JPH0989631A - Liquid-level meter - Google Patents

Liquid-level meter

Info

Publication number
JPH0989631A
JPH0989631A JP24018095A JP24018095A JPH0989631A JP H0989631 A JPH0989631 A JP H0989631A JP 24018095 A JP24018095 A JP 24018095A JP 24018095 A JP24018095 A JP 24018095A JP H0989631 A JPH0989631 A JP H0989631A
Authority
JP
Japan
Prior art keywords
light
liquid
tank
liquid level
emitting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP24018095A
Other languages
Japanese (ja)
Inventor
Yasuyuki Hishida
康之 菱田
Riyouji Matsubara
亮滋 松原
Tsukasa Hiruta
司 蛭田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Cable Ltd
Original Assignee
Hitachi Cable Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Cable Ltd filed Critical Hitachi Cable Ltd
Priority to JP24018095A priority Critical patent/JPH0989631A/en
Publication of JPH0989631A publication Critical patent/JPH0989631A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To obtain a liquid-level meter by which a measuring part can be installed inside a tank and by which a liquid level can be measured without using a glass gage. SOLUTION: In a liquid-level meter, the liquid surface level of a liquid inside a tank is measured optically. In the liquid-level meter, a longitudinally long opening 2 is arranged and formed in one face of the sidewall of a case 1 which is installed inside the tank, and a light-emitting body 3 and a light-receiving body 4 are erected and installed inside the case 1 so as to face the opening. The light-emitting body 3 is constituted so as to be provided with (n) pieces of light-emitting elements 3-1 to 3-n which are arranged and installed continuously in the vertical direction, and the light-receiving body 4 is constituted so as to be provided with a plurality of photodetectors corresponding to the light- emitting elements 3-1 , to 3-n . The light-emitting elements 3-1 to 3-n are controlled by a computing and processing part 5 so as to emit light sequentially, the liquid surface level inside the tank is computed on the basis of the output of the light-receiving body, and a computed result is displayed on a display part 7.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、槽内の液面レベル
を光学的に計測するための液面計に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a liquid level gauge for optically measuring a liquid level in a tank.

【0002】[0002]

【従来の技術】槽内の水や油等の液面レベルを計測する
には、超音波や光センサを用いた非接触式の液面計が用
いられる。図7は出願人が同時に提案している光式の液
面計の構成を示すブロック図である。
2. Description of the Related Art In order to measure the liquid level of water, oil or the like in a tank, a non-contact type liquid level meter using ultrasonic waves or optical sensors is used. FIG. 7 is a block diagram showing the configuration of an optical liquid level gauge which the applicant has proposed at the same time.

【0003】油槽(又は水槽)に連結されたガラスゲー
ジ11の片側には、複数の発光体12-1〜12-nが上下
方向に連続的に配置されている。更に、ガラスゲージ1
1を挟んで発光体12-1〜12-nの反対側には複数の受
光体13-1〜13-nが上下方向に連続的に配置されてい
る。発光体12-1〜12-nの各々にはシフトレジスタ1
4が接続され、このシフトレジスタ14及び受光体13
-1〜13-nには、処理演算部15が接続されている。
On one side of a glass gauge 11 connected to an oil tank (or a water tank), a plurality of light emitters 12 -1 to 12 -n are continuously arranged in the vertical direction. Furthermore, glass gauge 1
On the opposite side of the light emitting bodies 12 -1 to 12 -n with the light emitting element 1 in between, a plurality of light receiving bodies 13 -1 to 13 -n are continuously arranged in the vertical direction. A shift register 1 is provided for each of the light emitters 12 -1 to 12 -n.
4 is connected to the shift register 14 and the light receiving body 13.
The processing calculation unit 15 is connected to -1 to 13- n .

