JPH0990299A - Polarized wave stabilizing optical circuit - Google Patents

Polarized wave stabilizing optical circuit

Info

Publication number
JPH0990299A
JPH0990299A JP24283995A JP24283995A JPH0990299A JP H0990299 A JPH0990299 A JP H0990299A JP 24283995 A JP24283995 A JP 24283995A JP 24283995 A JP24283995 A JP 24283995A JP H0990299 A JPH0990299 A JP H0990299A
Authority
JP
Japan
Prior art keywords
polarization
polarized wave
optical circuit
variable
polarized
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP24283995A
Other languages
Japanese (ja)
Inventor
Norio Sakaida
規夫 坂井田
Masabumi Koga
正文 古賀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP24283995A priority Critical patent/JPH0990299A/en
Publication of JPH0990299A publication Critical patent/JPH0990299A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/0136Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  for the control of polarisation, e.g. state of polarisation [SOP] control, polarisation scrambling, TE-TM mode conversion or separation

Abstract

PROBLEM TO BE SOLVED: To convert a polarized wave fluctuating timewisely into a linearly polarized wave and also to maintain a constant polarized state even though an input polarized state is fluctuated. SOLUTION: The polarized state of an input light beam whose polarization plane is timewisely fluctuated is adjusted by a variable polarization rotating means 11 and then an S-polarized wave and a P-polarized wave are separated by inputting the output light beam of the means 11 to an orthogonal polarized wave separating means 12. A polarization control means 20 detects light intensities of the S-polarized wave and the P-polarized wave and controls the variable polarization rotating means 11 so that the light intensity ratio becomes constant. The polarization rotating means 11 performs so that both polarized waves are lined up with each other at the time of combining two waves in a multiplexer means 14 by rotating either the S-polarized wave or the P-polarized wave by 90 degrees. Moreover, a variable phase adjusting means 16 adjusting a phase difference to be generated in between optical paths of the S-polarized wave and the P-polarized wave performs control so that phases of the S-polarized wave and the P-polarized wave coincide with each other by a phase control means 21 monitoring the output light beam of the multiplexer means 14.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、偏波面が時間的に
変動する入力光を安定した直線偏波に変換する偏波安定
化光回路に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a polarization stabilizing optical circuit for converting input light whose polarization plane changes with time into stable linearly polarized light.

【0002】[0002]

【従来の技術】図5は、従来の偏波安定化光回路の第1
の構成例を示す。図において、入力光は、偏波ビームス
プリッタ51に入力されてP偏波とS偏波に分離され
る。分離されたP偏波とS偏波は、それぞれ偏波保持光
ファイバ52−1,52−2を介して偏波保持カプラ5
3で結合される。このとき、偏波保持光ファイバ52−
1,52−2の一方を90度回転させることにより、入力
光は直線偏波に変換されて偏波保持光ファイバ52−3
に送出される。
2. Description of the Related Art FIG. 5 shows a first example of a conventional polarization stabilizing optical circuit.
An example of the configuration will be described. In the figure, the input light is input to the polarization beam splitter 51 and split into P polarization and S polarization. The P-polarized light and the S-polarized light thus separated are respectively transmitted through the polarization-maintaining optical fibers 52-1 and 52-2 to the polarization-maintaining coupler 5
Combined at 3. At this time, the polarization maintaining optical fiber 52-
By rotating one of 1, 52-2 by 90 degrees, the input light is converted into a linearly polarized wave and the polarization maintaining optical fiber 52-3
Sent to

【0003】図6は、従来の偏波安定化回路の第2の構
成例を示す。図において、2つの電気光学結晶54−
1,54−2が45度の角度で配置される。各電気光学結
晶は印加電圧に応じて複屈折率が変化する。ここで、第
1の電気光学結晶54−1は、任意の楕円偏波を直立し
た楕円偏波に変換する。この偏波状態に対して45度傾い
た直角座標(x′,y′)において、電界の成分の間に
はEx′=Ey′の関係が成立する。したがって、第1の
電気光学結晶54−1に対して45度傾いた第2の電気光
学結晶54−2の複屈折率を調整することにより、偏波
状態をx方向またはy方向の直線偏波に変換することが
できる。
FIG. 6 shows a second configuration example of a conventional polarization stabilization circuit. In the figure, two electro-optic crystals 54-
1, 54-2 are arranged at an angle of 45 degrees. The birefringence of each electro-optic crystal changes according to the applied voltage. Here, the first electro-optic crystal 54-1 converts an arbitrary elliptically polarized wave into an upright elliptically polarized wave. At the Cartesian coordinates (x ′, y ′) inclined by 45 ° with respect to this polarization state, the relationship of E x ′ = E y ′ is established between the components of the electric field. Therefore, by adjusting the birefringence of the second electro-optic crystal 54-2 tilted by 45 degrees with respect to the first electro-optic crystal 54-1, the polarization state is changed to the linear polarization in the x direction or the y direction. Can be converted to.

【0004】[0004]

【発明が解決しようとする課題】第1の従来構成では、
入力偏波状態が時間的に変動すると、2つに分離された
偏波の位相が時間的に変化し、しかも2つの偏波の光強
度比も同時に変化する。したがって、結合率が固定のカ
プラでは安定した偏波状態が得られず、また出力パワー
も変動する問題点があった。
SUMMARY OF THE INVENTION In the first conventional configuration,
When the input polarization state fluctuates with time, the phase of the two polarized waves changes with time, and the light intensity ratio of the two polarizations changes at the same time. Therefore, a coupler with a fixed coupling ratio cannot obtain a stable polarization state, and the output power fluctuates.

【0005】第2の従来構成では、電気光学結晶に電圧
を印加して任意の楕円偏波を直立した楕円偏波に変換す
る必要がある。しかし、時間的に変動している偏波を制
御するには、制御方法が複雑であるとともに制御も容易
ではなかった。本発明は、時間的に変動する偏波を直線
偏波に変換することができ、しかも入力偏波状態が変動
しても安定した偏波状態を維持できる偏波安定化光回路
を提供することを目的とする。
In the second conventional configuration, it is necessary to apply a voltage to the electro-optic crystal to convert an arbitrary elliptically polarized wave into an upright elliptically polarized wave. However, in order to control the polarization that fluctuates with time, the control method is complicated and the control is not easy. The present invention provides a polarization stabilizing optical circuit that can convert a polarization that changes with time into a linear polarization and that can maintain a stable polarization state even when the input polarization state changes. With the goal.

【0006】[0006]

【課題を解決するための手段】本発明の偏波安定化光回
路は、偏波面が時間的に変動する入力光の偏波状態を可
変偏波回転手段により調整し、その出力光を直交偏波分
離手段に入力してS偏波とP偏波に分離する。偏波制御
手段は、このS偏波とP偏波の光強度を検出し、その光
強度比が一定になるように可変偏波回転手段を制御す
る。偏波回転手段は、S偏波またはP偏波のいずれか一
方を90度回転させ、合波手段で結合する際に両偏波が揃
うようにする。また、S偏波またはP偏波の光路間に生
じる位相差を調整する可変位相調整手段は、合波手段の
出力光をモニタする位相制御手段により、S偏波および
P偏波の位相が一致するように制御する。
The polarization stabilizing optical circuit of the present invention adjusts the polarization state of input light whose polarization plane fluctuates with time by a variable polarization rotating means, and outputs its output light by orthogonal polarization. It is input to the wave separation means and separated into S polarization and P polarization. The polarization control means detects the light intensities of the S polarization and the P polarization, and controls the variable polarization rotation means so that the light intensity ratio becomes constant. The polarization rotation means rotates either the S polarization or the P polarization by 90 degrees so that both polarizations are aligned when they are combined by the combining means. Further, the variable phase adjusting means for adjusting the phase difference generated between the optical paths of the S polarization or the P polarization is the phase control means for monitoring the output light of the combining means so that the phases of the S polarization and the P polarization coincide with each other. Control to do.

【0007】このような構成により、入力光の偏波面が
時間的に変動し、直交偏波分離したS偏波とP偏波の位
相および光強度比が変化しても、可変偏波回転手段およ
び可変位相調整手段によりS偏波とP偏波の光強度比お
よび位相を一定に保ち、合波手段から安定した直線偏波
を出力させることができる。
With such a configuration, even if the polarization plane of the input light fluctuates with time and the phase and light intensity ratio of the S polarization and P polarization separated by the orthogonal polarization change, the variable polarization rotation means. Further, the variable phase adjusting means can keep the light intensity ratio and phase of the S polarization and P polarization constant, and the stable linear polarization can be output from the combining means.

【0008】[0008]

【発明の実施の形態】図1は、本発明の偏波安定化光回
路の第1の実施形態を示す(請求項1)。図において、
偏波面が時間的に変動する入力光は、可変偏波回転手段
11を介して直交偏波分離手段12に入力され、S偏波
(垂直偏波)とP偏波(水平偏波)に分離される。分離
されたS偏波およびP偏波はそれぞれ空間中を伝搬し、
プリズム13またはミラーを用いて2つの光路が合波手
段14で結合されるように構成される。S偏波またはP
偏波の光路(ここではS偏波の光路)には、偏波面を90
度回転させる偏波回転手段15が挿入され、一方の偏波
面(S偏波)を他方の偏波面(P偏波)に合わせ、一方
の直線偏波(P偏波)として合波手段14から偏波保持
光ファイバに出力される。また、S偏波またはP偏波の
光路(ここではP偏波の光路)には可変位相調整手段1
6が挿入され、他方の光路(S偏波の光路)との間に生
じる位相差を補正する。
1 shows a first embodiment of a polarization stabilizing optical circuit according to the present invention (claim 1). In the figure,
The input light whose plane of polarization fluctuates with time is input to the orthogonal polarization splitting means 12 via the variable polarization rotating means 11 and split into S polarization (vertical polarization) and P polarization (horizontal polarization). To be done. The separated S polarization and P polarization propagate in space,
The two optical paths are configured to be combined by the combining means 14 using the prism 13 or the mirror. S polarization or P
The polarization optical path (here, the S polarization optical path) has a polarization plane of 90
A polarization rotating means 15 for rotating the polarization is inserted, one polarization plane (S polarization) is aligned with the other polarization plane (P polarization), and one linear polarization (P polarization) from the multiplexing means 14 is obtained. It is output to the polarization maintaining optical fiber. In addition, the variable phase adjusting means 1 is provided in the optical path of S polarization or P polarization (here, the optical path of P polarization).
6 is inserted to correct the phase difference between the optical path and the other optical path (optical path of S polarization).

【0009】S偏波およびP偏波の各光路には、ビーム
スプリッタ17−1,17−2が挿入され、分岐された
各偏波の光強度が光検出器18−1,18−2でそれぞ
れ電気信号に変換される。この2つの電気信号は対数増
幅器19に入力され、各偏波の光強度比に応じた光強度
比信号が偏波制御回路20に与えられる。偏波制御回路
20は、各偏波の光強度比が一定になるように可変偏波
回転手段11の偏波回転角を調整して入力光の偏波状態
を制御する。また、合波手段14の出力光は、モニタ用
の光検出器18−3で電気信号に変換され、位相制御手
段21に与えられる。位相制御手段21は、合波手段1
4の出力光強度が一定になるように、可変位相調整手段
16を制御してS偏波およびP偏波の各光路間に生じる
位相差を補正する。
Beam splitters 17-1 and 17-2 are inserted in the respective optical paths of the S-polarized light and the P-polarized light, and the optical intensities of the branched polarizations are detected by the photodetectors 18-1 and 18-2. Each is converted into an electric signal. The two electric signals are input to the logarithmic amplifier 19, and a light intensity ratio signal corresponding to the light intensity ratio of each polarization is given to the polarization control circuit 20. The polarization control circuit 20 controls the polarization state of the input light by adjusting the polarization rotation angle of the variable polarization rotation means 11 so that the light intensity ratio of each polarization becomes constant. Further, the output light of the combining means 14 is converted into an electric signal by the photodetector 18-3 for monitoring and is given to the phase control means 21. The phase control means 21 is the multiplexing means 1
The variable phase adjusting means 16 is controlled so that the output light intensity of No. 4 becomes constant, and the phase difference generated between the optical paths of the S polarization and the P polarization is corrected.

【0010】以上の構成により、入力光の偏波面が時間
的に変動し、直交偏波分離手段12で分離したS偏波と
P偏波の位相および光強度比が変化しても、可変偏波回
転手段11および可変位相調整手段16によりS偏波と
P偏波の光強度比および位相を一定に保ち、合波手段1
4から安定した直線偏波(P偏波)を出力させることが
できる。
With the above construction, even if the polarization plane of the input light fluctuates with time, and the phase and light intensity ratio of the S polarization and P polarization separated by the orthogonal polarization separating means 12 change, the variable polarization can be changed. The wave rotating means 11 and the variable phase adjusting means 16 keep the light intensity ratio and the phase of the S-polarized light and the P-polarized light constant, and the combining means 1
It is possible to output a stable linear polarized wave (P polarized wave) from No. 4.

【0011】図2は、本発明の偏波安定化光回路の第2
の実施形態を示す(請求項2)。本実施形態は、第1の
実施形態が直交偏波分離されたS偏波およびP偏波の各
光路を空間系としたのに対して、図4に示す従来構成と
同様に偏波保持光ファイバ52−1,52−2を用い、
偏波回転手段15として一方の偏波保持光ファイバを90
度回転させて合波手段14に接続する。また、可変位相
調整手段16としてピエゾ素子を挿入し、光ファイバの
伸縮を利用した位相調整を行う。また、ビームスプリッ
タ17−1,17−2および合波手段14として偏波保
持カプラ53−1,53−2,53−3を用い、各偏波
の一部を分岐して光検出器18−1,18−2,18−
3に入力する。
FIG. 2 shows a second polarization stabilizing optical circuit according to the present invention.
(Claim 2) is shown. In the present embodiment, the optical paths of the S-polarized light and the P-polarized light separated by the orthogonal polarization are spatial systems in the first embodiment, whereas the polarization-maintaining light is the same as in the conventional configuration shown in FIG. Using fibers 52-1 and 52-2,
As the polarization rotation means 15, one polarization maintaining optical fiber is
It is rotated once and connected to the combining means 14. Moreover, a piezo element is inserted as the variable phase adjustment means 16 to perform phase adjustment utilizing expansion and contraction of the optical fiber. Further, polarization maintaining couplers 53-1, 53-2 and 53-3 are used as the beam splitters 17-1 and 17-2 and the combining means 14, and a part of each polarization is branched and the photodetector 18-. 1, 18-2, 18-
Enter 3

【0012】その他の構成および各部の機能は第1の実
施形態と同様であり、入力光の偏波面が時間的に変動し
ても、偏波保持カプラ53−3から安定した直線偏波
(P偏波)を出力させることができる。
The other configurations and the functions of the respective parts are the same as those of the first embodiment. Even if the polarization plane of the input light fluctuates with time, a stable linearly polarized wave (P Polarization) can be output.

【0013】[0013]

【実施例】可変偏波回転手段11としては、例えばファ
ラデー回転子を用いることができる。この場合には、偏
波制御回路20は、光強度比信号に応じてファラデー回
転子の回転角を変化させる磁界を調整する。直交偏波分
離手段12としては、例えば偏波ビームスプリッタまた
は方解石を用いることができる。
EXAMPLE As the variable polarization rotating means 11, for example, a Faraday rotator can be used. In this case, the polarization control circuit 20 adjusts the magnetic field that changes the rotation angle of the Faraday rotator according to the light intensity ratio signal. As the orthogonal polarization separating means 12, for example, a polarization beam splitter or calcite can be used.

【0014】合波手段14としては、例えばハーフミラ
ーまたは偏波保持カプラを用いることができる。なお、
ハーフミラーを用いた場合には、図1に示すように2つ
の出力ポートを利用することができる。偏波回転手段1
5としては、例えば1/2波長板を用いることができ
る。可変位相調整手段16としては、例えば回転型位相
調整板または図2に示すピエゾ素子を用いることができ
る。
As the combining means 14, for example, a half mirror or a polarization maintaining coupler can be used. In addition,
When a half mirror is used, two output ports can be used as shown in FIG. Polarization rotation means 1
For example, a half-wave plate can be used as 5. As the variable phase adjusting means 16, for example, a rotary type phase adjusting plate or a piezo element shown in FIG. 2 can be used.

【0015】図3は、位相制御手段21の実施例構成を
示す。図において、位相制御部31から可変位相調整手
段16に与えられる制御信号は、発振器32から出力さ
れる低周波信号で余変調が加えられる。光検出器18−
3の出力信号は同期検波回路33に入力され、発振器3
2から出力される低周波信号を用いてベースバンド信号
に変換される。このベースバンド信号を位相制御部31
にフィードバックし、可変位相調整手段16の位相調整
量を決定する制御信号を生成することにより、合波手段
14の出力光強度が一定になるように制御される。
FIG. 3 shows an embodiment of the phase control means 21. In the figure, the control signal provided from the phase control unit 31 to the variable phase adjusting means 16 is a low frequency signal output from the oscillator 32 and is post-modulated. Photodetector 18-
The output signal of 3 is input to the synchronous detection circuit 33, and the oscillator 3
It is converted to a baseband signal by using the low frequency signal output from 2. This baseband signal is transferred to the phase controller 31.
The output light intensity of the combining means 14 is controlled to be constant by generating a control signal for determining the amount of phase adjustment of the variable phase adjusting means 16 by feeding back to.

【0016】図4は、本発明の偏波安定化光回路を用い
た他の実施例構成を示す。図において、偏波安定化光回
路40から出力される直線偏波(P偏波またはS偏波)
を1/2波長板41に入力する。1/2波長板41は直
線偏波に対して単純な傾斜角回転子となるので、この1
/2波長板41を調整することにより任意の直線偏波に
変換することができる。
FIG. 4 shows the configuration of another embodiment using the polarization stabilizing optical circuit of the present invention. In the figure, linearly polarized light (P polarized light or S polarized light) output from the polarization stabilizing optical circuit 40
Is input to the half-wave plate 41. Since the half-wave plate 41 is a simple tilt angle rotator for linearly polarized waves,
By adjusting the / 2 wavelength plate 41, it is possible to convert to an arbitrary linearly polarized wave.

【0017】以上示した本発明の偏波安定化光回路を構
成する各部を集積化導波路(PLC)により実現するこ
とにより、小型化することができるとともに、位相調整
も容易になる。
By realizing each part constituting the polarization stabilizing optical circuit of the present invention described above by an integrated waveguide (PLC), it is possible to reduce the size and facilitate the phase adjustment.

【0018】[0018]

【発明の効果】以上説明したように、本発明の偏波安定
化光回路は、入力光の偏波面が時間的に変動しても安定
した直線偏波を得ることができる。また、偏波面が時間
的に変動する光を任意の直線偏波に容易に変換すること
ができる。
As described above, the polarization stabilizing optical circuit of the present invention can obtain stable linear polarization even if the polarization plane of the input light fluctuates with time. Further, it is possible to easily convert light whose polarization plane changes with time into arbitrary linearly polarized light.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の偏波安定化光回路の第1の実施形態を
示す図。
FIG. 1 is a diagram showing a first embodiment of a polarization stabilizing optical circuit of the present invention.

【図2】本発明の偏波安定化光回路の第2の実施形態を
示す図。
FIG. 2 is a diagram showing a second embodiment of a polarization stabilizing optical circuit of the present invention.

【図3】位相制御手段21の実施例構成を示すブロック
図。
FIG. 3 is a block diagram showing the configuration of an embodiment of phase control means 21.

【図4】本発明の偏波安定化光回路を用いた他の実施例
構成を示すブロック図。
FIG. 4 is a block diagram showing the configuration of another embodiment using the polarization stabilizing optical circuit of the present invention.

【図5】従来の偏波安定化光回路の第1の構成例を示す
図。
FIG. 5 is a diagram showing a first configuration example of a conventional polarization stabilizing optical circuit.

【図6】従来の偏波安定化光回路の第2の構成例を示す
図。
FIG. 6 is a diagram showing a second configuration example of a conventional polarization stabilizing optical circuit.

【符号の説明】[Explanation of symbols]

11 可変偏波回転手段 12 直交偏波分離手段 13 プリズム 14 合波手段 15 偏波回転手段 16 可変位相調整手段 17 ビームスプリッタ 18 光検出器 19 対数増幅器 20 偏波制御回路 21 位相制御手段 31 位相制御部 32 発振器 33 同期検波回路 40 偏波安定化光回路 41 1/2波長板 51 偏波ビームスプリッタ 52 偏波保持光ファイバ 53 偏波保持カプラ 54 電気光学結晶 11 variable polarization rotation means 12 orthogonal polarization separation means 13 prism 14 combining means 15 polarization rotation means 16 variable phase adjustment means 17 beam splitter 18 photodetector 19 logarithmic amplifier 20 polarization control circuit 21 phase control means 31 phase control Part 32 Oscillator 33 Synchronous detection circuit 40 Polarization stabilizing optical circuit 41 1/2 wavelength plate 51 Polarization beam splitter 52 Polarization maintaining optical fiber 53 Polarization maintaining coupler 54 Electro-optic crystal

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 偏波面が時間的に変動する入力光の偏波
状態を調整する可変偏波回転手段と、 前記可変偏波回転手段の出力光をS偏波(垂直偏波)と
P偏波(水平偏波)に分離する直交偏波分離手段と、 前記S偏波とP偏波の光強度を検出し、その光強度比が
一定になるように前記可変偏波回転手段を制御する偏波
制御手段と、 前記S偏波またはP偏波のいずれか一方を90度回転させ
る偏波回転手段と、 前記S偏波またはP偏波の光路間に生じる位相差を調整
する可変位相調整手段と、 前記偏波回転手段および前記可変位相調整手段を介した
2つの偏波を結合し、直線偏波として出力する合波手段
と、 前記合波手段の出力光をモニタし、前記S偏波およびP
偏波の位相が一致するように前記可変位相調整手段を制
御する位相制御手段とを備えたことを特徴とする偏波安
定化光回路。
1. A variable polarization rotating means for adjusting the polarization state of input light whose polarization plane fluctuates with time, and output light of the variable polarization rotating means for S polarization (vertical polarization) and P polarization. Orthogonal polarization splitting means for splitting into waves (horizontal polarization) and light intensity of the S polarization and P polarization are detected, and the variable polarization rotation means is controlled so that the light intensity ratio becomes constant. Polarization control means, polarization rotation means for rotating one of the S polarization and P polarization by 90 degrees, and variable phase adjustment for adjusting the phase difference generated between the optical paths of the S polarization and P polarization. Means, a combining means for combining two polarized waves through the polarization rotating means and the variable phase adjusting means, and outputting as a linearly polarized wave; and an output light of the combining means for monitoring the S polarization. Wave and P
A polarization stabilizing optical circuit comprising: a phase control unit that controls the variable phase adjustment unit so that the phases of polarized waves match.
【請求項2】 請求項1に記載の偏波安定化光回路にお
いて、 偏波回転手段は、直交偏波分離手段で分離されたS偏波
およびP偏波を伝搬する偏波保持光ファイバの一方を90
度回転させ、各偏波保持光ファイバの出力端の偏波を揃
える構成であることを特徴とする偏波安定化光回路。
2. The polarization stabilizing optical circuit according to claim 1, wherein the polarization rotation means is a polarization maintaining optical fiber that propagates the S polarization and P polarization separated by the orthogonal polarization separation means. 90 for one
A polarization-stabilized optical circuit having a configuration in which the polarized waves at the output ends of each polarization-maintaining optical fiber are aligned by rotating the polarization-stable optical circuit.
【請求項3】 請求項1に記載の偏波安定化光回路にお
いて、 位相制御手段は、可変位相調整手段で調整される位相を
低周波信号で変調し、合波手段の出力をこの低周波信号
で同期検波して位相制御量を設定する構成であることを
特徴とする偏波安定化光回路。
3. The polarization stabilizing optical circuit according to claim 1, wherein the phase control means modulates the phase adjusted by the variable phase adjustment means with a low frequency signal, and outputs the output of the multiplexing means with the low frequency signal. A polarization stabilizing optical circuit having a configuration in which a signal is synchronously detected and a phase control amount is set.
【請求項4】 請求項1に記載の偏波安定化光回路と、 前記偏波安定化光回路から出力されるS偏波またはP偏
波を任意の直線偏波に変換する偏波回転素子とを備えた
ことを特徴とする偏波安定化光回路。
4. The polarization stabilizing optical circuit according to claim 1, and a polarization rotation element for converting the S polarization or the P polarization output from the polarization stabilizing optical circuit into an arbitrary linear polarization. A polarization-stabilized optical circuit comprising:
【請求項5】 請求項1に記載の偏波安定化光回路の各
光部品を集積化導波路により形成したことを特徴とする
偏波安定化光回路。
5. A polarization stabilizing optical circuit, wherein each optical component of the polarization stabilizing optical circuit according to claim 1 is formed by an integrated waveguide.
JP24283995A 1995-09-21 1995-09-21 Polarized wave stabilizing optical circuit Pending JPH0990299A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24283995A JPH0990299A (en) 1995-09-21 1995-09-21 Polarized wave stabilizing optical circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24283995A JPH0990299A (en) 1995-09-21 1995-09-21 Polarized wave stabilizing optical circuit

Publications (1)

Publication Number Publication Date
JPH0990299A true JPH0990299A (en) 1997-04-04

Family

ID=17095067

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24283995A Pending JPH0990299A (en) 1995-09-21 1995-09-21 Polarized wave stabilizing optical circuit

Country Status (1)

Country Link
JP (1) JPH0990299A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002103440A3 (en) * 2001-06-14 2003-07-03 Axe Inc Multi-stage polarization transformer
WO2004008202A3 (en) * 2002-07-12 2004-03-11 Optimer Photonics Inc Scheme for controlling polarization in optical waveguides
US7373047B2 (en) 2002-11-21 2008-05-13 Optimer Photonics, Inc. Embedded electrode integrated optical devices and methods of fabrication

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002103440A3 (en) * 2001-06-14 2003-07-03 Axe Inc Multi-stage polarization transformer
WO2004008202A3 (en) * 2002-07-12 2004-03-11 Optimer Photonics Inc Scheme for controlling polarization in optical waveguides
US6853758B2 (en) 2002-07-12 2005-02-08 Optimer Photonics, Inc. Scheme for controlling polarization in waveguides
US7373047B2 (en) 2002-11-21 2008-05-13 Optimer Photonics, Inc. Embedded electrode integrated optical devices and methods of fabrication

Similar Documents

Publication Publication Date Title
US9778475B2 (en) Universal polarization converter
US7009709B2 (en) Active control of two orthogonal polarizations for heterodyne beam delivery
JP2006191410A (en) Quantum optical transmission apparatus, and quantum light generator therefor
JPH02294617A (en) Polarization controller
US4932783A (en) Apparatus and method for minimizing polarization-induced signal fading in an interferometric fiber-optic sensor using input-polarization modulation
US7528360B2 (en) Method and device for stabilizing the state of polarization of optical radiation
JP3841799B2 (en) Active control of two orthogonal polarizations for heterodyne interferometry
US7362445B2 (en) Active control and detection of two nearly orthogonal polarizations in a fiber for heterodyne interferometry
JPH0990299A (en) Polarized wave stabilizing optical circuit
JP2005266362A (en) Polarization independent optical device
JP2002350798A (en) Polarization corrector and wavelength-division multiplexing device using the same
NL1026613C2 (en) Improved polarization controller using spatial filtering.
JP5267878B2 (en) Polarization adjuster
JP2005214892A (en) Electric field sensor and electric field detection method
JP2012013662A (en) Optical interferometer
JPH0114567B2 (en)
JPH0396930A (en) Fsk modulation optical signal generator
JP2004093750A (en) Optical switch
JP2004294941A (en) Polarization controller
JP3913339B2 (en) Polarization-independent polarizer and optical processing apparatus using the same
JPS60121424A (en) Optical receiver
JPS6249338A (en) Optical heterodyne/homodyne detecting receiver
JP2641737B2 (en) Optical multipoint signal multiplex transmission equipment
JP2002162610A (en) Variable optical filter and intensity ratio variably separating device
JPH08292458A (en) Four-light-wave mixed light generating device and semiconductor unpolarized light source used for the device