JPH0994646A - Method for controlling cut-off of cast slab in continuous casting - Google Patents

Method for controlling cut-off of cast slab in continuous casting

Info

Publication number
JPH0994646A
JPH0994646A JP25427895A JP25427895A JPH0994646A JP H0994646 A JPH0994646 A JP H0994646A JP 25427895 A JP25427895 A JP 25427895A JP 25427895 A JP25427895 A JP 25427895A JP H0994646 A JPH0994646 A JP H0994646A
Authority
JP
Japan
Prior art keywords
length
slab
cutting
cast slab
cut
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP25427895A
Other languages
Japanese (ja)
Inventor
Atsushi Shikima
篤 色摩
Muneaki Hashimoto
宗明 橋本
Junpei Konishi
淳平 小西
Tomohiro Furuta
智寛 古田
Isao Oshita
功 大下
Toshio Murayama
敏夫 村山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP25427895A priority Critical patent/JPH0994646A/en
Publication of JPH0994646A publication Critical patent/JPH0994646A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Feedback Control In General (AREA)
  • Continuous Casting (AREA)

Abstract

PROBLEM TO BE SOLVED: To minimize a waste by selecting an optimum order size and to quicken a cut-off operation, at the time of cutting off a continuously cast slab. SOLUTION: At the time of cutting off the continuously cast slab, an evalution function weighing to casting condition of a specific length, secondary cut-off times, cut-off remained waste, number in the specified length, etc., to a non-cut-off cast slab length and a factor related to kind of steel, are prepared. As the optimizing means for obtaining the cast slab length, in which this evaluation function becomes the max., a genetic algorithm containing the specific length and some length cases, in which the orders are assumed after that, as a gene information, is used to control the cut-off of the continuously cast slab.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、製鋼工程における
連続鋳造の鋳片切断の自動制御方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for automatically controlling slab cutting in continuous casting in a steelmaking process.

【0002】[0002]

【従来の技術】連続鋳造における鋳片切断方法として
は、特開平3−27853号公報に記載されたものがあ
る。これは、タンディッシュからモールドに注湯、冷却
した鋳片上に品質異常部を見付けると、プロセス制御装
置の信号を受け取った切断制御装置が良片長さLを算出
し、計画切断長さの下限値を合計した下限加算値を合計
した下限加算値a以上であるか判定しL≧aであるとき
は計画通りの本数の鋳片を採取し、L<aのときは計画
本数から1本減算した本数を採取するよう制御装置を制
御するもので、このとき各鋳片の基準長さの合計値と良
片長さLとの差値ΔLを算出し、この差値ΔLを各鋳片
に振り分けるものである。これにより、余材スラブの発
生を防止し、鋳片の採取率を向上することができる。こ
の方法のフローチャートを図5に示す。
2. Description of the Related Art As a method of cutting a slab in continuous casting, there is a method described in Japanese Patent Laid-Open No. 3-27853. This is because when a quality abnormality part is found on a slab that has been poured from a tundish into a mold and cooled, the cutting control device that receives the signal from the process control device calculates the good piece length L, and the lower limit value of the planned cutting length. It is determined whether the total lower limit value added is equal to or more than the lower limit value added a, and when L ≧ a, the ingots are collected as planned, and when L <a, one is subtracted from the planned number. Controlling the control device so as to collect the number of pipes, at this time calculating the difference value ΔL between the total value of the reference length of each slab and the length L of the good piece, and allocating this difference value ΔL to each slab Is. As a result, generation of a surplus material slab can be prevented, and the collection rate of the slab can be improved. A flowchart of this method is shown in FIG.