【0004】この構成において、処理演算部15によっ
てシフトレジスタ14を制御し、発光体12-1〜12-n
を順番に点灯し、その際に受光体13-1〜13-nはガラ
スゲージ11を通して到達する光を受光し、受光量に応
じた電気信号を出力する。この出力状態を処理演算部1
5によって判定し、受光体13-1〜13-nの光量差、す
なわち光量が大きく変化する境界に位置する受光体13
の位置を液面レベルであると判定する。つまり、槽内の
液体16が油の場合、ガラスゲージ11の液体16の部
分は集光作用が大きいので受光量が多くなり、ガラスゲ
ージ11体の気体部分は集光作用が小さいので受光量が
少なくなる。この受光量の差を利用して液面レベルを測
定する。
In this structure, the processing arithmetic unit 15 controls the shift register 14 to control the light emitters 12 -1 to 12 -n.
Are sequentially turned on, and at that time, the light receiving bodies 13 -1 to 13 -n receive the light reaching through the glass gauge 11 and output an electric signal according to the received light amount. This output state is processed and calculated by the calculation unit 1
5, the light amount difference between the light receiving members 13 -1 to 13 -n , that is, the light receiving member 13 located at the boundary where the light amount changes greatly.
The position of is determined to be the liquid level. That is, when the liquid 16 in the tank is oil, the amount of received light is large because the liquid 16 portion of the glass gauge 11 has a large light-collecting effect, and the amount of received light is small because the gas portion of the glass gauge 11 has a small light-collecting effect. Less. The liquid level is measured by utilizing the difference in the amount of received light.

【0005】[0005]

【発明が解決しようとする課題】しかし、この液面計に
よると、管内の液体の有無により形成されるガラスゲー
ジのレンズ効果を用いて検出を行っているため、ガラス
ゲージを有しない既設の槽には適用できない。また、槽
内に設置することもできないので、取付位置に制限が生
じる。
However, according to this liquid level gauge, since the detection is carried out by using the lens effect of the glass gauge formed by the presence or absence of the liquid in the pipe, the existing tank having no glass gauge is used. Not applicable to. Further, since it cannot be installed in the tank, the mounting position is limited.

【0006】そこで本発明は、ガラスゲージを有しない
既設の槽への適用が可能であり、更に槽内への設置が可
能な液面計を提供することを目的としている。
Therefore, an object of the present invention is to provide a liquid level gauge which can be applied to an existing tank having no glass gauge and can be installed in the tank.

【0007】[0007]

【課題を解決するための手段】本発明は上記の目的を実
現するため、槽内の液体の液面レベルを光学的に測定す
る液面計において、垂直方向に連続的に配設された複数
個の発光素子を備え、前記槽内に立設される発光体と、
前記槽内の前記発光体の近傍に立設され、前記槽内の気
体および液体で反射してくる前記発光体の前記発光素子
よりの光を受光する受光体と、前記発光体の前記発光素
子を所定の順序で発光させ、そのときの前記受光体の受
光状態に基づいて前記槽内の液面レベルを検出する検出
手段とを備える構成にしている。
In order to achieve the above object, the present invention provides a liquid level gauge for optically measuring the liquid level of a liquid in a tank. A light-emitting body provided with a plurality of light-emitting elements, which is erected in the tank,
A light-receiving element that stands upright in the tank in the vicinity of the light-emitting body and receives light from the light-emitting element of the light-emitting element that is reflected by gas and liquid in the tank, and the light-emitting element of the light-emitting element. To emit light in a predetermined order and to detect the liquid level in the tank based on the light receiving state of the light receiving body at that time.

【0008】この構成によれば、発光体及び受光体が槽
内に設置され、発光体からの光は、所定位置の液体で反
射されて受光体で受光される。従って、ガラスゲージを
用いることなく液面計測を行うことができる。この結
果、槽の構造に制限されることなく、液面レベルの計測
を行うことができる。
According to this structure, the light emitter and the light receiver are installed in the tank, and the light from the light emitter is reflected by the liquid at the predetermined position and is received by the light receiver. Therefore, the liquid level can be measured without using a glass gauge. As a result, the liquid level can be measured without being limited by the structure of the tank.

