JPS5925192B2 - Snowfall measuring device - Google Patents

Snowfall measuring device

Info

Publication number
JPS5925192B2
JPS5925192B2 JP2673180A JP2673180A JPS5925192B2 JP S5925192 B2 JPS5925192 B2 JP S5925192B2 JP 2673180 A JP2673180 A JP 2673180A JP 2673180 A JP2673180 A JP 2673180A JP S5925192 B2 JPS5925192 B2 JP S5925192B2
Authority
JP
Japan
Prior art keywords
light
snow
snowfall
photoelectric
photoelectric elements
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP2673180A
Other languages
Japanese (ja)
Other versions
JPS56124075A (en
Inventor
忠一 下村
宣悦 山崎
藤樹 下山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sakata Denki Co Ltd
Original Assignee
Sakata Denki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sakata Denki Co Ltd filed Critical Sakata Denki Co Ltd
Priority to JP2673180A priority Critical patent/JPS5925192B2/en
Publication of JPS56124075A publication Critical patent/JPS56124075A/en
Publication of JPS5925192B2 publication Critical patent/JPS5925192B2/en
Expired legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01WMETEOROLOGY
    • G01W1/00Meteorology
    • G01W1/14Rainfall or precipitation gauges

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Hydrology & Water Resources (AREA)
  • Engineering & Computer Science (AREA)
  • Atmospheric Sciences (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Ecology (AREA)
  • Environmental Sciences (AREA)
  • Measurement Of Levels Of Liquids Or Fluent Solid Materials (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Description

【発明の詳細な説明】 本発明は光電素子を用いた積雪量測定器の改良に関する
ものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an improvement in a snow amount measuring device using a photoelectric element.

従来一般に用いられる積雪量測定方式には、柱上の一定
高度から雪上面までワイヤーで吊り下げた板を降し、そ
の下降距離を測定して基準高度からの差を求め、積雪量
を知る機械的方式と、一定高度から雪上面に向けて超音
波を発射し、雪上面からの反射波が戻るまでの時間を測
定することによって雪上面までの距離を測定し、基準高
度との差から積雪量を求める超音波測定方式、あるいは
柱を2本立て、その一方の柱に竪方向一定間隔で発光素
子を設け、他方の柱の対応する位置に同数の受光素子を
設けて、発光時に受光する素子数を計数することによっ
て、積雪量を測定する等、種種の方式が考案されている
The conventional snowfall measuring method generally used involves a machine that lowers a board suspended from a wire from a fixed altitude on a pole to the snow surface, measures the descending distance, calculates the difference from the reference altitude, and calculates the snowfall amount. The distance to the snow surface is measured by emitting ultrasonic waves from a certain altitude toward the snow surface and measuring the time it takes for the reflected waves from the snow surface to return, and the snow accumulation is determined from the difference from the reference altitude. An ultrasonic measurement method to determine the amount of light, or an element that receives light when emitting light, by setting up two pillars and installing light emitting elements at regular intervals in the vertical direction on one of the pillars, and installing the same number of light receiving elements at corresponding positions on the other pillar. Various methods have been devised, such as measuring the amount of snow by counting the number of snowfalls.

又周囲外光を利用する方法としては、竪−列に並べた光
電素子の夫々の受光面を外方向に向けたセンサー列等を
用いて積雪量を測定する方式もある。
As a method of utilizing ambient external light, there is also a method of measuring the amount of snow by using a sensor array or the like in which photoelectric elements arranged in a vertical row have their respective light-receiving surfaces facing outward.

前記機械的方式は、新雪の場合、軟かい雪面を正確に検
出することができず、前記超音波方式は雪の見掛の密度
のばらつきから反射にひろがりを生じ、反射面の高さを
充分に測定することができないため、積雪量を正確に測
定することができなかった。
In the case of fresh snow, the mechanical method cannot accurately detect the soft snow surface, and the ultrasonic method causes the reflection to spread due to variations in the apparent density of the snow, making it difficult to detect the height of the reflective surface. Due to insufficient measurements, it was not possible to accurately measure the amount of snowfall.