【0003】また、特開昭58−159953号公報に
は、ストランドA,B毎に逐次寸法と出片順を定め、指
定した寸法と順序で鋳片の切断を行い、鋳造中に異常が
生じた場合、生産条件を満足することを第1条件とし、
歩留損失が最小になることを第2条件として未切断鋳片
について採寸計画を再編集して切断を行う連続鋳造鋳片
の切断方法が開示されている。この方法のフローチャー
トを図6に示す。
Further, in Japanese Unexamined Patent Publication No. 58-159953, the dimensions and the order of the pieces are determined for each of the strands A and B, and the pieces are cut in the designated size and order, and an abnormality occurs during casting. If it is, the first condition is to satisfy the production condition,
A cutting method for a continuously cast slab is disclosed in which the measurement plan is re-edited for cutting an uncut slab, with the second condition being that the yield loss is minimized. FIG. 6 shows a flowchart of this method.

【0004】[0004]

【発明か解決しようとする課題】しかしながら、これら
の方法においては、鋳片の長さの許容範囲内での調節に
よる鋳片採取率かあるいは歩留損失最小を評価して切合
せており、これだけでは評価項目が不足する。
However, in these methods, the slab collection rate or the minimum yield loss is evaluated by adjusting the length of the slab within the allowable range, and only this is done. Then there are insufficient evaluation items.

【0005】本発明が解決すべき課題は、歩留優先や直
行率優先など鋼種や操業条件の変更に対して容易に対応
することのできる鋳片切断制御方法を提供することにあ
る。
An object to be solved by the present invention is to provide a slab cutting control method capable of easily coping with changes in steel type and operating conditions such as yield priority and orthogonality priority.

【0006】[0006]

【課題を解決するための手段】前記課題を解決するた
め、本発明の連続鋳造における鋳片の切断制御方法は、
連続鋳造される鋳片を切断するに際し、未切断鋳片の長
さに対し、指定長、2次切断回数、切断残屑、指定長本
数等の鋳造条件、鋼種に関する因子に重み付けをした評
価関数を作成し、この評価関数が最大となる鋳片長を求
める最適化手法として、指定長と、指定長ではないがこ
れから注文が想定される長さのいくつかの場合とを遺伝
子情報とする遺伝アルゴリズムを用いるようにしたもの
である。
In order to solve the above-mentioned problems, a method for controlling cutting of a slab in continuous casting according to the present invention comprises:
When cutting continuously cast slabs, an evaluation function that weighs factors related to casting conditions such as specified length, number of secondary cuttings, cutting debris, and specified length, and steel type, relative to the length of uncut slabs As an optimization method for obtaining the slab length that maximizes this evaluation function, a genetic algorithm that uses the specified length and some cases of the length that is not the specified length but is expected to be ordered from now on as genetic information. Is used.

【0007】[0007]

【作用】本発明では、新たに評価関数を創作し、重み係
数を任意に調整可能としたこと、かつ評価を容易に追加
できる構造にしたこと、一般的最適化手法を適用したこ
と、鋳片の最適長さ計算に遺伝アルゴリズムが最も適す
ることを検証したものである。鋳片切断長の最適化計算
法として評価関数を次のように設定する。評価関数=a
×指定長偏差+b×2次切断回数+c×切断残屑+d×
指定長本数+e×湯不足+f×湯余り+g×鋳造速度バ
ランス
In the present invention, a new evaluation function is created, the weighting factor can be adjusted arbitrarily, and the structure is such that the evaluation can be easily added, the general optimization method is applied, and the slab is We verified that the genetic algorithm is most suitable for calculating the optimal length of. The evaluation function is set as follows as an optimized calculation method of the slab cutting length. Evaluation function = a
× Designated length deviation + b × Secondary cutting count + c × Cutting debris + d ×
Specified length number + e x hot water shortage + f x hot water surplus + g x casting speed balance

【0008】最適制御方法として遺伝アルゴリズムを用
いる。遺伝アルゴリズムは、生物進化のメカニズムをシ
ミュレートする人工的モデルであり、その概要は、生物
が進化を遂げていく際に繰り返される作用である 自然淘汰:環境に適応する個体のみが生き残る。 優性遺伝:個体同士の交配により世代間での優れた形
質が継承される。 突然変異:これまでと全く性質の異なる変異である。
A genetic algorithm is used as the optimum control method. A genetic algorithm is an artificial model that simulates the mechanism of organism evolution, and its outline is the repeated action of organisms as they evolve. Natural selection: Only individuals that adapt to the environment survive. Dominant inheritance: Breeding between individuals allows inheritance of superior traits between generations. Mutation: A mutation that is completely different in nature.