【0009】[0009]

【発明の実施の形態】図1は本発明による液面計の実施
の一形態を示す斜視図であり、図2は図1の液面計の槽
内への設置状況を示す説明図である。槽内に設置される
ケース1は4つの側壁を有する箱形を成し、その1面に
は縦長の透明材料で作られた開口2が設けられている。
ケース1内の開口2の近傍には、開口2と略同一高さの
発光体3が立設されている。この発光体3は、n個の発
光素子3-1〜3-nを垂直方向に連続的に配設した構成が
とられ、いずれの発光素子も出射光が開口2に向けて水
平に投光されるようにしている。更に、発光体3に隣接
して受光体4(その受光面は開口2に向けられる)が立
設されている。この受光体4は、発光体3の各々に対応
して各1個の受光素子が割当てられた複数の受光素子を
備えた構成、或いはCCD等の撮像素子を用いることが
できる。
1 is a perspective view showing an embodiment of a liquid level gauge according to the present invention, and FIG. 2 is an explanatory view showing a state of installation of the liquid level gauge of FIG. 1 in a tank. . A case 1 installed in the tank has a box shape having four side walls, and an opening 2 made of a vertically long transparent material is provided on one surface thereof.
In the vicinity of the opening 2 in the case 1, a light-emitting body 3 having substantially the same height as the opening 2 is provided upright. This light-emitting body 3 has a structure in which n light-emitting elements 3 -1 to 3 -n are continuously arranged in the vertical direction, and all the light-emitting elements emit emitted light horizontally toward the opening 2. I am trying to do it. Further, a light receiving body 4 (its light receiving surface is directed to the opening 2) is provided upright adjacent to the light emitting body 3. The light receiving body 4 may be configured to include a plurality of light receiving elements to which one light receiving element is assigned for each of the light emitting bodies 3, or an image pickup device such as a CCD.

【0010】この受光体4には演算処理部5が接続さ
れ、更に演算処理部5には演算結果を表示するための表
示部7(液晶表示器等の表示器及び駆動回路から成る)
が接続されている。また、発光体(受光素子)3の各々
にはシフトレジスタ6が接続され、このシフトレジスタ
6にも演算処理部5が接続されている。演算処理部5及
びシフトレジスタ6はケース1外に設置され、受光体4
及び発光体3との接続はケーブル或いはリード線を用い
て行われる。そして、図1に示す液面計は、図2に示す
ように、液体8Aを収容した槽8内の他の作業等の邪魔
にならない位置に立設される。
An arithmetic processing unit 5 is connected to the light receiving body 4, and a display unit 7 (comprising a display device such as a liquid crystal display and a drive circuit) for displaying the arithmetic result is further provided on the arithmetic processing unit 5.
Is connected. A shift register 6 is connected to each of the light emitters (light receiving elements) 3, and an arithmetic processing unit 5 is also connected to the shift register 6. The arithmetic processing unit 5 and the shift register 6 are installed outside the case 1, and the light receiving unit 4
And the connection with the light-emitting body 3 is performed using a cable or a lead wire. Then, as shown in FIG. 2, the liquid level gauge shown in FIG. 1 is erected at a position where it does not interfere with other work in the tank 8 containing the liquid 8A.

【0011】図3は発光体3と受光体4の配置関係を示
す説明図である。開口2は槽内の液の屈折率n2 に対し
てn1 の屈折率を有している。発光体3の各々から出射
した光は開口2の内面で屈折し、外面で反射し、再び内
面で屈折して受光体4に到達する。図4は本発明におけ
る出射光と受光体に対する入射光の関係を示す説明図で
ある。
FIG. 3 is an explanatory view showing the positional relationship between the light emitter 3 and the light receiver 4. The opening 2 has a refractive index n 1 with respect to the refractive index n 2 of the liquid in the tank. The light emitted from each of the light emitters 3 is refracted on the inner surface of the opening 2, reflected on the outer surface, refracted again on the inner surface, and reaches the light receiver 4. FIG. 4 is an explanatory diagram showing the relationship between the emitted light and the incident light with respect to the light receiver in the present invention.

【0012】物質DA (光屈折率nA )から物質D
B (光屈折率nB )、又は物質DC (光屈折率nA <n
B <nC )に光が入射するとき、その界面において、物
質DA からの入射角をθA 、屈折角をθB 、θC (0≦
θ≦0.25π)とするとき、次式が成立する。 nA sinθA =nB sinθB =nC sinθC ・・・(1) 光屈折率がnA <nB <nC の関係にあることから、次
式が成立する。 θA >θB >θC ・・・(2) また、物質DA から物質DB へ光が入射するときのエネ
ルギー反射率(ΓB )、物質DA から物質DC へ光が入
射するときのエネルギー反射率(ΓC )は、S偏向の場
合、次式が導かれる。 ΓBS=sin2 (θB −θA )/sin2 (θB +θA ) ΓCS=sin2 (θC −θA )/sin2 (θC +θA ) ・・・(3) また、P偏向の場合、次式が導かれる。 ΓBP=tan2 (θA −θB )/tan2 (θA +θB ) ΓCP=tan2 (θA −θC )/tan2 (θA +θC ) ・・・(4) 式(2),(3)及び式(4)から、 ΓBS+ΓBP<ΓCS+ΓCP ・・・(5) つまり、光屈折率の小さい物質に入射する光は、光屈折
率の大きい物質に入射する光に比べ、エネルギー反射率
は大きい。気体の光屈折率は、液体の光屈折率より小さ
いため、液面より下方の開口2での反射光に比べ、液面
より上方の開口2での反射光が多くなる。そのため、発
光体を1個づつ順番に点灯したときの受光強度は、図5
のようになる。受光強度が最も大きく変化する発光体3
の位置を液面であると判定する。この時のセンサ分解能
は発光体素子の幅になる。そして、受光強度が図6に示
すように、液面付近で3個以上の発光体が段階的に変化
するときは、分解能は発光素子の幅以下になる。
From the substance D A (optical refractive index n A ) to the substance D
B (optical refractive index n B ), or substance D C (optical refractive index n A <n
When light is incident on B <n C ), at the interface, the incident angle from the substance D A is θ A , the refraction angle is θ B , and θ C (0 ≦
When θ ≦ 0.25π), the following equation holds. n A sin θ A = n B sin θ B = n C sin θ C (1) Since the light refractive index has a relationship of n A <n B <n C , the following formula is established. θ A> θ B> θ C ··· (2) Further, the energy reflectance when light is incident from the substance D A to substance D B B), light is incident from the substance D A to substance D C In the case of S-deflection, the following equation is derived as the energy reflectance (Γ C ). Γ BS = sin 2B −θ A ) / sin 2B + θ A ) Γ CS = sin 2C −θ A ) / sin 2C + θ A ) (3) In the case of P deflection, the following equation is derived. Γ BP = tan 2A −θ B ) / tan 2A + θ B ) Γ CP = tan 2A −θ C ) / tan 2A + θ C ) ... (4) Equation ( From (2), (3) and equation (4), Γ BS + Γ BPCS + Γ CP (5) That is, the light incident on the substance having a small optical refractive index is incident on the substance having a large optical refractive index. The energy reflectance is higher than that of the light. Since the light refractive index of gas is smaller than that of liquid, the light reflected by the opening 2 above the liquid surface is larger than the light reflected by the opening 2 below the liquid surface. Therefore, the received light intensity when the light emitters are turned on one by one is shown in FIG.
become that way. Light emitter 3 whose received light intensity changes the most
The position of is determined to be the liquid surface. The sensor resolution at this time is the width of the light emitting element. Then, as shown in FIG. 6, when the intensity of received light is changed stepwise by three or more light emitters near the liquid surface, the resolution becomes less than the width of the light emitting element.

【0013】以上の構成において、演算処理部5によっ
てシフトレジスタ6を制御することにより、発光体3が
下側又は上側から順番に発光する。発光体3による光
は、槽内の油又は空気との界面の反射によって受光体4
に受光され、その受光量に応じた電気信号を出力する。
このとき、開口2の液面より下方位置で反射する光に比
べ、液面より上方の位置での反射は、反射光量が多くな
る。したがって、発光体3を一個づつ順に点灯したとき
の受光強度は図5のようになる。この電気信号は演算処
理部5に取り込まれ、受光強度が最も大きく変化する発
光体の位置を液面であると判定する。求められた液面レ
ベルは、演算処理部5に接続された表示部7にデジタル
表示される(なお、メータを用いたアナログ表示にする
こともできる)。
In the above structure, the light emitting element 3 emits light in order from the lower side or the upper side by controlling the shift register 6 by the arithmetic processing section 5. The light from the light emitter 3 is reflected by the interface with oil or air in the tank and is received by the light receiver 4.
The light is received by and is output as an electric signal according to the amount of light received.
At this time, the amount of reflected light at the position above the liquid surface is larger than the amount of light reflected at the position below the liquid surface of the opening 2. Therefore, the received light intensity when the light-emitting bodies 3 are turned on one by one is as shown in FIG. This electric signal is taken into the arithmetic processing unit 5, and the position of the light emitting body where the received light intensity changes most is determined to be the liquid surface. The obtained liquid surface level is digitally displayed on the display unit 7 connected to the arithmetic processing unit 5 (note that it may be an analog display using a meter).

【0014】なお、上記実施例では、ケース1の側壁に
開口2を設ける構成にしたが、窓状にせず、ケース1の
側壁を3面にし、1面全部に透明窓を備えた構成のケー
ス1を用いてもよい。また、上記の説明では、槽内の油
の液面を対象にしたが、本発明は槽内の液面測定に限定
されるものではなく、例えば、地中送電線路人孔内の監
視システムに適用することができる。
Although the opening 2 is provided in the side wall of the case 1 in the above embodiment, the side wall of the case 1 does not have a window shape, but the side wall of the case 1 has three sides, and a transparent window is provided on all sides. 1 may be used. Further, in the above description, the liquid level of the oil in the tank was targeted, but the present invention is not limited to the liquid level measurement in the tank, and for example, in a monitoring system in the underground hole of the underground power transmission line. Can be applied.

【0015】[0015]

【発明の効果】以上より明らかな如く、本発明によれ
ば、槽内に発光体及び受光体を設置し、両者を直接に対
峙させず、液体を反射体にして間接的に液体の有無に伴
う受光変化を検出するようにしたため、ガラスゲージを
用いることなく液面レベルの計測を行うことができ、槽
の構造に関係なく液面計測を行うことができる。
As is apparent from the above, according to the present invention, the light-emitting body and the light-receiving body are installed in the tank, and the two are not directly confronted with each other, and the liquid is used as a reflector to indirectly detect the presence or absence of the liquid. Since the change in the received light is detected, the liquid level can be measured without using a glass gauge, and the liquid level can be measured regardless of the structure of the tank.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明による液面計の実施の一形態を示す斜視
図である。
FIG. 1 is a perspective view showing an embodiment of a liquid level gauge according to the present invention.

【図2】図1の液面計の槽内への設置状況を示す説明図
である。
FIG. 2 is an explanatory diagram showing the installation status of the liquid level gauge of FIG. 1 in a tank.

【図3】本発明における発光体と受光体の配置関係を示
す説明図である。
FIG. 3 is an explanatory diagram showing an arrangement relationship between a light emitter and a light receiver in the present invention.

【図4】本発明における出射光と受光体に対する入射光
の関係を示す説明図である。
FIG. 4 is an explanatory diagram showing a relationship between emitted light and incident light with respect to a photoreceptor in the present invention.

【図5】発光体の位置と総受光量の関係を示す特性図で
ある。
FIG. 5 is a characteristic diagram showing the relationship between the position of a light emitter and the total amount of received light.

【図6】液面付近で3個以上の発光体が段階的に変化し
た状態を示す特性図である。
FIG. 6 is a characteristic diagram showing a state in which three or more light emitters are gradually changed near the liquid surface.

【図7】従来の液面計の構成を示すブロック図である。FIG. 7 is a block diagram showing a configuration of a conventional liquid level gauge.

