiber nonwoven fabric according to any one of claims 1 to 3, which is a blend of lactic acid-based polymers.
【請求項7】 構成長繊維の繊維横断面が、長繊維を構
成する二成分が互いに分割された形態をもっており、か
ついずれもが繊維軸方向に連続すると共に繊維表面に露
出する分割型複合断面であり、前記長繊維を構成する二
成分がポリ乳酸系重合体あるいは二種以上のポリ乳酸系
重合体のブレンド体であることを特徴とする請求項1か
ら3までのいずれか1項に記載のポリ乳酸系長繊維不織
布。
7. A split type composite cross section in which the fiber cross section of the constituent continuous fiber has a form in which two components constituting the continuous fiber are separated from each other, and both are continuous in the fiber axial direction and exposed on the fiber surface. 4. The two components constituting the long fiber are a polylactic acid-based polymer or a blended product of two or more kinds of polylactic acid-based polymers, according to any one of claims 1 to 3. Polylactic acid-based long-fiber non-woven fabric.
【請求項8】 不織布の構成長繊維の融点が、100℃
以上であることを特徴とする請求項1から7までのいず
れか1項に記載のポリ乳酸系長繊維不織布。
8. The melting point of the constituent filaments of the non-woven fabric is 100.degree.
The polylactic acid-based long-fiber nonwoven fabric according to any one of claims 1 to 7, which is the above.
【請求項9】 不織布の構成長繊維の単糸繊度が0.5
〜10デニールであり、かつ不織布の目付が10〜10
00g/m2 であることを特徴とする請求項1から8ま
でのいずれか1項に記載のポリ乳酸系長繊維不織布。
9. The single yarn fineness of the constituent long fibers of the non-woven fabric is 0.5.
10 denier, and the basis weight of the nonwoven fabric is 10 to 10
The polylactic acid-based long-fiber nonwoven fabric according to any one of claims 1 to 8, which has a weight of 00 g / m 2 .
【請求項10】 目付100g/m2 に換算時の不織布
の引張強力が3kg/5cm幅以上であることを特徴と
する請求項1から9までのいずれか1項に記載のポリ乳
酸系長繊維不織布。
10. The polylactic acid-based continuous fiber according to claim 1, wherein the nonwoven fabric has a tensile strength of 3 kg / 5 cm width or more when converted to a basis weight of 100 g / m 2. Non-woven fabric.
【請求項11】 目付当たりの不織布の圧縮剛軟度が1
0g/(g/m2 )以下であることを特徴とする請求項
1から10までのいずれか1項に記載のポリ乳酸系長繊
維不織布。
11. The compression stiffness of the nonwoven fabric per unit weight is 1
The polylactic acid-based long fiber non-woven fabric according to any one of claims 1 to 10, which is 0 g / (g / m 2 ) or less.
【請求項12】 ASTM−D−1238(E)に準じ
て温度190℃で測定したメルトフローレート値が1〜
100g/10分であるポリ乳酸系重合体を、この重合
体の融点をTm℃としたときに(Tm+15)℃〜(T
m+50)℃の温度で溶融して口金から吐出させ、この
吐出糸条を吸引装置にて1000〜6000m/分の引
取速度で牽引細化した後に、移動式捕集面上に開繊させ
ながら堆積させてウエブを形成し、このウエブの少なく
とも片面を全面熱圧着装置を用いて、前記重合体の融点
をTm℃としたときに(Tm+5)℃以下の温度で、ロ
ールの線圧を0.01kg/cm以上として全面的に熱
圧着させることを特徴とするポリ乳酸系長繊維不織布の
製造方法。
12. A melt flow rate value measured at 190 ° C. according to ASTM-D-1238 (E) is 1 to
When the melting point of this polylactic acid-based polymer is 100 g / 10 minutes and the melting point of this polymer is Tm ° C., (Tm + 15) ° C. to (T
m + 50) ° C., melted and discharged from the spinneret, and the discharged yarn is drawn and thinned by a suction device at a take-up speed of 1000 to 6000 m / min, and then spread while being spread on the movable collecting surface. To form a web, and using at least one side of the web with a thermocompression bonding apparatus for the whole surface, when the melting point of the polymer is Tm ° C., the linear pressure of the roll is 0.01 kg at a temperature of (Tm + 5) ° C. or less. / Cm or more, and thermocompression-bonding the entire surface, a method for producing a polylactic acid-based long-fiber nonwoven fabric.