【0009】この遺伝アルゴリズムを、鋳片の切断長の
最適化に適用するに当たり、指定長と、指定長ではない
がこれから注文が想定される長さのいくつかの場合とを
遺伝子情報とし、鋳片の全長に対して、評価を最大とす
る鋳片長を演算する。また、鋳造速度バランスとはタン
ディッシュから複数のモールドを介しての多条鋳造する
際のそれぞれの速度比であり、多条鋳造(ストランド)
の速度比を変えて所定ストランドの鋳造長を変化させて
鋳片の指定長偏差を最小にできる。
In applying this genetic algorithm to the optimization of the cutting length of a slab, the specified length and some cases of the length which is not the specified length but is expected to be ordered from now on are used as genetic information, The slab length that maximizes the evaluation is calculated for the total length of the slab. In addition, the casting speed balance is the speed ratio of each of multiple castings from a tundish through a plurality of molds.
It is possible to minimize the specified length deviation of the slab by changing the speed ratio of the above and changing the casting length of the predetermined strand.

【0010】[0010]

【実施例】以下、本発明を図面に示す実施例を参照しな
がら具体的に説明する。図1は本発明に係る鋳片切断制
御方法の実施例を示すフローチャートである。同図にお
いて、ステップ100では計算条件を取り込む。計算条
件としては、鋳造長、指定鋳片長さ、設備制約長さ、指
定許容範囲、品質異常位置、乱尺許容範囲(指定外であ
るが過去に注文があった製品の長さ)等である。ステッ
プ110では、評価関数の重み係数ai,bi,ci,
d・・・を優先順位に基づいて設定する。ステップ12
0では、評価関数fを設定する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, the present invention will be specifically described with reference to embodiments shown in the drawings. FIG. 1 is a flowchart showing an embodiment of a slab cutting control method according to the present invention. In the figure, in step 100, calculation conditions are fetched. The calculation conditions include casting length, designated slab length, equipment constraint length, designated tolerance range, quality abnormal position, random scale tolerance range (the length of products that are out of the specifications but ordered in the past), etc. . In step 110, the weighting factors ai, bi, ci, of the evaluation function are
Set d ... Based on priority. Step 12
At 0, the evaluation function f is set.

【数2】 ステップ130では、遺伝アルゴリズムによる最適長計
算を行う。
[Equation 2] In step 130, the optimum length is calculated by the genetic algorithm.

【0011】図2は遺伝アルゴリズムを用いた前記ステ
ップ130の計算の概要を示すものである。まず、ステ
ップ110において、評価関数の重みを、操業ニーズに
従った設定を行った後に、ステップ115で設備的に製
造可能な鋳造長さの最大と最小の範囲内で、乱数によっ
て任意に与えられるいくつかの組合せを求める。これら
の組合せの合計値は、制御範囲の鋳造長さの合計に一致
する。例えば、鋳造長の合計が20mとすれば、その組
の個体は5m,4m,4m,4m,3mであったり、5
m,5m,3m,3m,4mであったりする。このよう
な個を複数個作成し、1つの集団を生成する。次にステ
ップ120では、それぞれの組合せの個体毎に、ステッ
プ110によって与えられた重みを用いて評価値を計算
する。そして、ステップ130では、複数個の個体から
任意のいくつかを選択し、その中の2つの個体を継ぎは
ぎして、異なる2個を生成する。
FIG. 2 shows an outline of the calculation in step 130 using the genetic algorithm. First, in step 110, the weight of the evaluation function is set according to the operation needs, and then, in step 115, it is arbitrarily given by a random number within the maximum and minimum range of the cast length that can be manufactured in equipment. Find some combinations. The sum of these combinations corresponds to the sum of the control range casting lengths. For example, if the total casting length is 20 m, the individuals in the set are 5 m, 4 m, 4 m, 4 m, 3 m, or 5 m.
It may be m, 5m, 3m, 3m, 4m. A plurality of such individuals are created to generate one group. Next, at step 120, an evaluation value is calculated for each individual of each combination using the weight given at step 110. Then, in step 130, an arbitrary number is selected from the plurality of individuals, and two individuals among them are spliced to generate two different individuals.