又、積雪時に測定するとき、特に吹雪の際などには、上
記いづれの方式でも積雪量の測定が困難になる。
Furthermore, when measuring during snowfall, especially during a snowstorm, it becomes difficult to measure the amount of snowfall using any of the above methods.

前記周囲外光を利用し、センサー列による積雪量を測定
する方式は吹雪でないとき、第2図の如く受光面を水平
方向に向け、光の雪面反射光雪中透過光の両方を利用し
て測定することにより、新雪に対しても測定可能であり
、前記他の方式に比べても誤差が少ない利点がある。
The method of measuring the amount of snow with a sensor array using ambient external light, when there is no snowstorm, aims the light receiving surface in the horizontal direction as shown in Figure 2, and uses both the light reflected from the snow surface and the light transmitted through the snow. By performing measurements on fresh snow, this method has the advantage of having fewer errors than the other methods mentioned above.

しかし吹雪の場合にはセンサー面に雪が付着して光を遮
きり測定が困難になるおそれがあった。
However, in the case of a snowstorm, snow may adhere to the sensor surface and block light, making measurements difficult.

又夜間の外光は昼間に比べ暗いので、効率よく受光しな
いと積雪量の測定が困難になるおそれがあった。
Furthermore, since the outside light at night is darker than during the day, there is a risk that it will be difficult to measure the amount of snowfall unless the light is received efficiently.

この発明は上述の点を解決するものであって光電素子又
はセンサーを収容した透明管の表面に吹雪などによって
雪が付着して外光を遮きっても積雪量の測定が不正確に
ならないようにすることである。
This invention solves the above-mentioned problem, and is designed to prevent inaccurate measurement of snowfall amount even if snow adheres to the surface of the transparent tube housing the photoelectric element or sensor due to a snowstorm and blocks external light. It is to be.

他の目的は受光素子を増すことな(外光だけで夜間の測
定を可能にすることである。
Another purpose is to enable measurements at night using only external light without increasing the number of light-receiving elements.

この発明を添付図面によって説明すると、地表面Gに植
立した竪長の透明管2の内部に受光面mを下方に向けた
複数の光電素子Mを相互間に一定間隔をあけて竪−列に
配設し、該複数の光電素子Mの最上位に基準用光電素子
Rを設け、該光電素子のそれぞれを比較回路4に接続し
、更に計数回路6を介して表示器8に接続した積雪量測
定器である。
To explain this invention with reference to the accompanying drawings, a plurality of photoelectric elements M with light receiving surfaces m facing downward are arranged in a vertical row inside a vertical transparent tube 2 planted on the ground surface G with a constant interval between them. A reference photoelectric element R is provided at the top of the plurality of photoelectric elements M, each of the photoelectric elements is connected to a comparison circuit 4, and further connected to an indicator 8 via a counting circuit 6. It is a quantity measuring instrument.

又前記複数の光電素子Mの数を上下各1個とし、前記表
示器として警報装置を用いることができる。
Further, the number of the plurality of photoelectric elements M may be one each on the upper and lower sides, and an alarm device may be used as the indicator.

1は積雪表面、Hは積雪深さである。1 is the snow surface and H is the snow depth.

矢印A1は雪面反射光の光路、他の矢印A2は雪中透過
光の行路を示し、7はDA変換回路である。
Arrow A1 indicates the optical path of light reflected from the snow surface, another arrow A2 indicates the path of light transmitted through the snow, and 7 is a DA conversion circuit.

1aは吹雪などによって透明管2の下部に雪が付着して
形成する大兄の曲面を示す。
1a shows a large curved surface formed when snow adheres to the lower part of the transparent tube 2 due to a snowstorm or the like.

第2図は、従来例であり、その光電素子Mは竪方向の一
列をなし、その受光面は透明管2の内壁に対面するよう
に配設されである。
FIG. 2 shows a conventional example, in which photoelectric elements M are arranged in a vertical line, and their light-receiving surfaces face the inner wall of the transparent tube 2.