【請求項13】 移動式捕集面上に開繊させながら堆積
させて形成したウエブに、あらかじめ部分的な仮熱圧着
処理および/又は三次元的交絡処理を施し、その後、こ
のウエブの少なくとも片面を全面的に熱圧着させること
を特徴とする請求項12記載のポリ乳酸系長繊維不織布
の製造方法。
13. A web formed by depositing fibers on a movable collection surface while opening the fibers is previously subjected to partial provisional thermocompression bonding treatment and / or three-dimensional entanglement treatment, and then at least one surface of the web. 13. The method for producing a polylactic acid-based long-fiber non-woven fabric according to claim 12, characterized in that the entire surface is thermocompression-bonded.
【請求項14】 部分的な仮熱圧着処理を、ウエブを構
成する重合体のうち最も低い融点を有する重合体の融点
よりも10℃以上低い温度で施すことを特徴とする請求
項13記載のポリ乳酸系長繊維不織布の製造方法。
14. The partial provisional thermocompression bonding treatment is performed at a temperature 10 ° C. or more lower than the melting point of the polymer having the lowest melting point among the polymers constituting the web. A method for producing a polylactic acid-based long-fiber nonwoven fabric.
【請求項15】 ポリ乳酸系重合体からなる二種以上の
成分を用いて繊維横断面が複合断面となる口金により溶
融紡糸し、前記二種以上の成分のうち最も融点が高い成
分の融点を(Tm)℃としたときに(Tm+5)℃以下
の温度で全面的に熱圧着させることを特徴とする請求項
12から14までのいずれか1項に記載のポリ乳酸系長
繊維不織布の製造方法。
15. Melting-spinning is performed using a spinneret having a cross-section of a fiber having a composite cross section using two or more kinds of components made of a polylactic acid polymer, and the melting point of the highest melting point of the two or more kinds of components is determined. The method for producing a polylactic acid-based long-fiber nonwoven fabric according to any one of claims 12 to 14, wherein thermocompression bonding is carried out entirely at a temperature of (Tm + 5) ° C or lower when (Tm) ° C. .
JP25608095A 1995-09-29 1995-10-03 Polylactic acid-based long fiber nonwoven fabric and method for producing the same Expired - Fee Related JP3710175B2 (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP25608095A JP3710175B2 (en) 1995-10-03 1995-10-03 Polylactic acid-based long fiber nonwoven fabric and method for producing the same
EP05022050.8A EP1612314B2 (en) 1995-09-29 1996-09-16 Filament nonwoven fabrics and method of fabricating the same
EP99108935A EP0949371B1 (en) 1995-09-29 1996-09-16 Filament nonwoven fabrics and method of fabricating the same
EP96114791A EP0765959B1 (en) 1995-09-29 1996-09-16 Filament nonwoven fabrics and method of fabricating the same
KR1019960042661A KR100406244B1 (en) 1995-09-29 1996-09-25 Long-fiber nonwoven fabric and manufacturing method
US09/324,368 US6787493B1 (en) 1995-09-29 1999-06-02 Biodegradable formable filament nonwoven fabric and method of producing the same
US09/351,413 US6607996B1 (en) 1995-09-29 1999-07-09 Biodegradable filament nonwoven fabric and method of producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25608095A JP3710175B2 (en) 1995-10-03 1995-10-03 Polylactic acid-based long fiber nonwoven fabric and method for producing the same