【0012】例えば、前記の例で言うと、前の2つを固
定して後の3つを入れ替えると図4Aの配列となる。ま
た、突然変異は、一番後を例えば図4Bのように乱数に
よって変更する。このようにして新しくできた個体を評
価して、評価値の高いものを残して新しい集団を生成し
て、これを繰り返す。
For example, in the above-mentioned example, when the front two are fixed and the rear three are replaced, the arrangement shown in FIG. 4A is obtained. In addition, the mutation is changed at the end by a random number as shown in FIG. 4B. The newly created individuals are evaluated in this way, a new group is generated with the one with a high evaluation value left, and this is repeated.

【0013】評価関数の重み係数は、指定長優先の場合
はaiをbi以外の他の重み係数よりも大きくする。例え
ば、ai=15,bi=5000,ci=0,,d=0と
いうように選ぶ。歩留り優先の場合は、ciをbi以外の
他の重み係数よりも大きくする。例えば、ai=5,bi
=5000,ci=15,d=0というように選ぶ。
As for the weighting coefficient of the evaluation function, in the case of the designated length priority, a i is made larger than other weighting coefficients other than b i . For example, a i = 15, b i = 5000, c i = 0, and d = 0. In the case of the yield priority, c i is made larger than the weighting factors other than b i . For example, a i = 5, b i
= 5000, c i = 15, d = 0.

【0014】図3は、例として、従来における歩留り優
先機能を有している一般的なプロセス制御用コンピュー
タで計算された場合と、本発明のアルゴリズムを使っ
て、前記の2つの重みを使って計算した場合を示してい
る。
FIG. 3 shows, as an example, a case where the calculation is performed by a general process control computer having a conventional yield priority function and a case where the above two weights are used by using the algorithm of the present invention. The case of calculation is shown.

【0015】一番上の従来のプロセス制御用コンピュー
タによる計算結果においては、歩留り優先の計算を行う
ため、指定長通りの鋳片を3本崩して(鋳片No.41
〜43をMAX長にして)切合せ発生屑を吸収してい
る。一方、従来例と比較して、2番目のGA(遺伝子ア
ルゴリズム)による指定長優先の計算結果では、指定長
通りの鋳片本数が3/8から7/8へと4本も増加して
いる。しかし、一方で、切合せによる発生屑も340m
mから435mmと悪化している。これは、少々歩留り
を悪くしてでも、指定長通りの鋳片が得られることを優
先させた例である。
In the calculation result by the conventional process control computer on the top, yield-priority calculation is performed, so that three slabs according to the designated length are destroyed (cast slab No. 41).
(Maximum length of ~ 43) absorbs cutting waste. On the other hand, in comparison with the conventional example, in the calculation result of the designated length priority by the second GA (gene algorithm), the number of slabs according to the designated length increased from 3/8 to 4/8 by 4 pieces. . However, on the other hand, the waste generated by cutting is 340 m.
It has deteriorated from m to 435 mm. This is an example in which priority is given to obtaining a slab according to the designated length even if the yield is slightly lowered.

【0016】一方、3番目の歩留り優先の例では、切合
せ発生屑は、指定長優先の場合に比べて、435mmか
ら340mmと大きく改善され、歩留りが向上している
のがわかる。一方で、指定長通りの本数は7/8から5
/8と2本ほど悪化している。
On the other hand, in the third example in which the yield is prioritized, the cutting waste is greatly improved from 435 mm to 340 mm in comparison with the case where the designated length is prioritized, and the yield is improved. On the other hand, the number according to the designated length is 5 from 7/8
/ 8 and 2 are worse.