【符号の説明】[Explanation of symbols]

1 ケース 2 開口 3 発光体 3-1〜3-n 発光素子 4 受光体 5 演算処理表示部 6 シフトレジスタ 7 表示部 8 槽DESCRIPTION OF SYMBOLS 1 case 2 opening 3 light-emitting body 3 -1 to 3- n light-emitting element 4 light-receiving body 5 arithmetic processing display section 6 shift register 7 display section 8 tank

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 槽内の液体の液面レベルを光学的に測定
する液面計において、 垂直方向に連続的に配設された複数個の発光素子を備
え、前記槽内に立設される発光体と、 前記槽内の前記発光体の近傍に立設され、前記槽内の気
体および液体で反射してくる前記発光体の前記発光素子
よりの光を受光する受光体と、 前記発光体の前記発光素子を所定の順序で発光させ、そ
のときの前記受光体の受光状態に基づいて前記槽内の液
面レベルを検出する検出手段とを具備することを特徴と
する液面計。
1. A liquid level meter for optically measuring the liquid level of a liquid in a tank, comprising a plurality of light emitting elements continuously arranged in a vertical direction, and standing upright in the tank. A light-emitting body, a light-receiving body standing near the light-emitting body in the tank and receiving light from the light-emitting element of the light-emitting body reflected by gas and liquid in the tank, and the light-emitting body 2. A liquid level gauge, comprising: a light emitting device that emits light in a predetermined order, and a detection unit that detects the liquid level in the tank based on the light receiving state of the light receiver at that time.
JP24018095A 1995-09-19 1995-09-19 Liquid-level meter Pending JPH0989631A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24018095A JPH0989631A (en) 1995-09-19 1995-09-19 Liquid-level meter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24018095A JPH0989631A (en) 1995-09-19 1995-09-19 Liquid-level meter

Publications (1)

Publication Number Publication Date
JPH0989631A true JPH0989631A (en) 1997-04-04

Family

ID=17055666

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24018095A Pending JPH0989631A (en) 1995-09-19 1995-09-19 Liquid-level meter

Country Status (1)

Country Link
JP (1) JPH0989631A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008006293A (en) * 2006-06-28 2008-01-17 Alcon Inc Surgery system, fluid level detecting system, fluid level measuring method, and method for measuring presence of fluid

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008006293A (en) * 2006-06-28 2008-01-17 Alcon Inc Surgery system, fluid level detecting system, fluid level measuring method, and method for measuring presence of fluid

Similar Documents

Publication Publication Date Title
US6668645B1 (en) Optical fuel level sensor
US7497021B2 (en) Multi-axis bubble vial device
US8072594B1 (en) Liquid level sensor
US4936151A (en) Paddle-wheel type flow meter
TWI536210B (en) Method of estimating motion with optical lift detection
CN105333862B (en) Measure the device and method of air level bubble position and the air level comprising the equipment
US5761818A (en) Digital inclinometer
US4947692A (en) Apparatus for detecting positional changes in relation to a vertical reference direction in buildings or in building subsoil
KR102421133B1 (en) Pipeline inspection system including an intelligent pipeline inspection robot equipped with an infrared sensor and a gyroscope sensor
US6795598B1 (en) Liquid-level sensor having multiple solid optical conductors with surface discontinuities
JPH0989631A (en) Liquid-level meter
US10234547B2 (en) Sensor with oblique-angle display
US6166630A (en) Wireless fuel gauge
JPH1151861A (en) Apparatus for measuring concentration of liquid
KR100894977B1 (en) Hydrograph apparatus in use binocular disparity
JP2001153697A (en) Area type flowmeter
CN219434046U (en) Visual automatic inspection equipment for photoelectric measuring instrument
JP2825866B2 (en) Liquid concentration sensor
TWI583986B (en) Photoelectric diagonal material detection device
JPH0648194B2 (en) Inclination detector
JP2019113772A (en) Screen luminance detection device and screen luminance detection method for display
JPS5925192B2 (en) Snowfall measuring device
JP3134219B2 (en) Liquid level detector
JPS5938523B2 (en) liquid level detector
JPS6044611B2 (en) liquid level detector