JPH0989480A - Heat pipe - Google Patents

Heat pipe

Info

Publication number
JPH0989480A
JPH0989480A JP7244412A JP24441295A JPH0989480A JP H0989480 A JPH0989480 A JP H0989480A JP 7244412 A JP7244412 A JP 7244412A JP 24441295 A JP24441295 A JP 24441295A JP H0989480 A JPH0989480 A JP H0989480A
Authority
JP
Japan
Prior art keywords
heat pipe
laser
heat
compressed
end side
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7244412A
Other languages
Japanese (ja)
Inventor
Sukeyuki Kikuchi
祐行 菊地
Suemi Tanaka
末美 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Original Assignee
Furukawa Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd filed Critical Furukawa Electric Co Ltd
Priority to JP7244412A priority Critical patent/JPH0989480A/en
Publication of JPH0989480A publication Critical patent/JPH0989480A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D15/00Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
    • F28D15/02Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes
    • F28D15/0283Means for filling or sealing heat pipes

Abstract

PROBLEM TO BE SOLVED: To provide a heat pipe with relatively small diameter which is suitable for a heat sink of electronic device and has improved airtightness and productivity. SOLUTION: At least one end 12 of a heat pipe 10, with its opposite ends sealed, is compressed, which compressed end 13 is cut off by fusing it and sealed. As a result, the cut part can be melted by the heat of laser and hence sealing can be effected in a stable condition. In the cutting by laser, positioning of cut part can be easily made and cutting and sealing can be simultaneously effected so that productivity can be improved.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、電子機器のヒート
シンク等に好適な、気密性及び生産性に優れた、比較的
細径のヒートパイプに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a heat pipe having a relatively small diameter, which is suitable for heat sinks of electronic devices and has excellent airtightness and productivity.

【0002】[0002]

【従来の技術】ヒートパイプは、減圧した金属パイプの
内部に水等の作動液を入れ、一方を加熱すると作動液が
蒸気となって他方に流れ、そこで放熱して液体となり、
この液体が金属パイプ内に配したウイックの毛管現象等
により加熱部に戻り熱を伝導する熱良導体で、従来よ
り、発熱部材の冷却等に使用されている。ところで、近
年、IC、LSIの小型化により、それらを取付けた基
板の発熱量が増大し、その放熱にヒートパイプを利用す
る技術開発が活発に進められている。このような基板の
冷却には、外径3mmφ程度の比較的細径のヒートパイプ
を基板に熱的に接続し、基板全体に放熱させる方法がと
られている。
2. Description of the Related Art A heat pipe is a depressurized metal pipe in which a working fluid such as water is put, and when one is heated, the working fluid becomes vapor and flows to the other, where it radiates heat and becomes a liquid.
This liquid is a good thermal conductor that returns to the heating portion and conducts heat due to the capillary phenomenon of the wick arranged in the metal pipe, and has been conventionally used for cooling heat generating members. By the way, in recent years, due to the miniaturization of ICs and LSIs, the amount of heat generated by the substrates on which they are mounted has increased, and technological development using heat pipes for heat dissipation thereof has been actively promoted. To cool such a substrate, a method is used in which a heat pipe having a relatively small outer diameter of about 3 mmφ is thermally connected to the substrate to radiate heat to the entire substrate.

【0003】このようなヒートパイプは、図7に例示す
る方法により製造されている。即ち、金属パイプを所定
の長さに切断し、片端側21をTIG溶接により封止した
後、他端側22から作動液を注入し、内部を脱気しつつ、
他端側22を超音波接合により封止し(図7イ)、次いで
超音波接合部26の中央を機械的に切断し(図7ロ)、更
に切断部分をスウェージング加工して断面円形に成形す
る(図7ハ)。ヒートパイプは、断面円形のものが多い
が、スペースの制約から、図8イ、ロに示すように、ヒ
ートパイプ20の全長或いは一部分を偏平状に成形して使
用する場合も多くなっている。
Such a heat pipe is manufactured by the method illustrated in FIG. That is, the metal pipe is cut into a predetermined length, the one end side 21 is sealed by TIG welding, and then the working fluid is injected from the other end side 22 to deaerate the inside,
The other end side 22 is sealed by ultrasonic bonding (Fig. 7A), then the center of the ultrasonic bonding portion 26 is mechanically cut (Fig. 7B), and the cut portion is swaged into a circular cross section. Mold (FIG. 7C). Most heat pipes have a circular cross section, but due to space limitations, as shown in FIGS. 8A and 8B, the heat pipe 20 is often used by molding the entire length or a part thereof into a flat shape.

【0004】[0004]

【発明が解決しようとする課題】前述の超音波接合は、
金属製パイプをアンビルとホーンの工具で挟んで固定し
て行うが、これら工具は相対的な位置の設定が極めて困
難なばかりか、前記工具は超音波振動でクラックが発生
して長期間使用できないという問題があった。又超音波
接合では固相圧接される為、溶接条件の微妙な変動によ
り溶接不良が発生し製造歩留まりが低かった。このよう
なことから、本発明者等は、ヒートパイプの封止方法を
種々探索し、ヒートパイプの圧縮部をレーザーにより溶
断すると、溶断面が溶融して良好な気密性が得られるこ
とを知見し、更に検討を重ねて本発明を完成するに至っ
た。本発明は、気密性及び生産性に優れた、比較的細径
のヒートパイプの提供を目的とする。
The above-mentioned ultrasonic bonding is
It is done by sandwiching and fixing a metal pipe with a tool of an anvil and a horn, but it is extremely difficult to set the relative position of these tools, and the tool is cracked by ultrasonic vibration and cannot be used for a long time There was a problem. Further, in ultrasonic bonding, solid-phase pressure welding is performed, so that welding defects occur due to subtle variations in welding conditions, and the manufacturing yield is low. From these things, the present inventors have searched various sealing methods for heat pipes, and found that when the compressed portion of the heat pipe is melt-cut by a laser, the melted surface is melted and good airtightness is obtained. Then, after further study, the present invention was completed. An object of the present invention is to provide a heat pipe having a relatively small diameter, which is excellent in airtightness and productivity.

【0005】[0005]

【課題を解決するための手段】本発明は、両端が封止さ
れたヒートパイプの少なくとも一端側が圧縮され、前記
圧縮部がレーザーにより溶断されて封止されていること
を特徴とするヒートパイプである。
According to the present invention, there is provided a heat pipe characterized in that at least one end side of a heat pipe whose both ends are sealed is compressed, and the compressed portion is melted and sealed by a laser. is there.

【0006】本発明では、ヒートパイプの少なくとも一
端側を圧縮し、前記圧縮部をレーザーにより溶断するの
で、溶断面がレーザーの熱により溶融し、溶断部が良好
に安定して気密化され、製造歩留りが向上する。更に、
レーザー溶断では、位置決めの為の工具が不要で生産性
に優れ、更に切断と封止が同時になされるので工程が短
縮される。レーザーは、部分的に急速溶融、急冷が可能
であり、他の部分に熱的な負荷を与えることがない。レ
ーザーには、例えば、YAGレーザー、炭酸ガスレーザ
ー等が適用できる。本発明は、金属パイプに水等の熱媒
体を真空封入した任意のヒートパイプに適用できる。金
属パイプ内面にグルーブが形成されたヒートパイプ、或
いは金属パイプ内に、ワイヤー、ワイヤーメッシュ等の
ウィックを配したヒートパイプも含まれる。
In the present invention, at least one end side of the heat pipe is compressed, and the compressed portion is melt-cut by the laser. Therefore, the melted surface is melted by the heat of the laser, and the melted portion is satisfactorily and stably airtightly manufactured. Yield is improved. Furthermore,
Laser fusing does not require positioning tools and is highly productive. Furthermore, cutting and sealing are performed at the same time, which shortens the process. The laser is capable of rapid melting and quenching in a part, and does not apply a thermal load to other parts. As the laser, for example, a YAG laser, a carbon dioxide gas laser or the like can be applied. The present invention can be applied to any heat pipe in which a heat medium such as water is vacuum sealed in a metal pipe. A heat pipe in which a groove is formed on the inner surface of the metal pipe, or a heat pipe in which a wick such as a wire or a wire mesh is arranged in the metal pipe is also included.

【0007】[0007]

【発明の実施の形態】図1〜図6は、本発明のヒートパ
イプの態様を示すそれぞれ説明図である。図1に示すヒ
ートパイプは、ヒートパイプ10の片端側11がTIG溶接
により封止され、他端側12が絞り加工により円錐状に圧
縮され、その圧縮部13の端部(本体寄り)がレーザーに
より溶断されている。図で14はレーザーによる溶断部で
ある。図2に示すヒートパイプは、ヒートパイプ10の片
端側11も絞り加工により円錐状に圧縮され、前記圧縮部
13の端部がレーザーにて溶断されている。
1 to 6 are explanatory views showing aspects of a heat pipe of the present invention. In the heat pipe shown in FIG. 1, one end side 11 of the heat pipe 10 is sealed by TIG welding, the other end side 12 is compressed into a conical shape by drawing, and the end of the compression part 13 (close to the main body) is a laser. It has been fused by. In the figure, 14 is a laser fusing part. In the heat pipe shown in FIG. 2, one end side 11 of the heat pipe 10 is also conically compressed by drawing,
The edges of 13 are fused by laser.

【0008】図1に示したヒートパイプは、例えば、次
のようにして製造される。押出加工等の方法により作製
した金属パイプを所定長さに切断し、片端をTIG溶接
により封止し、他端側からウイック(ワイヤー等)を挿
入し、作動液を注入し、次いで金属パイプ内を脱気しつ
つ、金属パイプの他端側を絞り加工により円錐状に圧縮
加工し、この圧縮部をレーザーにより溶断する。溶断面
が溶融して金属パイプ内は真空に封止される。図2に示
したヒートパイプは、金属パイプの前記片端側も、圧縮
し、圧縮部をレーザーで溶断して製造したものである。
図1、2に示したヒートパイプは、両端部が円錐状に形
成されているため、断面を円形にスウェージング加工す
る等の必要がなく製造コストの低減が図れる。
The heat pipe shown in FIG. 1 is manufactured, for example, as follows. Cut a metal pipe made by a method such as extrusion to a predetermined length, seal one end by TIG welding, insert a wick (wire etc.) from the other end side, inject a working liquid, then in the metal pipe While degassing, the other end of the metal pipe is compressed into a conical shape by drawing, and this compressed portion is melt-cut by a laser. The melted surface is melted and the inside of the metal pipe is sealed in vacuum. The heat pipe shown in FIG. 2 is manufactured by compressing the one end side of the metal pipe and fusing the compressed portion with a laser.
Since the heat pipe shown in FIGS. 1 and 2 is formed in a conical shape at both ends, it is not necessary to swage the cross section into a circular shape and the manufacturing cost can be reduced.

【0009】図3に示すヒートパイプは、ヒートパイプ
10の片端側11がTIG溶接により封止され、作動液を注
入する他端側12がプレス成形により板状に圧縮され、こ
の圧縮部33がレーザーにより長さ方向に対して直角に溶
断されている。
The heat pipe shown in FIG. 3 is a heat pipe.
One end side 11 of 10 is sealed by TIG welding, the other end side 12 into which the working fluid is injected is compressed into a plate shape by press molding, and this compression portion 33 is fused by a laser at a right angle to the longitudinal direction. There is.

【0010】図4に示すヒートパイプは、ヒートパイプ
10の片端側11がTIG溶接により封止され、作動液を注
入する他端側12がプレス成形により板状に圧縮され、そ
の圧縮部33の端部がレーザーにより、略円弧状に溶断さ
れている。
The heat pipe shown in FIG. 4 is a heat pipe.
One end side 11 of 10 is sealed by TIG welding, the other end side 12 into which the hydraulic fluid is injected is compressed into a plate shape by press molding, and the end portion of the compressed portion 33 is fused by a laser in a substantially arc shape. There is.

【0011】図5に示すヒートパイプは、ヒートパイプ
10の片端側11もプレス成形により板状に圧縮され、圧縮
部33の端部がレーザーにより略円弧状に溶断されてい
る。
The heat pipe shown in FIG. 5 is a heat pipe.
The one end side 11 of 10 is also compressed into a plate shape by press molding, and the end of the compression portion 33 is fused by a laser in a substantially arc shape.

【0012】図6に示すヒートパイプは、作動液を注入
する他端側12がプレス成形により板状に圧縮され、この
圧縮部33の所定箇所がレーザーにより溶融されており、
この溶融部分15の先がレーザーにより溶断されている。
前記溶融部分15ではヒートパイプ内面の接触面が熱融着
している。この溶融部分によりヒートパイプ10は二重に
気密化され、高い信頼性が得られる。前記溶融は、ヒー
トパイプ内面の接触面のみに行っても良いが、厚さ方向
全体を溶融させた方が確実に気密化できる。
In the heat pipe shown in FIG. 6, the other end 12 into which the working fluid is injected is compressed into a plate shape by press molding, and a predetermined portion of this compression portion 33 is melted by a laser.
The tip of the molten portion 15 is blown by a laser.
In the melting portion 15, the contact surface on the inner surface of the heat pipe is heat-sealed. The heat pipe 10 is doubly airtight by the molten portion, and high reliability is obtained. The melting may be performed only on the contact surface on the inner surface of the heat pipe, but melting the entire thickness direction ensures reliable airtightness.

【0013】本発明において、ヒートパイプの圧縮が不
十分だと、圧縮部に作動液が残存して溶断が不完全に行
われ気密不良の原因になる。従って圧縮部の厚さ(又は
径)は、ヒートパイプの肉厚の2倍より若干小さくする
ことが望ましい。しかし余り薄く(又は細く)すると、
圧縮端部(圧縮部と本体の境界部)にクラックが入った
りするので注意する必要がある。圧縮圧力はパイプの材
質、肉厚、或いは成型後の厚さ(径)等にもよるが、例
えば銅の場合 0.2MPa程度以上必要である。溶断部の
溶融長さ(例えば図3のL)が短いと、高温で使用する
場合等に内圧が上昇して溶断部の気密性が低下する。従
って前記溶融長さは20μm以上にするのが望ましい。し
かし余り長くしてもその気密効果は飽和し、又コスト的
にも不利なので、最大1mm程度に留めるのが良い。
In the present invention, if the compression of the heat pipe is insufficient, the working fluid remains in the compression section and the melting is incompletely performed, which causes poor airtightness. Therefore, it is desirable that the thickness (or diameter) of the compressed portion be slightly smaller than twice the wall thickness of the heat pipe. However, if it is too thin (or thin),
It should be noted that the compression end (the boundary between the compression part and the main body) may crack. The compression pressure depends on the material of the pipe, the wall thickness, or the thickness (diameter) after molding, but in the case of copper, for example, about 0.2 MPa or more is necessary. If the melting length of the fusing part (for example, L in FIG. 3) is short, the internal pressure rises and the airtightness of the fusing part deteriorates when used at high temperature. Therefore, it is desirable that the melting length is 20 μm or more. However, if the length is too long, the airtight effect will be saturated, and it will be disadvantageous in terms of cost.

【0014】図1〜6に示したヒートパイプは、断面円
形のものであるが、本発明のヒートパイプは、図8に示
したように、ヒートパイプ全体、或いは一部を偏平状に
成形して使用しても、気密性が損なわれることは殆どな
い。本発明のヒートパイプを製造するにあたり、金属パ
イプは、通常、長尺のまま矯正機を通過させたて直線状
に成形し、その後、脱脂、脱酸処理を施してから所定長
さに切断され、ヒートパイプに加工される。ここで、長
尺の金属パイプを連続的に供給し、切断や封止等の一連
の処理を連続して行えば、製造コストの低減が計れる。
図3〜6に示したヒートパイプは封止部が偏平状である
が、封止部をスウェージング加工して断面を円形に成形
することもできる。又ヒートパイプの表面にNiやCr
等のメッキを施すこともできる。
Although the heat pipe shown in FIGS. 1 to 6 has a circular cross section, the heat pipe of the present invention is formed by flattening the whole or a part of the heat pipe as shown in FIG. The airtightness is hardly impaired even when used as In producing the heat pipe of the present invention, a metal pipe is usually passed through a straightening machine as it is and formed into a straight line, and then degreased and deoxidized, and then cut into a predetermined length. , Processed into heat pipe. Here, if a long metal pipe is continuously supplied and a series of processes such as cutting and sealing are continuously performed, the manufacturing cost can be reduced.
The heat pipe shown in FIGS. 3 to 6 has a flat sealing portion, but the sealing portion may be swaged to form a circular cross section. Also, Ni or Cr on the surface of the heat pipe
Etc. can also be plated.

【0015】[0015]

【実施例】以下に本発明を実施例により詳細に説明す
る。 (実施例1)内面に16本のグルーブ(長さ方向の細溝)
を有する外径3mmの銅パイプ(内径2mm)を押出法によ
り作製した。これを長さ300mm に切断し、片端側をTI
G溶接して封止した。次に、他端側から作動液の注入と
脱気とを行い、その後、他端側を絞り加工により円錐状
に圧縮し(圧縮部先端の直径は0.8mm)、この圧縮部をY
AGレーザーにより溶断し、図1に示したような全長27
0mm のヒートパイプを作製した。
The present invention will be described below in detail with reference to examples. (Example 1) 16 grooves on the inner surface (fine grooves in the length direction)
A copper pipe having an outer diameter of 3 mm (inner diameter 2 mm) having the above was produced by an extrusion method. Cut this to a length of 300 mm, and TI on one end
G-welded and sealed. Next, the working fluid is injected and deaerated from the other end, and then the other end is compressed into a conical shape by drawing (the diameter of the tip of the compression part is 0.8 mm).
Fused by AG laser, the total length 27 as shown in Fig. 1
A 0 mm heat pipe was prepared.

【0016】(実施例2)実施例1で用いたのと同じ銅
パイプを長さ300mm に切断し、片端側をTIG溶接して
封止し、他端側から作動液の注入と脱気とを行い、その
後、他端側をプレス加工により板状に圧縮し(圧縮部先
端の厚さは0.8mm)、圧縮部をYAGレーザーにより、長
さ方向に対し直角に溶断して図3に示したような全長27
0mm のヒートパイプを作製した。
(Example 2) The same copper pipe as used in Example 1 was cut to a length of 300 mm, one end side was TIG welded and sealed, and the other end side was filled with a working fluid and deaerated. After that, the other end is compressed into a plate shape by pressing (the thickness of the tip of the compression part is 0.8 mm), and the compression part is fused by a YAG laser at a right angle to the length direction and shown in FIG. Total length 27
A 0 mm heat pipe was prepared.

【0017】(実施例3)実施例1で用いたのと同じ長
さ300mm の銅パイプの片端側をプレス加工により板状に
圧縮し、圧縮部をYAGレーザーにより略円弧状に溶断
し、他端側から作動液の注入と脱気とを行い、その後、
他端側をプレス加工により板状に圧縮し、圧縮部をYA
Gレーザーにより略円弧状に溶断して図4に示したよう
な全長 270mmのヒートパイプを作製した。圧縮部先端の
厚さは0.8mm とした。
(Embodiment 3) A copper pipe having a length of 300 mm, which is the same as that used in Embodiment 1, is pressed into a plate shape by press working, and the compressed portion is fused and cut into a substantially arc shape by a YAG laser. Injecting and degassing the hydraulic fluid from the end side, and then
The other end is compressed into a plate shape by pressing, and the compression part is YA
The heat pipe having a total length of 270 mm as shown in FIG. The thickness of the tip of the compression part was 0.8 mm.

【0018】(実施例4)実施例1で用いたのと同じ銅
パイプを長さ300mm に切断し、片端側をTIG溶接して
封止し、他端側から作動液の注入と脱気とを行い、その
後、他端側をプレス加工により板状に圧縮し、圧縮部の
所定箇所を炭酸ガスレーザーを用いてパイプの接触面を
含むように溶融した。その後、前記溶融部分の先を炭酸
ガスレーザーにより、略円弧状に溶断して、図6に示し
たような全長 270mmのヒートパイプを作製した。圧縮部
先端の厚さは0.8mm とした。
(Embodiment 4) The same copper pipe as that used in Embodiment 1 is cut to a length of 300 mm, one end side is TIG welded and sealed, and the other end side is filled with a working fluid and deaerated. After that, the other end side was pressed into a plate shape by pressing, and a predetermined portion of the compressed portion was melted using a carbon dioxide gas laser so as to include the contact surface of the pipe. After that, the end of the molten portion was fused and cut into a substantially arc shape by a carbon dioxide laser to manufacture a heat pipe having a total length of 270 mm as shown in FIG. The thickness of the tip of the compression part was 0.8 mm.

【0019】(比較例1)実施例1で用いたのと同じ長
さ300mm の銅パイプの片端側をTIG溶接により封止
し、その後、他端側から作動液の注入と脱気とを行い、
次いで他端側を超音波接合し、接合部を機械的に切断し
て、図7ハに示したような全長250mm のヒートパイプを
作製した。
(Comparative Example 1) One end side of a copper pipe having the same length as 300 mm used in Example 1 was sealed by TIG welding, and then the working fluid was injected and deaerated from the other end side. ,
Next, the other end side was ultrasonically bonded, and the bonded part was mechanically cut to prepare a heat pipe having a total length of 250 mm as shown in FIG. 7C.

【0020】このようにして得られた各々のヒートパイ
プを60気圧又は90気圧の圧力室に入れたのち、熱伝導性
試験を行って、気密性を判定した。熱伝導試験は、ヒー
トパイプの片端側を所定温度T1 に加熱保持した状態
で、他端側の温度T2 を測定する試験で、両者間に温度
差が生じたものは気密性が不良と判定する。温度差が生
じるのは、封止部から空気が侵入し真空度が低下した為
である。結果を表1に示す。
Each heat pipe thus obtained was placed in a pressure chamber of 60 atm or 90 atm, and a thermal conductivity test was conducted to determine the airtightness. The heat conduction test is a test in which one end side of the heat pipe is heated and held at a predetermined temperature T 1 and the temperature T 2 at the other end side is measured. judge. The temperature difference occurs because air enters from the sealing portion and the degree of vacuum is lowered. The results are shown in Table 1.

【0021】[0021]

【表1】 [Table 1]

【0022】表1より明らかなように、本発明例品(N
o.1〜4)は、いずれも気密性に優れていた。特に、圧縮
部の所定箇所を溶融したNo.4は、90気圧で加圧後も気密
性が損なわれなかった。レーザーによる溶断部を顕微鏡
観察したところ、溶断面は20〜30μmの深さに渡って完
全に溶融していた。No.4の溶融部分もヒートパイプ内面
の接触面が完全に溶融していた。これに対し、比較例品
のNo.5は、60気圧の加圧で気密不良が3本もあり、90気
圧の加圧では殆どが気密不良となった。これは、超音波
接合では、固相圧接される為、十分な気密性が安定して
得られなかった為である。又超音波接合では工具による
接合箇所の位置合わせに手間を要し生産性が悪かった。
尚、実施例2〜4の溶断部を含む板状圧縮部をスエージ
ング加工して断面円形に成形したものについても同様の
熱伝導試験を行ったが、いずれも、良好な気密性が確認
された。
As is clear from Table 1, the product of the present invention (N
o.1 to 4) were all excellent in airtightness. In particular, No. 4 in which a predetermined portion of the compression portion was melted did not lose airtightness even after being pressurized at 90 atm. Microscopic observation of the laser-melted portion revealed that the melted surface was completely melted over a depth of 20 to 30 μm. In the molten portion of No. 4, the contact surface inside the heat pipe was completely melted. On the other hand, No. 5 of the comparative example product had three airtight defects at a pressure of 60 atm, and most of them became poor at a pressure of 90 atm. This is because, in ultrasonic bonding, sufficient airtightness could not be obtained stably because solid phase pressure welding was performed. In addition, in ultrasonic bonding, it took a lot of time to align the welding points with a tool, resulting in poor productivity.
In addition, the same heat conduction test was performed on the plate-shaped compression parts including the fusing parts of Examples 2 to 4 which were swaged and formed into a circular cross section, but good airtightness was confirmed in all cases. It was

【0023】[0023]

【発明の効果】以上に述べたように、本発明のヒートパ
イプは、気密性及び生産性に優れ、工業上顕著な効果を
奏する。
As described above, the heat pipe of the present invention is excellent in airtightness and productivity and has a remarkable industrial effect.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明のヒートパイプの第1の実施例を示す縦
断面図である。
FIG. 1 is a vertical cross-sectional view showing a first embodiment of a heat pipe of the present invention.

【図2】本発明のヒートパイプの第2の実施例を示す縦
断面図である。
FIG. 2 is a vertical cross-sectional view showing a second embodiment of the heat pipe of the present invention.

【図3】本発明のヒートパイプの第3の実施例を示す縦
断面図である。
FIG. 3 is a vertical cross-sectional view showing a third embodiment of the heat pipe of the present invention.

【図4】本発明のヒートパイプの第4の実施例を示す縦
断面図である。
FIG. 4 is a vertical sectional view showing a fourth embodiment of the heat pipe of the present invention.

【図5】本発明のヒートパイプの第5の実施例を示す縦
断面図である。
FIG. 5 is a vertical cross-sectional view showing a fifth embodiment of the heat pipe of the present invention.

【図6】本発明のヒートパイプの第6の実施例を示す縦
断面図である。
FIG. 6 is a vertical sectional view showing a sixth embodiment of the heat pipe of the present invention.

【図7】従来のヒートパイプの製造方法の工程説明図で
ある。
FIG. 7 is a process explanatory view of a conventional heat pipe manufacturing method.

【図8】従来のヒートパイプの説明図である。FIG. 8 is an explanatory diagram of a conventional heat pipe.

【符号の説明】[Explanation of symbols]

10,20 …ヒートパイプ 11,21 …ヒートパイプの片端部 12,22 …ヒートパイプの他端部 13,33 …圧縮部 14………レーザーによる溶断部 15………溶融部分 26………超音波接合部 10,20… Heat pipe 11,21… One end of heat pipe 12,22… The other end of heat pipe 13,33… Compression part 14 ……… Laser fusing part 15 ……… Melting part 26 ……… Super Sonic joint

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 両端が封止されたヒートパイプの少なく
とも一端側が圧縮され、前記圧縮部がレーザーにより溶
断されて封止されていることを特徴とするヒートパイ
プ。
1. A heat pipe in which at least one end side of a heat pipe whose both ends are sealed is compressed, and the compressed portion is melted and cut by a laser to be sealed.
JP7244412A 1995-09-22 1995-09-22 Heat pipe Pending JPH0989480A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7244412A JPH0989480A (en) 1995-09-22 1995-09-22 Heat pipe

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7244412A JPH0989480A (en) 1995-09-22 1995-09-22 Heat pipe

Publications (1)

Publication Number Publication Date
JPH0989480A true JPH0989480A (en) 1997-04-04

Family

ID=17118287

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7244412A Pending JPH0989480A (en) 1995-09-22 1995-09-22 Heat pipe

Country Status (1)

Country Link
JP (1) JPH0989480A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1630511A1 (en) * 2004-08-27 2006-03-01 Chin-Kuang Luo Method for sealing heat pipes
CN1296153C (en) * 2004-05-15 2007-01-24 鸿富锦精密工业(深圳)有限公司 Method for sealing heat pipe
CN100377823C (en) * 2005-01-14 2008-04-02 徐惠群 Vertically rotating seal method for heat pipe
CN100377824C (en) * 2005-01-14 2008-04-02 徐惠群 Horizontally rotating seal method for heat pipe
CN100377825C (en) * 2005-02-22 2008-04-02 徐惠群 Heat pipe off-center rotation welding method and device
CN100453954C (en) * 2005-10-11 2009-01-21 富准精密工业(深圳)有限公司 Thermotube and its sealing method
WO2011145481A1 (en) * 2010-05-18 2011-11-24 三菱電機株式会社 Beam welding method, vacuum packaging method, and vacuum heat-insulation material produced by vacuum packaging method
JP4843502B2 (en) * 2004-01-07 2011-12-21 スタープラ・ウルトラシャルテヒニーク・ゲーエムベーハー Method for tube crushing and sealing
WO2018198350A1 (en) * 2017-04-28 2018-11-01 株式会社村田製作所 Vapor chamber

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4843502B2 (en) * 2004-01-07 2011-12-21 スタープラ・ウルトラシャルテヒニーク・ゲーエムベーハー Method for tube crushing and sealing
CN1296153C (en) * 2004-05-15 2007-01-24 鸿富锦精密工业(深圳)有限公司 Method for sealing heat pipe
EP1630511A1 (en) * 2004-08-27 2006-03-01 Chin-Kuang Luo Method for sealing heat pipes
CN100377823C (en) * 2005-01-14 2008-04-02 徐惠群 Vertically rotating seal method for heat pipe
CN100377824C (en) * 2005-01-14 2008-04-02 徐惠群 Horizontally rotating seal method for heat pipe
CN100377825C (en) * 2005-02-22 2008-04-02 徐惠群 Heat pipe off-center rotation welding method and device
CN100453954C (en) * 2005-10-11 2009-01-21 富准精密工业(深圳)有限公司 Thermotube and its sealing method
US7543380B2 (en) 2005-10-11 2009-06-09 Foxconn Technology Co., Ltd. Heat pipe and method for sealing the heat pipe
WO2011145481A1 (en) * 2010-05-18 2011-11-24 三菱電機株式会社 Beam welding method, vacuum packaging method, and vacuum heat-insulation material produced by vacuum packaging method
JP5377763B2 (en) * 2010-05-18 2013-12-25 三菱電機株式会社 Beam welding method, vacuum packaging method, and vacuum heat insulating material produced by the vacuum packaging method
WO2018198350A1 (en) * 2017-04-28 2018-11-01 株式会社村田製作所 Vapor chamber

Similar Documents

Publication Publication Date Title
US7543380B2 (en) Heat pipe and method for sealing the heat pipe
US7467466B2 (en) Method for sealing a heat pipe
KR20060051143A (en) Bendable heat spreader with metallic wire mesh-based microstructure and method for fabricating same
KR20090045352A (en) Fluid tubing welded to a compressor housing and method
JPH0989480A (en) Heat pipe
US5084966A (en) Method of manufacturing heat pipe semiconductor cooling apparatus
CN112105219A (en) Temperature equalizing plate and manufacturing method thereof
JP2003080378A (en) Method for manufacturing planar heat pipe and method for mounting this tube
CN111843165B (en) Diffusion connection method for diamond micro-channel
JP2018118265A (en) Welding method for thin copper plates to each other
JP2006528556A (en) Bonding method using reactive multilayer foil with enhanced control of melt bonding material
JPH0985467A (en) Joined body between copper tube and aluminum tube and joining method
CN112091343A (en) Brazing method of molybdenum target and back plate
JP2004122221A (en) Manufacturing method for part having cooling path
JP2001324287A (en) Heat pipe and method of manufacture
CN215393004U (en) Process pipe and ultrasonic-assisted brazed joint
CN111889674A (en) Preparation method for one-step sintering molding of tungsten copper and copper combined part
JPH09324993A (en) Manufacturing method of heat pipe
JP3798543B2 (en) Metal composite plate having hollow portion and method for producing the same
TWI764215B (en) Sloped wall structure of heat sink
JPS6316874A (en) Butt welding method for steel pipe
KR100772131B1 (en) Manufacture of the susceptor for tft-lcd by friction-agitation welding
KR20030032277A (en) Heater fabricated by blazing
CN116921895A (en) Vacuum metallurgy connecting method of high-silicon aluminum alloy
CN117001093A (en) Green liquid phase auxiliary brazing method for connecting multi-layer aluminum alloy micro-channel complex structure