【0017】このように遺伝アルゴリズムを適用するこ
とにより、鋳片屑が最少化でき、演算時間も、通常の最
適化手法(分岐限定法等)による演算では数分〜数十分
程度かかるのに対し、10秒以内で演算できる。
By applying the genetic algorithm in this way, the slab shavings can be minimized, and the operation time is about several minutes to several tens of minutes when the operation is performed by the usual optimization method (branch limiting method, etc.). On the other hand, it can be calculated within 10 seconds.

【0018】[0018]

【発明の効果】上述したように、本発明によれば下記の
効果を奏する。 (1) 鋳造条件、鋼種に関する因子に重み付けをした
評価関数を作成し、この評価関数が最大となる鋳片長を
求めることにより、鋳片屑の最少化を図ることができ、
歩留が向上する。 (2) 最適化手法として、遺伝アルゴリズムを用いる
ことにより、極めて短時間で最適解を演算でき、効率の
向上を図ることができる。
As described above, according to the present invention, the following effects can be obtained. (1) By creating an evaluation function in which factors relating to casting conditions and steel types are weighted and obtaining a slab length that maximizes this evaluation function, it is possible to minimize slab scrap,
Yield is improved. (2) By using a genetic algorithm as an optimization method, an optimum solution can be calculated in an extremely short time, and efficiency can be improved.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明の方法の実施例を示すフローチャート
である。
FIG. 1 is a flow chart showing an embodiment of the method of the present invention.

【図2】 遺伝アルゴリズムを用いた計算方法の概要を
示すフローチャートである。
FIG. 2 is a flowchart showing an outline of a calculation method using a genetic algorithm.

【図3】 本発明により得られた計算結果による鋳片切
断長の例を示す説明図である。
FIG. 3 is an explanatory diagram showing an example of a slab cutting length according to a calculation result obtained by the present invention.

【図4】 本発明による遺伝アルゴリズムの例を示す説
明図である。
FIG. 4 is an explanatory diagram showing an example of a genetic algorithm according to the present invention.

【図5】 従来の鋳片切断長計算方法の例を示すフロー
チャートである。
FIG. 5 is a flowchart showing an example of a conventional slab cutting length calculation method.

【図6】 従来の鋳片切断長計算方法の例を示すフロー
チャートである。
FIG. 6 is a flowchart showing an example of a conventional slab cutting length calculation method.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 古田 智寛 北九州市戸畑区飛幡町1−1 新日本製鐵 株式会社八幡製鐵所内 (72)発明者 大下 功 北九州市戸畑区飛幡町1−1 新日本製鐵 株式会社八幡製鐵所内 (72)発明者 村山 敏夫 北九州市戸畑区飛幡町1−1 新日本製鐵 株式会社八幡製鐵所内 ─────────────────────────────────────────────────── ─── Continuation of front page (72) Inventor Tomohiro Furuta 1-1 Tobata-cho, Tobata-ku, Kitakyushu City Shin-Nippon Steel Co., Ltd. Yawata Works (72) Inventor Isao Oshita 1-1 Tobata-cho, Tobata-ku, Kitakyushu City Nippon Steel Co., Ltd. Yawata Works (72) Inventor Toshio Murayama 1-1 Tobata-cho, Tobata-ku, Kitakyushu City Inside Nippon Steel Co., Ltd. Yawata Works

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 連続鋳造される鋳片を切断するに際し、
未切断鋳片の長さに対し、指定長、2次切断回数、切断
残屑、指定長本数等の鋳造条件、鋼種に関する因子に重
み付けをした評価関数を作成し、この評価関数が最大と
なる鋳片長を求める最適化手法として、指定長と、指定
長ではないがこれから注文が想定される長さのいくつか
の場合とを遺伝子情報とする遺伝アルゴリズムを用いる
ことを特徴とする連続鋳造における鋳片切断制御方法。
1. When cutting a continuously cast slab,
For the length of the uncut slab, create an evaluation function that weights factors related to the specified length, the number of secondary cuts, cutting debris, the specified length and other casting conditions and steel types, and this evaluation function is the maximum. As an optimization method for obtaining the slab length, casting in continuous casting characterized by using a genetic algorithm that uses the specified length and some cases where the length is not the specified length but is expected to be ordered from now on, as genetic information. One-side cutting control method.
【請求項2】 評価関数fを次の式で表されるものとし
た請求項1記載の連続鋳造における鋳片切断制御方法。 【数1】
2. The method for controlling slab cutting in continuous casting according to claim 1, wherein the evaluation function f is represented by the following equation. [Equation 1]
JP25427895A 1995-09-29 1995-09-29 Method for controlling cut-off of cast slab in continuous casting Withdrawn JPH0994646A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25427895A JPH0994646A (en) 1995-09-29 1995-09-29 Method for controlling cut-off of cast slab in continuous casting

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25427895A JPH0994646A (en) 1995-09-29 1995-09-29 Method for controlling cut-off of cast slab in continuous casting

Publications (1)

Publication Number Publication Date
JPH0994646A true JPH0994646A (en) 1997-04-08

Family

ID=17262751

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25427895A Withdrawn JPH0994646A (en) 1995-09-29 1995-09-29 Method for controlling cut-off of cast slab in continuous casting

Country Status (1)

Country Link
JP (1) JPH0994646A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105689672A (en) * 2014-11-27 2016-06-22 上海梅山钢铁股份有限公司 Interactive continuous-cast billet optimized cutting control method
CN113103069A (en) * 2021-05-15 2021-07-13 铜陵学院 Efficient and accurate round steel automatic sizing system

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105689672A (en) * 2014-11-27 2016-06-22 上海梅山钢铁股份有限公司 Interactive continuous-cast billet optimized cutting control method
CN105689672B (en) * 2014-11-27 2018-07-27 上海梅山钢铁股份有限公司 A kind of interactive mode continuous casting billet optimizing incision control method
CN113103069A (en) * 2021-05-15 2021-07-13 铜陵学院 Efficient and accurate round steel automatic sizing system

Similar Documents

Publication Publication Date Title
WO2017088674A1 (en) Steelmaking batch grouping and production scheduling method for whole process production
Santos et al. The use of artificial intelligence technique for the optimisation of process parameters used in the continuous casting of steel
Nielsen et al. Optimum contribution selection using traditional best linear unbiased prediction and genomic breeding values in aquaculture breeding schemes
Radiša et al. Casting improvement based on metaheuristic optimization and numerical simulation
JPH0994646A (en) Method for controlling cut-off of cast slab in continuous casting
AU770504B2 (en) Optimizing cycle time and/or casting quality in the making of cast metal products
US6269321B1 (en) Method for optimizing mechanical strength of a casting using microstructure predictions
JP2007257050A (en) Lot planning method, lot planning device, and computer program
CN111062571B (en) Ingot selection and batch-to-batch integration optimization method for aluminum industry
Goodwin Supernumerary teeth in Pleistocene, recent, and hybrid individuals of the Spermophilus richardsonii complex (Sciuridae)
Antonova et al. Development of simulation model of continuous casting machine with dry change of steel ladles
CN101377789B (en) Method and apparatus for composing furnace by plate blank in steel-smelting production process
Fleury et al. Modelling of the thermo-mechanical behaviour of the single crystal superalloy CMSX-4
JP2007206980A (en) Method for making lot plan, apparatus for making lot plan, and computer program
JP3071986B2 (en) Cast knitting device
Clark Mutation-selection balance with multiple alleles
JP2004348436A (en) Production plan preparing method and program
JP3589199B2 (en) Slab cutting control device and continuous cast slab manufacturing method
Kim et al. Evaluation and design of maximum green time settings for traffic-actuated control
JP2007257048A (en) Lot planning method, lot planning device, and computer program
CN1943922A (en) Method for distributing middle ladle in steel-making continuous casting producing process
Gagné et al. Scheduling a single machine where setup times are sequence dependent using an ant-colony heuristic
JPH1157961A (en) Device for controlling cutting-off of cast slab in continuous casting
Xiong et al. Formulating the steel scheduling problem as a TSPTW
JPH11216553A (en) Casting speed control

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20021203