Publications (2)

Publication Number Publication Date
JPH0995851A true JPH0995851A (en) 1997-04-08
JP3710175B2 JP3710175B2 (en) 2005-10-26

Family

ID=17287619

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25608095A Expired - Fee Related JP3710175B2 (en) 1995-09-29 1995-10-03 Polylactic acid-based long fiber nonwoven fabric and method for producing the same

Country Status (1)

Country Link
JP (1) JP3710175B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6607996B1 (en) * 1995-09-29 2003-08-19 Tomoegawa Paper Co., Ltd. Biodegradable filament nonwoven fabric and method of producing the same
US6787493B1 (en) * 1995-09-29 2004-09-07 Unitika, Ltd. Biodegradable formable filament nonwoven fabric and method of producing the same
JP2005314864A (en) * 1999-06-18 2005-11-10 Toray Ind Inc Filament nonwoven fabric
JP2008057057A (en) * 2006-08-30 2008-03-13 Unitika Ltd Polylactic acid-based fiber and polylactic acid-based non-woven fabric

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6607996B1 (en) * 1995-09-29 2003-08-19 Tomoegawa Paper Co., Ltd. Biodegradable filament nonwoven fabric and method of producing the same
US6787493B1 (en) * 1995-09-29 2004-09-07 Unitika, Ltd. Biodegradable formable filament nonwoven fabric and method of producing the same
JP2005314864A (en) * 1999-06-18 2005-11-10 Toray Ind Inc Filament nonwoven fabric
JP4591206B2 (en) * 1999-06-18 2010-12-01 東レ株式会社 Long fiber nonwoven fabric
JP2008057057A (en) * 2006-08-30 2008-03-13 Unitika Ltd Polylactic acid-based fiber and polylactic acid-based non-woven fabric

Also Published As

Publication number Publication date
JP3710175B2 (en) 2005-10-26

Similar Documents

Publication Publication Date Title
US6607996B1 (en) Biodegradable filament nonwoven fabric and method of producing the same
EP0765959B1 (en) Filament nonwoven fabrics and method of fabricating the same
US20020143116A1 (en) Fibers comprising polyhydroxyalkanoate copolymer/polylactic acid polymer or copolymer blends
JPH0995847A (en) Nonwoven fabric of polylactate-based filament and its production
JP3434628B2 (en) Polylactic acid-based long-fiber nonwoven fabric and method for producing the same
JP5100134B2 (en) Biodegradable herbicidal sheet
EP1057915A1 (en) Biodegradable filament nonwoven fabric and method of producing the same
JP2004263344A (en) Nonwoven fabric for simple mask and simple mask
JP2006207105A (en) Polylactic acid-based filament nonwoven fabric and method for producing the same
JPH0995851A (en) Nonwoven fabric of polylactate-based filament and its production
JP3573612B2 (en) Biodegradable weed control sheet
JP3938950B2 (en) Polylactic acid-based long fiber nonwoven fabric and method for producing the same
JPH08260320A (en) Nonwoven fabric comprising biodegradable conjugate short fiber
JP2000034657A (en) Biodegradable nonwoven fabric for draining filtration
JP2000273750A (en) Biodegradable filament nonwoven cloth and its production
JP3208403B2 (en) Biodegradable nonwoven fabric and method for producing the same
JP4578929B2 (en) Polylactic acid composite binder fiber
JP4582886B2 (en) Weatherproof long fiber nonwoven fabric
JP3516291B2 (en) Method for producing biodegradable nonwoven fabric with excellent elasticity
JP2004232119A (en) Filament nonwoven fabric having excellent transparency
JP3556089B2 (en) Biodegradable long-fiber nonwoven fabric and method for producing the same
JPH0995852A (en) Polylactate-based laminated nonwoven fabric and its production
JP4000022B2 (en) Method for producing polylactic acid-based long fiber nonwoven fabric
JPH0457953A (en) Microorganism-degradable nonwoven fabric
JP2002242068A (en) Nonwoven fabric for biodegradable sanitary material

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040907

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041108

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20041214

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050214

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20050228

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050426

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050624

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050712

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050809

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090819

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090819

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100819

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110819

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110819

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120819

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130819

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130819

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees