JPH0992910A - Photoconductive device and its manufacture - Google Patents

Photoconductive device and its manufacture

Info

Publication number
JPH0992910A
JPH0992910A JP7247095A JP24709595A JPH0992910A JP H0992910 A JPH0992910 A JP H0992910A JP 7247095 A JP7247095 A JP 7247095A JP 24709595 A JP24709595 A JP 24709595A JP H0992910 A JPH0992910 A JP H0992910A
Authority
JP
Japan
Prior art keywords
photoconductive layer
vacuum
photoconductive
electrode
organic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7247095A
Other languages
Japanese (ja)
Inventor
Koji Ikeda
幸治 池田
Toyohide Tanaka
豊英 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Rasa Industries Ltd
Original Assignee
Rasa Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Rasa Industries Ltd filed Critical Rasa Industries Ltd
Priority to JP7247095A priority Critical patent/JPH0992910A/en
Publication of JPH0992910A publication Critical patent/JPH0992910A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells

Abstract

PROBLEM TO BE SOLVED: To form a thin photoconductive layer of high hardness, and prevent occurrence of its damage and separation, by vacuum-depositing organic photoconductor on one electrode by high frequency ion plating and forming the photoconductive layer, on which the other electrode is vacuum-deposited. SOLUTION: A photoconductive device is constituted as follows; a first transparent electrode 3 is formed on a substrate 2 by vacuum deposition, a photoconductive layer 4 is formed on the upper surface of the first transparent electrode 3 by evaporating organic photoconductor by high frequency ion plating, and a second transparent electrode 5 is evaporated and formed on the photoconductive layer 4 by vacuum-deposition. The photoconductive layer 4 formed in this manner becomes a smooth dense thin film free from aggregation, and is hard compared with a photoconductive layer formed by ordinary vacuum deposition, so that the photoconductive layer 4 excellent in withstand voltage characteristics in which damage and separation hardly occur can be obtained.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、たとえば、測光器
や光学読み取り器等に用いられる光電導素子に関するも
のである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a photoconductive element used in, for example, a photometer or an optical reader.

【0002】[0002]

【従来の技術】光電導素子は、光電導素子の両端に電圧
を印加しておき、この光電導素子に照射される光の強弱
によって光電導素子の抵抗が変化して光電導素子に流れ
る電流が変化する機能を有しており、この機能を利用し
て、前述した測光器においては光量の変化を電気的に検
出し、また、光学読み取り器においては、文字や図形等
を電子情報に変換するようにしている。
2. Description of the Related Art In a photoconductive element, a voltage is applied to both ends of the photoconductive element, and the resistance of the photoconductive element changes depending on the intensity of the light with which the photoconductive element is irradiated. It has a function to change the light quantity.By utilizing this function, the photometer described above electrically detects the change in the amount of light, and the optical reader converts characters and figures into electronic information. I am trying to do it.

【0003】そして、この光電導素子は、ガラスやセラ
ミックスあるいはプラスチックス等によって形成された
基板上に、ITO(インジウム・錫酸化物)やSnO2
(酸化錫)あるいはその他の金属を真空蒸着等によって
蒸着することにより薄膜状の電極を形成し、この電極の
表面に、CdS(硫化カドミウム)やCdSe(セレン
化カドミウム)あるいはPbS(硫化鉛)等の無機材料
からなる光電導体を、同じく真空蒸着等によって蒸着し
て光電導層を一体に形成し、さらに、この光電導層の表
面に、前述した材料を真空蒸着によって蒸着して他方の
電極を一体に形成することによって構成される。
This photoconductive element is formed by depositing ITO (indium tin oxide) or SnO 2 on a substrate formed of glass, ceramics, plastics or the like.
(Tin oxide) or other metal is deposited by vacuum deposition to form a thin film electrode, and CdS (cadmium sulfide), CdSe (cadmium selenide), PbS (lead sulfide), etc. are formed on the surface of this electrode. Similarly, the photoconductor made of the inorganic material is vapor-deposited by vacuum vapor deposition or the like to integrally form the photoconductive layer, and further, the above-mentioned material is vapor-deposited on the surface of the photoconductive layer to form the other electrode. It is configured by being integrally formed.

【0004】一方、純度を損なうことなく薄膜を形成し
やすいことや廃棄時に環境へ与える影響が少ないこと等
の理由により、前記光電導体を無機材料から、フタロシ
アニン系顔料、ナフトシアニン系顔料、アゾ系顔料、ペ
リレン系顔料、キナクリドン系顔料、シアニン系顔料、
あるいは、メロシアニン系顔料等の有機材料からなる光
電導体へ変更することが試みられている。
On the other hand, the photoconductor is made of an inorganic material such as a phthalocyanine-based pigment, a naphthocyanine-based pigment, or an azo-based pigment because of the fact that a thin film can be easily formed without impairing the purity and the environmental impact at the time of disposal is small. Pigment, perylene pigment, quinacridone pigment, cyanine pigment,
Alternatively, it has been attempted to change to a photoconductor made of an organic material such as a merocyanine pigment.

【0005】[0005]

【発明が解決しようとする課題】ところで、前述したよ
うに、前記光電導体に有機材料を用いる場合、次のよう
な改善すべき問題点が残されている。
By the way, as described above, when an organic material is used for the photoconductor, there are the following problems to be improved.

【0006】すなわち、有機材料からなる光電導体を、
電極や基板上に真空蒸着によって光電導層を形成した場
合、蒸着後の光電導層の膜密度が低く軟質であり、ま
た、電極や基板との密着強度が低いことから、形成され
た光電導層の損傷や剥離が発生しやすく、その取り扱い
が煩雑であり、また、製品としての歩留まりが悪いとい
った問題点である。
That is, a photoconductor made of an organic material is
When the photoconductive layer is formed on the electrode or substrate by vacuum vapor deposition, the film density of the photoconductive layer after vapor deposition is low and soft, and the adhesion strength with the electrode or substrate is low. There are problems that the layer is apt to be damaged or peeled off, its handling is complicated, and the yield as a product is poor.

【0007】そして、前述した有機材料からなる光電導
体は凝集性が高く、真空蒸着時に被蒸着面において凝集
しやすいことから、緻密で平滑な薄膜の形成が困難でピ
ンホールが発生しやすく、また、前述のように膜密度が
低いことと相俟って、耐電圧特性の向上が制限されてし
まうといった問題点もある。
The above-described photoconductor made of an organic material has a high cohesive property and easily agglomerates on the surface to be vapor-deposited during vacuum vapor deposition, which makes it difficult to form a dense and smooth thin film and easily causes pinholes. However, there is also a problem that the improvement of withstand voltage characteristics is limited in combination with the low film density as described above.

【0008】一方、このような問題点を回避する一方法
として、前記光電導層を厚くすることが検討されている
が、素子の大型化につながるばかりでなく、真空蒸着時
間ひいては製造工程の長期化を招いてしまうといった新
たな問題点を惹起し、有効な手段とはなり得ていない。
On the other hand, as one method of avoiding such a problem, making the photoconductive layer thick has been studied. However, this not only leads to an increase in size of the device but also the vacuum deposition time and thus the long manufacturing process. However, it is not an effective means because it brings about new problems such as inviting people to use it.

【0009】本発明は、前述した従来の問題点に鑑みて
なされたもので、有機光電導体を用いて滑らかな表面と
緻密な組織を有し、かつ、耐電圧特性に優れた光電導素
子およびその製造方法を提供することを解決すべき課題
とする。
The present invention has been made in view of the above-mentioned problems of the prior art, and is a photoconductive element having a smooth surface and a dense structure using an organic photoconductor and having an excellent withstand voltage characteristic. It is an object to be solved to provide the manufacturing method.

【0010】[0010]

【課題を解決するための手段】本発明の請求項1に記載
の光電導素子は、前述した課題を解決するために、電極
上に、高周波イオンプレーティングによって有機光電導
体を真空蒸着して光電導層を形成し、この光電導層上に
他の電極を真空蒸着した構成としたものである。
In order to solve the above-mentioned problems, the photoconductive element according to claim 1 of the present invention is a photoelectric conversion device in which an organic photoconductor is vacuum-deposited on an electrode by high frequency ion plating. A conductive layer is formed, and another electrode is vacuum-deposited on the photoconductive layer.

【0011】また、本発明の請求項2に記載の光電導素
子の製造方法は、真空容器中に有機光電導体および電極
を設置した後に、前記有機光電導体を加熱して蒸発させ
るとともに、前記真空容器中に高周波プラズマを発生さ
せ、この高周波プラズマ中に前記有機光電導体の蒸気を
通過させてこの有機光電導体の分子をイオン化し、この
イオン化された有機光電導体の分子を、前記電極に入射
させて蒸着させることによって単層あるいは多層の光電
導層を形成し、ついで、この光電導層上に導電性金属を
蒸着して他方の電極を形成するようにしたものである。
According to a second aspect of the present invention, in the method for producing a photoconductive element, after the organic photoconductor and the electrode are placed in a vacuum container, the organic photoconductor is heated to evaporate and the vacuum is applied. A high frequency plasma is generated in the container, the vapor of the organic photoconductor is passed through the high frequency plasma to ionize the molecules of the organic photoconductor, and the molecules of the ionized organic photoconductor are incident on the electrode. By vapor deposition to form a single-layer or multi-layer photoconductive layer, and then a conductive metal is deposited on this photoconductive layer to form the other electrode.

【0012】[0012]

【発明の実施の形態】以下、図1および図2に基づき本
発明の一実施形態について説明する。図1に符号1で示
す本実施形態に係わる光電導素子は、ガラスやセラミッ
クスあるいはプラスチックス等からなる基板2上にIT
OあるいはSnO2 からなる第1の透明電極3を真空蒸
着によって形成し、この第1の透明電極3の上面に、有
機光電導体を高周波イオンプレーティングによって蒸着
することによって光電導層4を形成し、さらに、この光
電導層4の上面に、金属、ITOあるいはSnO2 から
なる第2の透明電極5を真空蒸着によって蒸着・形成す
ることによって構成されたものである。
BEST MODE FOR CARRYING OUT THE INVENTION An embodiment of the present invention will be described below with reference to FIGS. The photoconductive element according to the present embodiment shown by reference numeral 1 in FIG.
A first transparent electrode 3 made of O or SnO 2 is formed by vacuum vapor deposition, and a photoconductive layer 4 is formed on the upper surface of the first transparent electrode 3 by vapor deposition of an organic photoconductor by high frequency ion plating. Further, the second transparent electrode 5 made of metal, ITO or SnO 2 is deposited and formed on the upper surface of the photoconductive layer 4 by vacuum vapor deposition.

【0013】図2は、このような構成を有する光電導素
子1を製造するための高周波イオンプレーティング装置
を示すもので、この高周波イオンプレーティング装置1
0は、真空容器11と、この真空容器11に接続されて
その内部を真空状態となす排気系12と、この真空容器
11の底部に設置されて光電導体Aが載置される蒸発源
13(図示例では一対設けられており、異なる有機光電
導体Aの蒸着が可能な構成となっている)と、これらの
蒸発源13と対向配置され、前記基板2が取り付けられ
るホルダー14と、このホルダー14と前記蒸発源13
との間に位置させられて、これらの間の空間部に高周波
プラズマを発生させる環状の電極15と、この電極15
に整合器16を介して接続された高周波電源17と、前
記真空容器11内に不活性ガスあるいは反応性ガスを注
入するためのガス注入系18と、前記蒸発源13に接続
されて、前記有機光電導体Aを蒸発温度に加熱する蒸着
電源19とによって構成されており、かつ、前記排気系
12は、油拡散ポンプ21と、この油拡散ポンプ21に
連設された油回転ポンプ22とによって構成されてい
る。
FIG. 2 shows a high-frequency ion plating apparatus for manufacturing the photoconductive element 1 having such a structure. The high-frequency ion plating apparatus 1 is shown in FIG.
Reference numeral 0 indicates a vacuum container 11, an exhaust system 12 connected to the vacuum container 11 to bring the inside into a vacuum state, and an evaporation source 13 (which is installed at the bottom of the vacuum container 11 and on which the photoconductor A is mounted ( In the illustrated example, a pair is provided so that different organic photoconductors A can be vapor-deposited), and a holder 14 arranged to face these evaporation sources 13 and to which the substrate 2 is attached, and this holder 14 And the evaporation source 13
And an annular electrode 15 positioned between the electrode 15 and the electrode 15 for generating high-frequency plasma in the space therebetween, and the electrode 15
A high-frequency power source 17 connected to the vacuum vessel 11 via a matching unit 16, a gas injection system 18 for injecting an inert gas or a reactive gas into the vacuum container 11, and an evaporation source 13 connected to the organic source. The exhaust system 12 is composed of an evaporation power source 19 for heating the photoconductor A to an evaporation temperature, and the exhaust system 12 is composed of an oil diffusion pump 21 and an oil rotary pump 22 connected to the oil diffusion pump 21. Has been done.

【0014】また、このように構成された前記排気系1
2は、前記真空容器11内の圧力を、1×10-5Tor
rまで真空引き可能な構成となされている。
Further, the exhaust system 1 constructed as described above.
2 indicates the pressure inside the vacuum container 11 of 1 × 10 −5 Tor.
It is configured to be able to vacuum up to r.

【0015】そして、本実施形態においては、前記光電
導体Aとして、フタロシアニン系顔料、ナフトシアニン
系顔料、アゾ系顔料、ペリレン系顔料、キナクリドン系
顔料、シアニン系顔料、あるいは、メロシアニン系顔料
等の有機材料が用いられ、前記蒸発源13に設置され
て、蒸着電源19から供給される電力によって蒸発させ
られた後に、前記電極15によって発生させられる高周
波プラズマP中を通過させられることによってイオン化
された後に、前記基板2上の第1の透明電極2に入射さ
せられることによって蒸着されて、この第1の透明電極
3上に有機材料からなる光電導層3を形成するようにな
されている。
In the present embodiment, as the photoconductor A, an organic material such as a phthalocyanine pigment, a naphthocyanine pigment, an azo pigment, a perylene pigment, a quinacridone pigment, a cyanine pigment, or a merocyanine pigment is used. After a material is used, it is installed in the evaporation source 13, evaporated by the electric power supplied from the deposition power source 19, and then ionized by being passed through the high frequency plasma P generated by the electrode 15. The photoconductive layer 3 made of an organic material is formed on the first transparent electrode 3 by being deposited by being incident on the first transparent electrode 2 on the substrate 2.

【0016】また、有機光電導体Aの蒸着が行われる真
空容器11は、蒸着する有機光電導体Aの種類によって
異なるが、アルゴンガス等の不活性ガス雰囲気、あるい
は、各種の反応性ガス雰囲気に保持され、そのガス圧が
1×10-5Torr〜1×10-4Torrの範囲に保持
され、さらに、前記高周波プラズマを発生させる電圧
は、13.56MHzの高周波電圧が用いられ、その電
力は10W〜80Wの範囲で設定され、特に40W〜7
0Wの範囲が好適に用いられる。
The vacuum chamber 11 in which the organic photoconductor A is vapor-deposited is held in an inert gas atmosphere such as argon gas or various reactive gas atmospheres, depending on the type of the organic photoconductor A to be vapor-deposited. The gas pressure is kept in the range of 1 × 10 −5 Torr to 1 × 10 −4 Torr, and the high-frequency plasma is generated by using a high-frequency voltage of 13.56 MHz, and the power is 10 W. 〜80W range, especially 40W〜7
The range of 0 W is preferably used.

【0017】このようにして高周波イオンプレーティン
グによって形成された有機材料からなる光電導層4は、
凝集がなく滑らかで緻密な薄膜となされ、かつ、通常の
真空蒸着によって形成される光電導層に比して硬質の光
電導層4となされ、この結果、損傷や剥離が発生しにく
くかつ耐電圧特性に優れた光電導層4が得られる。
The photoconductive layer 4 made of an organic material thus formed by high frequency ion plating is
A smooth and dense thin film without aggregation is formed, and a hard photoconductive layer 4 is formed as compared with a photoconductive layer formed by ordinary vacuum deposition, and as a result, damage or peeling is less likely to occur and withstand voltage is increased. The photoconductive layer 4 having excellent characteristics can be obtained.

【0018】以下に、具体な実施例を挙げて本発明につ
いて詳述する。なお、以下の各実施例における光電導層
4の特性評価を、表面硬度、表面状態、結晶性、組成分
析、熱特性、耐電圧性、光電特性の各項目に基づいて行
った。各項目の具体的な実施条件は以下のとおりであ
る。 1 表面硬度 形成された光電導層4の表面に、鉛筆を45度に傾けた
状態で約100gの接触圧のもとに接触させた状態と
し、この鉛筆を約0.5mm/secの速度で表面を移
動させて、前記光電導層4に傷を発生させる鉛筆硬度
を、この光電導層4の表面硬度とした。 2 表面状態 形成された光電導層4の表面に金をスパッターコート
し、その表面を走査型電子顕微鏡で観察した。 3 結晶性 形成された光電導層4のX線回折測定を行い、そのX線
回折特性から結晶構造を確認した。 4 組成分析 形成された光電導層4の分光吸収スペクトルを、波長3
00〜900nmの領域において分光光度計で測定する
とともに元素分析を行った。 5 熱特性 形成された光電導層4のX線回折測定を行った後に、こ
の光電導素子1を乾燥大気中で転移温度を超える温度ま
で徐々に加熱しつつX線回折測定を行い、熱処理前後に
おける結晶性の変化を観察した。 6 耐電圧性 暗黒状態において、得られた光電導素子1に電圧を印加
していき、空間電荷領域を過ぎて、電子雪崩領域と思わ
れる電流の急激な増加が始まったときの印加電圧を耐電
圧として測定した。
The present invention will be described in detail below with reference to specific examples. The characteristics of the photoconductive layer 4 in each of the following examples were evaluated based on the items of surface hardness, surface state, crystallinity, composition analysis, thermal characteristics, withstand voltage, and photoelectric characteristics. The specific implementation conditions for each item are as follows. 1 Surface hardness A pencil was brought into contact with the surface of the formed photoconductive layer 4 under a contact pressure of about 100 g in a state of being inclined at 45 degrees, and this pencil was moved at a speed of about 0.5 mm / sec. The pencil hardness that moves the surface to cause scratches on the photoconductive layer 4 was defined as the surface hardness of the photoconductive layer 4. 2 Surface state Gold was sputter-coated on the surface of the formed photoconductive layer 4, and the surface was observed with a scanning electron microscope. 3 Crystallinity The X-ray diffraction measurement of the formed photoconductive layer 4 was performed, and the crystal structure was confirmed from the X-ray diffraction characteristics. 4 Composition analysis The spectral absorption spectrum of the formed photoconductive layer 4
Elemental analysis was performed while measuring with a spectrophotometer in the region of 00 to 900 nm. 5 Thermal characteristics After performing X-ray diffraction measurement of the formed photoconductive layer 4, X-ray diffraction measurement is performed while gradually heating the photoconductive element 1 to a temperature exceeding the transition temperature in a dry atmosphere. The change in crystallinity was observed. 6 Withstand voltage In the dark state, a voltage is applied to the obtained photoconductive element 1 to withstand the applied voltage when a sharp increase in current, which is considered to be an electron avalanche region, starts past the space charge region. It was measured as a voltage.

【0019】7 光電特性 基板2上に形成された光電導層4の表面に金を蒸着し、
雰囲気の影響を除くために、約2×10-5Torrのク
ライオスタット内に設置して、室温における暗電流と光
電流の測定を行い、光電流の暗電流に対する比を求めた
(以下、この比を光電導感度と称す)。ここで、光源は
500Wのキセノンランプを用い、白色光は熱吸収フィ
ルターを通して照射し、単色光照射はさらにモノクロメ
ータによる射出光を用いた。
7 Photoelectric Properties Gold is vapor-deposited on the surface of the photoconductive layer 4 formed on the substrate 2,
In order to eliminate the influence of the atmosphere, the device was installed in a cryostat of about 2 × 10 -5 Torr, dark current and photocurrent were measured at room temperature, and the ratio of photocurrent to dark current was obtained (hereinafter, this ratio Is called the photoconductive sensitivity). Here, a xenon lamp of 500 W was used as a light source, white light was emitted through a heat absorption filter, and monochromatic light was emitted by a monochromator.

【0020】[0020]

【実施例】【Example】

実施例1 昇華精製した銅フタロシアニン顔料を、モリブデンボー
トからなる蒸発源13に設置し、ITOガラス上に、8
0Wの高周波電力を用いた高周波イオンプレーティング
により、室温で約1nm/sの堆積速度で、前記銅フタ
ロシアニン顔料の加熱時間を含め約30分間真空蒸着を
行い、約200nmの膜厚の有機光電導層4を形成し
た。
Example 1 A sublimated and purified copper phthalocyanine pigment was placed in an evaporation source 13 composed of a molybdenum boat, and was placed on an ITO glass.
By high-frequency ion plating using 0 W of high-frequency power, vacuum deposition was performed at room temperature at a deposition rate of about 1 nm / s for about 30 minutes including the heating time of the copper phthalocyanine pigment, and an organic photoconductive layer having a thickness of about 200 nm was formed. Layer 4 was formed.

【0021】このようにして得られた有機光電導層4
は、表面が目視において光沢を有し、また、表面硬度の
試験結果が「H」であり十分な硬度を有することが確認
された。そして、その表面を走査型電子顕微鏡によって
10000倍に拡大しても、微結晶粒子が全く見られな
い平滑な光電導層4であることが確認された。また、組
成分析の結果、吸収スペクトル特性において、通常の室
温で真空蒸着したα型と殆ど同じ結果が得られ、有機光
電導層4の分子が高周波電圧のエネルギーによって分解
されていないことが確認された。
The organic photoconductive layer 4 thus obtained
Was visually confirmed to have gloss, and the surface hardness test result was "H", indicating that the surface had sufficient hardness. Then, it was confirmed that even if the surface was magnified 10,000 times with a scanning electron microscope, it was a smooth photoconductive layer 4 in which no microcrystalline particles were observed. In addition, as a result of composition analysis, almost the same result as the α-type vacuum-deposited at normal room temperature was obtained in the absorption spectrum characteristics, and it was confirmed that the molecules of the organic photoconductive layer 4 were not decomposed by the energy of the high frequency voltage. It was

【0022】そして、この光電導素子1を、銅フタロシ
アニンの結晶転移温度である約250℃を越えて1時間
加熱した後、X線回折を行い、その結晶の変化を見たと
ころ変化が全く見られず(通常の真空蒸着によって形成
された有機伝導層は、結晶転移温度以上において針状の
結晶が成長する)、この結果、熱に対する安定度が優れ
ていることが確認された。
Then, this photoconductive element 1 was heated for 1 hour above the crystal transition temperature of copper phthalocyanine, which was about 250 ° C., and then subjected to X-ray diffraction. However, it was confirmed that the organic conductive layer formed by ordinary vacuum deposition grows needle-like crystals at the crystal transition temperature or higher, and as a result, it has excellent heat stability.

【0023】また、前記光電導素子1の耐電圧性を測定
したところ10Vという結果が得られ、たとえば、通常
の真空蒸着によって形成される厚さ5μmの有機光電導
層の耐電圧性が4〜5Vであることと比較して、50倍
以上の耐電圧特性を有していることが確認された。
When the withstand voltage of the photoconductive element 1 was measured, a result of 10 V was obtained. For example, the withstand voltage of an organic photoconductive layer having a thickness of 5 μm and formed by ordinary vacuum vapor deposition was 4 to 4. It was confirmed to have withstand voltage characteristics of 50 times or more as compared with 5V.

【0024】さらに、前記光電導素子1にキセノン光を
照射して、そのときに流れる光電流と暗電流とを検出す
るとともに、光電導感度を求めたところ200という結
果が得られ、この結果から、本実施例における有機性の
光電導素子1が、薄い膜であるにも拘わらず光電導素子
として十分に作動することが確認された。
Further, when the photoconductive element 1 was irradiated with xenon light and the photocurrent and dark current flowing at that time were detected and the photoconductive sensitivity was determined, a result of 200 was obtained. From this result It was confirmed that the organic photoconductive element 1 in the present example worked sufficiently as a photoconductive element even though it was a thin film.

【0025】[0025]

【実施例】【Example】

実施例2 チタニルフタロシアニン顔料を、モリブデンボートから
なる蒸発源13に設置し、ITOガラス上に、60Wの
高周波電力を用いた高周波イオンプレーティングによ
り、室温で約1nm/sの堆積速度で、前記チタニルフ
タロシアニン顔料の加熱時間を含め約40分間真空蒸着
を行い、約180nmの膜厚の有機光電導層4を形成し
た。
Example 2 A titanyl phthalocyanine pigment was placed in an evaporation source 13 composed of a molybdenum boat, and the above titanyl was deposited on ITO glass at room temperature at a deposition rate of about 1 nm / s by high frequency ion plating using high frequency power of 60 W. Vacuum evaporation was performed for about 40 minutes including the heating time of the phthalocyanine pigment to form the organic photoconductive layer 4 having a thickness of about 180 nm.

【0026】このようにして得られた有機光電導層4
は、ITOガラスとの密着強度が高く、表面が目視にお
いて光沢のある緑色を呈し、また、表面硬度の試験結果
が「H」であり十分な硬度を有することが確認された。
そして、その表面を走査型電子顕微鏡によって1000
0倍に拡大しても、微結晶粒子が全く見られない非常に
滑らかな光電導層4であることが確認された。また、組
成分析の結果、吸収スペクトル特性において、通常の室
温で真空蒸着した場合と殆ど同じ結果が得られ、有機光
電導層4の分子が高周波電圧のエネルギーによって分解
されていないことが確認された。
The organic photoconductive layer 4 thus obtained
Has a high adhesion strength with ITO glass, the surface shows a green color with a gloss on visual observation, and the surface hardness test result was "H", indicating that it has sufficient hardness.
Then, the surface thereof is measured by a scanning electron microscope to 1000
It was confirmed that the photoconductive layer 4 was very smooth with no fine crystal particles even when magnified 0 times. In addition, as a result of composition analysis, almost the same result as in the case of vacuum deposition at normal room temperature was obtained in the absorption spectrum characteristic, and it was confirmed that the molecules of the organic photoconductive layer 4 were not decomposed by the energy of the high frequency voltage. .

【0027】そして、この光電導素子1を、チタニルフ
タロシアニンの結晶転移温度である約230℃を越えて
1時間加熱した後、X線回折を行い、加熱前後における
結晶の変化を見たところ変化が全く見られず(通常の真
空蒸着によって形成された有機伝導層は、結晶転移温度
以上において針状の結晶が成長する)、この結果、熱に
対する安定度が優れていることが確認された。
After heating the photoconductive element 1 above the crystal transition temperature of titanyl phthalocyanine of about 230 ° C. for 1 hour, X-ray diffraction was carried out, and the change in crystal before and after heating was observed. It was not observed at all (the organic conductive layer formed by ordinary vacuum vapor deposition grows needle-like crystals above the crystal transition temperature), and as a result, it was confirmed that the stability against heat was excellent.

【0028】また、前記光電導素子1の耐電圧性を測定
したところ10Vという結果が得られ、たとえば、通常
の真空蒸着によって形成される厚さ5μmの有機光電導
層の耐電圧性が3〜4Vであることと比較して、70倍
以上の耐電圧特性を有していることが確認された。
When the withstand voltage of the photoconductive element 1 was measured, a result of 10 V was obtained. For example, the withstand voltage of an organic photoconductive layer having a thickness of 5 μm and formed by ordinary vacuum vapor deposition was 3 to 3. It was confirmed to have withstand voltage characteristics 70 times or more as compared with 4V.

【0029】さらに、前記光電導素子1にキセノン光を
照射して、そのときに流れる光電流と暗電流と検出する
とともに、光電導感度を求めたところ150という結果
が得られ、この結果から、本実施例における有機性の光
電導素子1が、薄膜であるにも拘わらず光電導素子とし
て十分に作動することが確認された。
Further, when the photoconductive element 1 was irradiated with xenon light, the photocurrent and dark current flowing at that time were detected, and the photoconductive sensitivity was determined to be 150. From this result, It was confirmed that the organic photoconductive element 1 in the present example worked sufficiently as a photoconductive element even though it was a thin film.

【0030】[0030]

【実施例】【Example】

実施例3 強い凝集性を有するモノアゾ色素(C.I.1231
0)をモリブデンボートからなる蒸発源13に設置し、
ITOガラス上に、70Wの高周波電力を用いた高周波
イオンプレーティングにより、室温で約1nm/sの堆
積速度で、前記モノアゾ色素の加熱時間を含め約20分
間真空蒸着を行い、約160nmの膜厚の有機光電導層
4を形成した。
Example 3 Monoazo dye (CI. 1231) having a strong aggregation property
0) is installed in the evaporation source 13 composed of a molybdenum boat,
Vacuum deposition was performed on ITO glass by high-frequency ion plating using high-frequency power of 70 W at a deposition rate of about 1 nm / s at room temperature for about 20 minutes including the heating time of the monoazo dye to give a film thickness of about 160 nm. The organic photoconductive layer 4 was formed.

【0031】このようにして得られた有機光電導層4
は、ITOガラスとの密着強度が高く、表面が目視にお
いて光沢を有し、また、表面硬度の試験結果が「H」で
あり十分な硬度を有することが確認された。
The organic photoconductive layer 4 thus obtained
Has a high adhesion strength with ITO glass, has a glossy surface visually, and has a surface hardness test result of "H", indicating that it has sufficient hardness.

【0032】そして、通常の真空蒸着によって形成され
たモノアゾ色素からなる有機光電導層が、数μm前後の
微結晶で覆われて非常に荒れているのに比べて、本実施
例の光電導層4においては、表面を走査型電子顕微鏡に
よって10000倍に拡大しても、微結晶粒子が全く見
られない平滑な光電導層であることが確認された。
The organic photoconductive layer made of a monoazo dye, which is formed by ordinary vacuum vapor deposition, is very rough because it is covered with microcrystals of about several μm and is very rough. In No. 4, it was confirmed that even if the surface was magnified 10,000 times with a scanning electron microscope, it was a smooth photoconductive layer in which no microcrystalline particles were seen at all.

【0033】また、組成分析の結果、吸収スペクトル特
性において、通常の室温で真空蒸着したモノアゾ色素と
殆ど同じ結果が得られ、有機光電導層4の分子が高周波
電圧のエネルギーによって分解されていないことが確認
された。
As a result of the composition analysis, the absorption spectrum characteristics are almost the same as those of the monoazo dye which is vacuum-deposited at ordinary room temperature, and the molecules of the organic photoconductive layer 4 are not decomposed by the energy of the high frequency voltage. Was confirmed.

【0034】一方、このモノアゾ色素は、凝集性が強
く、通常の真空蒸着法でも島状に蒸着されてしまい、ピ
ンホールの発生が避けられないが、本実施例の光電導素
子1にあっては、従来に比して数十分の一の膜厚である
にも拘わらず、1カ月放置後においても凝集が発生せ
ず、安定した光電導層4が得られ、さらに、この光電導
層4の上面に、第2の透明電極5を蒸着した構成とした
場合においても、両電極3・5に導通はなく、この点か
らも光電導層4の安定度が確認された。ここで、長期に
わたって凝集が発生しないことは、すなわち凝集の緩和
時間が非常に長いことであるから、換言すれば、熱に対
して安定であるといえる。
On the other hand, this monoazo dye has a strong cohesive property and is deposited in an island shape even by a usual vacuum deposition method, and pinholes cannot be avoided. However, in the photoconductive element 1 of the present embodiment. Despite the fact that the film thickness is several tenth of that of the conventional one, no agglomeration occurs even after standing for one month, and a stable photoconductive layer 4 is obtained. Even when the second transparent electrode 5 was vapor-deposited on the upper surface of No. 4, the electrodes 3 and 5 were not electrically connected, and the stability of the photoconductive layer 4 was also confirmed from this point. Here, the fact that agglomeration does not occur over a long period of time means that the relaxation time of agglomeration is very long, and in other words, it can be said that the material is stable to heat.

【0035】また、本実施例における光電導素子1の耐
電圧性を測定したところ8Vという結果が得られ、たと
えば、通常の真空蒸着によって形成される厚さ6μmの
有機光電導層の耐電圧性が3Vであることと比較して、
100倍以上の耐電圧特性を有していることが確認され
た。
When the withstand voltage of the photoconductive element 1 in this example was measured, a result of 8 V was obtained. For example, the withstand voltage of an organic photoconductive layer having a thickness of 6 μm formed by ordinary vacuum deposition. Is 3V,
It was confirmed to have a withstand voltage characteristic of 100 times or more.

【0036】さらに、前記光電導素子1にキセノン光を
照射して、そのときに流れる光電流と暗電流と検出する
とともに、光電導感度を求めたところ約50という結果
が得られた。ここで、従来においては、前記モノアゾ色
素は通常の真空蒸着法によって蒸着した場合、光電導感
度が1.01以下と殆どなく、光電導素子への適用は不
向きであるとされていた物質であるが、本実施例におい
て、その実用化が可能であることが知見された。
Further, when the photoconductive element 1 was irradiated with xenon light and the photocurrent and dark current flowing at that time were detected and the photoconductive sensitivity was obtained, a result of about 50 was obtained. Here, in the related art, when the monoazo dye is vapor-deposited by an ordinary vacuum vapor-deposition method, the photoconductive sensitivity is almost 1.01 or less, which is a substance which is considered unsuitable for application to a photoconductive element. However, in this example, it was found that its practical application is possible.

【0037】[0037]

【実施例】【Example】

実施例4 P型有機光電導体であるチタニルフタロシアニン顔料お
よびエネルギー準位構造が異なるN型アゾ系有機光電導
体をそれぞれ独立した蒸発源13に設置し、ITOガラ
ス上に、チタニルフタロシアニン顔料、アゾ系有機光電
導体の順序で、60Wの高周波電力を用いた高周波イオ
ンプレーティングにより、約1nm/sの堆積速度で、
前記両光電導体の加熱時間を含め約70分間真空蒸着を
行い、約350nmの膜厚の有機光電導層4を形成し
た。
Example 4 A titanyl phthalocyanine pigment, which is a P-type organic photoconductor, and an N-type azo organic photoconductor, which has a different energy level structure, are installed in independent evaporation sources 13, and a titanyl phthalocyanine pigment and an azo-type organic substance are formed on ITO glass. High-frequency ion plating using 60 W of high-frequency power, in the order of photoconductors, at a deposition rate of about 1 nm / s,
Vacuum evaporation was performed for about 70 minutes including the heating time of both photoconductors to form an organic photoconductive layer 4 having a thickness of about 350 nm.

【0038】このようにして得られた有機光電導層4
は、ITOガラスとの密着強度が高く、また、表面硬度
の試験結果が「H」であり十分な硬度を有することが確
認された。そして、表面の走査型電子顕微鏡による観察
においても、非常に滑らかな光電導層4であることが確
認された。また、このようにして得られた本実施例の光
電導素子1を250℃以上で1時間加熱した後に、その
加熱前後における結晶の変化を見たところ、2層構造で
ある場合においても、X線回折特性に変化が見られず、
熱に対する安定度が高いことが確認された。
The organic photoconductive layer 4 thus obtained
Has a high adhesion strength with ITO glass, and has a surface hardness test result of "H", indicating that it has sufficient hardness. It was confirmed that the surface of the photoconductive layer 4 was very smooth even when the surface was observed with a scanning electron microscope. Further, when the photoconductive element 1 of the present example thus obtained was heated at 250 ° C. or higher for 1 hour and then the change in crystal before and after the heating was observed, it was confirmed that X No change was seen in the line diffraction characteristics,
It was confirmed that the stability against heat was high.

【0039】また、本実施例における光電導素子1の耐
電圧性を測定したところ20V以上という高い結果が得
られ、たとえば、通常の真空蒸着によって形成される厚
さ7μmの有機光電導層の耐電圧性が5Vであることと
比較して、80倍以上の耐電圧特性を有していることが
確認された。
When the withstand voltage of the photoconductive element 1 in this example was measured, a high result of 20 V or more was obtained. For example, the withstand voltage of an organic photoconductive layer having a thickness of 7 μm formed by ordinary vacuum vapor deposition. It was confirmed that the withstand voltage characteristic was 80 times or more as compared with the voltage property of 5V.

【0040】一方、それぞれの電極3・5からの光照射
による光電流アクションスペクトルから、光電流の発生
に各光電導層ばかりでなく、両光電導層の界面に形成さ
れたPNヘテロ接合部も大きく寄与していることが確認
された。
On the other hand, from the photocurrent action spectrum due to the light irradiation from the respective electrodes 3.5, not only each photoconductive layer for the generation of photocurrent but also the PN heterojunction portion formed at the interface between both photoconductive layers is detected. It was confirmed that it contributed greatly.

【0041】そして、前記光電導素子1にキセノン光を
照射して、そのときに流れる光電流と暗電流と検出する
とともに、光電導感度を求めたところ約500という結
果が得られ、有機光電導素子として有効であることが確
認された。
Then, the photoconductive element 1 was irradiated with xenon light, the photocurrent and the dark current flowing at that time were detected, and the photoconductive sensitivity was determined to be about 500. It was confirmed to be effective as a device.

【0042】なお、前記各実施例において示した各構成
部材の組み合わせや諸形状あるいは寸法等は一例であっ
て、設計要求等に基づき種々変更可能である。たとえ
ば、前記各実施例においては、光電導層4を基板2によ
って補強した構造とした例について示したが、使用状態
によってはこの基板2を省略することも可能である。
Note that the combinations, various shapes, dimensions, etc. of the respective constituent members shown in each of the above-mentioned embodiments are merely examples, and can be variously changed based on design requirements and the like. For example, in each of the above-described embodiments, an example in which the photoconductive layer 4 is reinforced by the substrate 2 has been shown, but the substrate 2 may be omitted depending on the usage condition.

【0043】[0043]

【発明の効果】以上説明したように、本発明の請求項1
に係わる光電導素子は、電極上に、高周波イオンプレー
ティングによって有機光電導体を真空蒸着して光電導層
を形成し、この光電導層上に他の電極を真空蒸着してな
ることを特徴とするもので、有機光電導体を用いて光電
導層を形成するに際して、薄膜でかつ高硬度の光電導層
を形成して、その損傷や剥離の発生が抑制された光電導
素子を提供することができるとともに、表面が滑らかで
かつ緻密でピンホールのない薄膜状の有機光電導層を形
成して、耐電圧特性に優れた光電導素子を提供すること
ができる。
As described above, according to the first aspect of the present invention.
The photoconductive element according to, characterized in that an organic photoconductor is vacuum-deposited on the electrode by high-frequency ion plating to form a photoconductive layer, and another electrode is vacuum-deposited on the photoconductive layer. Thus, when forming a photoconductive layer using an organic photoconductor, a thin and high-hardness photoconductive layer is formed, and it is possible to provide a photoconductive element in which the occurrence of damage or peeling is suppressed. In addition, it is possible to provide a photoconductive element having a smooth and dense surface, a thin film-shaped organic photoconductive layer having no pinholes, and excellent withstand voltage characteristics.

【0044】また、本発明の請求項2に係わる光電導素
子の製造方法によれば、請求項1における光電導素子を
効率よくかつ確実に製造することができる。
According to the method for manufacturing a photoconductive element according to the second aspect of the present invention, the photoconductive element according to the first aspect can be efficiently and reliably manufactured.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施形態を示すもので、光電導素子
の概略側面図である。
FIG. 1 shows an embodiment of the present invention and is a schematic side view of a photoconductive element.

【図2】本発明の一実施形態を示すもので、光電導素子
の製造に用いられる高周波イオンプレーティング装置の
概略構成図である。
FIG. 2 shows an embodiment of the present invention, and is a schematic configuration diagram of a high-frequency ion plating apparatus used for manufacturing a photoconductive element.

【符号の説明】[Explanation of symbols]

1 光電導素子 2 基板 3 第1の透明電極(電極) 4 (有機)光電導層 5 第2の透明電極(他方の電極) 10 高周波イオンプレーティング装置 11 真空容器 12 排気系 13 蒸発源 14 ホルダー 19 蒸着電源 A 有機光電導体 1 Photoconductive Element 2 Substrate 3 First Transparent Electrode (Electrode) 4 (Organic) Photoconductive Layer 5 Second Transparent Electrode (Other Electrode) 10 High Frequency Ion Plating Device 11 Vacuum Container 12 Exhaust System 13 Evaporation Source 14 Holder 19 Evaporation power supply A Organic photoconductor

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 電極上に、高周波イオンプレーティング
によって有機光電導体を真空蒸着して光電導層を形成
し、この光電導層上に他の電極を真空蒸着してなること
を特徴とする光電導素子。
1. A photoelectric conversion device comprising: an organic photoconductor is vacuum-deposited on an electrode by high-frequency ion plating to form a photoconductive layer, and another electrode is vacuum-deposited on the photoconductive layer. Conductor element.
【請求項2】 真空容器中に有機光電導体および電極を
設置した後に、前記有機光電導体を加熱して蒸発させる
とともに、前記真空容器中に高周波プラズマを発生さ
せ、この高周波プラズマ中に前記有機光電導体の蒸気を
通過させてこの有機光電導体の分子をイオン化し、この
イオン化された有機光電導体の分子を前記電極に入射さ
せて蒸着させることによって、単層あるいは多層の光電
導層を形成し、ついで、この光電導層上に導電性金属を
蒸着して他方の電極を形成することを特徴とする光電導
素子の製造方法。
2. An organic photoconductor and an electrode are placed in a vacuum container, the organic photoconductor is heated to evaporate, and high frequency plasma is generated in the vacuum container. Ionize the molecules of the organic photoconductor by passing the vapor of the conductor, by depositing the ionized molecules of the organic photoconductor to the electrode to form a single-layer or multi-layer photoconductive layer, Next, a method for producing a photoconductive element, characterized in that a conductive metal is vapor-deposited on the photoconductive layer to form the other electrode.
JP7247095A 1995-09-26 1995-09-26 Photoconductive device and its manufacture Pending JPH0992910A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7247095A JPH0992910A (en) 1995-09-26 1995-09-26 Photoconductive device and its manufacture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7247095A JPH0992910A (en) 1995-09-26 1995-09-26 Photoconductive device and its manufacture

Publications (1)

Publication Number Publication Date
JPH0992910A true JPH0992910A (en) 1997-04-04

Family

ID=17158363

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7247095A Pending JPH0992910A (en) 1995-09-26 1995-09-26 Photoconductive device and its manufacture

Country Status (1)

Country Link
JP (1) JPH0992910A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007088033A (en) * 2005-09-20 2007-04-05 Fujifilm Corp Organic photoelectric conversion device and imaging device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007088033A (en) * 2005-09-20 2007-04-05 Fujifilm Corp Organic photoelectric conversion device and imaging device
JP4677314B2 (en) * 2005-09-20 2011-04-27 富士フイルム株式会社 Sensor and organic photoelectric conversion element driving method

Similar Documents

Publication Publication Date Title
US4170662A (en) Plasma plating
Mahmoud et al. Physical properties of thermal coating CdS thin films using a modified evaporation source
FR2487535A1 (en)
JPS6091626A (en) Method of producing amorphous silicon pin semiconductor device
Hor et al. Solvent-induced dimorphic transformation in magnesium phthalocyanine and its effect on the photoactivity
GB2024513A (en) Organic photovoltaic devices
McKeag et al. Photoconductive properties of thin film diamond
Kudo et al. Spectrum‐controllable color sensors using organic dyes
EP0129413B1 (en) Laminated photosensitive material and process for production thereof
Ismail et al. Preparation and characterization of In 2 O 3 thin films for optoelectronic applications
JPS5972779A (en) Thin film semiconductor and method of producing same
JPH05504235A (en) Photodegradation-stable semiconductor material based on amorphous germanium and its manufacturing method
JPH0992910A (en) Photoconductive device and its manufacture
US4749588A (en) Process for producing hydrogenated amorphous silicon thin film and a solar cell
US3926762A (en) Rf sputtering of trigonal selenium films
JPS5873169A (en) Pin photovoltaic device and method of producing same
Sato et al. Valence electronic structure at the interface of organic thin films
JP2000345321A (en) Optical semiconductor device
Hiramoto et al. Efficient organic pin solar cells having very thick codeposited i-layer composed of highly purified organic semiconductors
JPH0239786B2 (en)
El-Shazly et al. Anomalous photovoltaic effect in thin films of ZnSe obliquely deposited in vacuum
Stilwell et al. Studies on Photoelectrochemical Properties of SnO2 Films Prepared from Organic Resinate Solution
Fantini et al. Electrodeposition of CdSe films on SnO2: F coated glass
CH596585A5 (en) Electrophotographic film with four successive layers
JP2558210B2 (en) Electrophotographic image forming member