図中の第1図と同じ図面符号の部分は、その名称及び機
能も同様である。
The parts in the figure having the same drawing numbers as in FIG. 1 have the same names and functions.

本発明は上述の通りであって竪−列の光電素子Mの受光
面mを下方に向けて配設し、その最上位に位置する光電
素子Rの出力を比較回路40基準入力として、その下方
に連なる各光電素子Mの出力と比較し、積雪の有無を判
断することによって、積雪量を測定する。
The present invention is as described above, and the light-receiving surfaces m of the vertical rows of photoelectric elements M are arranged facing downward, and the output of the photoelectric element R located at the top thereof is used as the reference input of the comparator circuit 40. The amount of snowfall is measured by comparing the outputs of the photoelectric elements M connected to each other and determining the presence or absence of snowfall.

上記各光電素子の受光面mに透明管の全側面より外光が
一様に効率よく入射し透明管の一側面に付着する雪によ
ってその側面の外光が減光されても他の側面から入射す
る外光によって積雪の有無を判断し積雪量測定ミスの発
生を防ぐ。
External light is uniformly and efficiently incident on the light-receiving surface m of each photoelectric element from all sides of the transparent tube, and even if the external light on that side is attenuated by snow adhering to one side of the transparent tube, it will not be reflected from other sides. Prevents errors in measuring the amount of snow by determining the presence or absence of snow based on incident external light.

この発明は、光電素子Mを最上位の基準用光電素子Rの
下方に竪−列に設け、それぞれの受光面を下方に向けた
から、該光電素子を収容する透明管2の外壁の一方の側
面に雪が付着して光を遮っても他方の側面から光を受け
ることができて、積雪量測定への影響をなくし、積雪量
の測定ミスを防ぐことができる。
In this invention, the photoelectric elements M are arranged in a vertical row below the reference photoelectric element R at the top, and each light-receiving surface is directed downward. Even if snow adheres to one side and blocks the light, light can still be received from the other side, eliminating any effect on snowfall measurement and preventing errors in snowfall measurement.

又積雪表面は上方からの光をよく反射し、受光面を下に
向けた光電素子は全側面から受光するので、受光量が従
来例に比べ増大し、光電素子を増すことなく外光のみで
夜間の測定ができる。
In addition, the snow surface reflects light well from above, and the photoelectric element with its light-receiving surface facing downward receives light from all sides, so the amount of light received is increased compared to the conventional example, and it is possible to use only external light without increasing the number of photoelectric elements. Measurements can be taken at night.

又上下各1個の光電素子を用いて、上の光電素子を基準
とし、下の光電素子の出力と比較することにより、降雪
の有無を検出し、降雪警報を発することもできる。
Furthermore, by using one photoelectric element each on the upper and lower sides and comparing the output of the upper photoelectric element with the output of the lower photoelectric element, it is possible to detect the presence or absence of snowfall and issue a snowfall warning.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施例の断面図、第2図は従来例の断
面図である。 2・・・・・・透明管、M・・・・・・光電素子、R・
・・・・・基準用光電素子、m・・・・・・受光面、4
・・・・・・比較回路、6・・・・・・計数回路、8・
・・・・・表示器。
FIG. 1 is a sectional view of an embodiment of the present invention, and FIG. 2 is a sectional view of a conventional example. 2...Transparent tube, M...Photoelectric element, R.
...Reference photoelectric element, m... Light receiving surface, 4
... Comparison circuit, 6 ... Counting circuit, 8.
·····display.

Claims (1)

【特許請求の範囲】 1 地表Gに植立した竪長の透明管2の内部に、受光面
を下方に向けた複数の光電素子Mを、相互間に一定間隔
をあけて竪−列に配設し、該複数列の光電素子Mの最上
位に基準用光電素子Rを設け、該光電素子のそれぞれを
比較回路4に接続し、計数回路6を介して表示器8に接
続したことを特徴とする積雪量測定器。 2 前記複数の光電数Mの数を上下各−個とし、前記表
示器として警報装置を用いることを特徴とする特許請求
の範囲第1項記載の積雪量測定器。
[Claims] 1. Inside a vertical transparent tube 2 planted on the ground surface G, a plurality of photoelectric elements M with their light-receiving surfaces facing downward are arranged in a vertical row with a constant interval between them. A reference photoelectric element R is provided at the top of the plurality of rows of photoelectric elements M, and each of the photoelectric elements is connected to a comparison circuit 4 and connected to a display 8 via a counting circuit 6. A snowfall measurement device. 2. The snow amount measuring device according to claim 1, characterized in that the number of the plurality of photoelectrons M is set to - in each of the upper and lower sides, and an alarm device is used as the indicator.
JP2673180A 1980-03-05 1980-03-05 Snowfall measuring device Expired JPS5925192B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2673180A JPS5925192B2 (en) 1980-03-05 1980-03-05 Snowfall measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2673180A JPS5925192B2 (en) 1980-03-05 1980-03-05 Snowfall measuring device

Publications (2)

Publication Number Publication Date
JPS56124075A JPS56124075A (en) 1981-09-29
JPS5925192B2 true JPS5925192B2 (en) 1984-06-15

Family

ID=12201451

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2673180A Expired JPS5925192B2 (en) 1980-03-05 1980-03-05 Snowfall measuring device

Country Status (1)

Country Link
JP (1) JPS5925192B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS622485A (en) * 1985-06-27 1987-01-08 松下電器産業株式会社 Surface heater
JPH0423458U (en) * 1990-06-22 1992-02-26
JPH0682559B2 (en) * 1986-12-01 1994-10-19 松下電器産業株式会社 Surface heater manufacturing method

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2542598C1 (en) * 2013-08-01 2015-02-20 Федеральное государственное бюджетное учреждение науки Институт мониторинга климатических и экологических систем Сибирского отделения Российской академии наук (ИМКЭС СО РАН) Snow cover height sensor

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS622485A (en) * 1985-06-27 1987-01-08 松下電器産業株式会社 Surface heater
JPH0682559B2 (en) * 1986-12-01 1994-10-19 松下電器産業株式会社 Surface heater manufacturing method
JPH0423458U (en) * 1990-06-22 1992-02-26

Also Published As

Publication number Publication date
JPS56124075A (en) 1981-09-29

Similar Documents

Publication Publication Date Title
JP6460118B2 (en) Water volume measuring device and water volume monitoring system
US5748091A (en) Fiber optic ice detector
EP2972471B1 (en) Lidar scanner
CA1232154A (en) Fluid flowmeter
GB1430426A (en) Apparatus and methods for measuring the distance between reflective surfaces eg of transparent material
CN107402061A (en) Resonant mode scanning mirror amplitude measurement system and method
JPS5925193B2 (en) Snowfall measuring device
Takagi et al. Development of a noncontact liquid level measuring system using image processing
JPS5925192B2 (en) Snowfall measuring device
US5065624A (en) Installations for measuring liquid depth
GB2147697A (en) Level measurement method and apparatus
CN105606034A (en) Glass thickness detection apparatus and glass thickness detection method
JPH1184024A (en) Snowfall sensor
JPH04116424A (en) Apparatus for measuring depth of snow pall
EP0780683A2 (en) Apparatus for dewpoint determination
RU2725528C1 (en) Ultrasonic 3d anemometer with functioning control channel
US4926042A (en) Method of and device for detecting light receiving position utilizing optical fibers
SU922596A1 (en) Device for measuring dimensions of moving suspended particles
CN110082843A (en) A kind of weak reflection fiber grating rainfall gauge of the siphonic of sloping float formula and rainfall gauge array
RU97119005A (en) METHOD FOR DETECTING CLOUD LAYERS AND DETERMINING THE HEIGHT OF THEIR LOWER BOUNDARY
JPS6232403B2 (en)
RU208178U1 (en) A device for identifying people with an increased body temperature
JP2858371B2 (en) Landslide detection device
SU1260683A1 (en) Device for remote measurement of thickness and distance
JPH0318895Y2 (en)