JPH0987781A - Hydrogen storage alloy and hydrogen storage alloy electrode - Google Patents
Hydrogen storage alloy and hydrogen storage alloy electrodeInfo
- Publication number
- JPH0987781A JPH0987781A JP7198501A JP19850195A JPH0987781A JP H0987781 A JPH0987781 A JP H0987781A JP 7198501 A JP7198501 A JP 7198501A JP 19850195 A JP19850195 A JP 19850195A JP H0987781 A JPH0987781 A JP H0987781A
- Authority
- JP
- Japan
- Prior art keywords
- hydrogen storage
- alloy
- storage alloy
- rare earth
- electrode
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Manufacture Of Metal Powder And Suspensions Thereof (AREA)
- Battery Electrode And Active Subsutance (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、電気化学的な水素の吸
蔵・放出を可逆的に行える水素吸蔵合金電極およびその
製造法に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a hydrogen storage alloy electrode capable of reversibly electrochemically storing and releasing hydrogen, and a method for producing the same.
【0002】[0002]
【従来の技術】近年、ポータブル機器、コードレス機器
の発展に伴い、その電源となる電池にもより一層の高エ
ネルギ−密度が要求されている。この要求を達成するた
めに金属水素化物つまり水素吸蔵合金極を使ったニッケ
ル−水素蓄電池が注目され、製法などに多くの提案がさ
れている。2. Description of the Related Art In recent years, with the development of portable equipment and cordless equipment, a battery as a power source thereof is required to have a higher energy density. In order to achieve this requirement, a nickel-hydrogen storage battery using a metal hydride, that is, a hydrogen storage alloy electrode has attracted attention, and many proposals have been made for a manufacturing method and the like.
【0003】水素を可逆的に吸収・放出しうる水素吸蔵
合金を負極に使用するアルカリ蓄電池の水素吸蔵合金電
極は、理論容量密度がカドミウム極より大きく、亜鉛極
のような変形やデンドライトの形成などもないことか
ら、長寿命・無公害であり、しかも高エネルギー密度を
有するアルカリ蓄電池用負極として今後の発展が期待さ
れている。A hydrogen storage alloy electrode of an alkaline storage battery, which uses a hydrogen storage alloy capable of reversibly absorbing and releasing hydrogen as a negative electrode, has a theoretical capacity density larger than that of a cadmium electrode and causes deformation such as a zinc electrode and formation of dendrite. Therefore, future development is expected as a negative electrode for alkaline storage batteries that has a long life, is pollution-free, and has a high energy density.
【0004】このような水素吸蔵合金電極に用いられる
合金は、通常アーク溶解法や高周波誘導加熱溶解法など
で作製され、現在実用化されているものとしては、La
(又はMm)−Ni系の多元系合金がある。AB5タイ
プ(A:La,Zr,Tiなどの水素との親和性の大き
い元素、B:Ni,Mn,Crなどの遷移元素)のLa
(又はMm)−Ni系の多元系合金は、容量的には頭打
ちになっており、さらに放電容量が大きい新規水素吸蔵
合金材料が望まれている。The alloy used for such a hydrogen storage alloy electrode is usually produced by an arc melting method, a high frequency induction heating melting method, or the like.
There are (or Mm) -Ni based multi-component alloys. AB 5 type La (A: elements such as La, Zr, and Ti that have a high affinity for hydrogen, B: transition elements such as Ni, Mn, and Cr)
(Or Mm) -Ni-based multi-component alloys have reached a ceiling in capacity, and a new hydrogen storage alloy material having a large discharge capacity is desired.
【0005】これに対して、さらに大きな水素吸蔵量を
持つ合金として、Ti−V系の水素吸蔵合金がある。こ
の合金系については、例えばTixVyNiz合金(特開
平6−228699号公報)やTixVyFez合金(特
開平6−93366号公報)、などが提案されている。On the other hand, as an alloy having a larger hydrogen storage capacity, there is a Ti-V type hydrogen storage alloy. Regarding this alloy system, for example, a Ti x V y Ni z alloy (Japanese Patent Laid-Open No. 6-228699), a Ti x V y Fe z alloy (Japanese Patent Laid-Open No. 6-93366), and the like have been proposed.
【0006】[0006]
【発明が解決しようとする課題】しかしながら、これら
Ti−V系の水素吸蔵合金を電極に用いた場合、La
(又はMm)−Ni系の多元系合金に比べて放電容量が
高いものの、合金としての扱い易さや、その他の電池特
性においては、さらに改良の余地があると考えられる。However, when these Ti-V-based hydrogen storage alloys are used for the electrodes, La
Although the discharge capacity is higher than that of the (or Mm) -Ni-based multi-component alloy, it is considered that there is room for further improvement in terms of ease of handling as an alloy and other battery characteristics.
【0007】たとえば、このような固溶体の合金では、
展性が大きく、機械的に粉砕することが非常に困難であ
る。このような場合、水素吸蔵合金においては水素の吸
収放出を繰り返して水素化によって粉砕することもでき
るが、Ti−V系の合金は初期の活性化が困難で、水素
化には高温の雰囲気が必要となる。これらの工業的に不
利な条件に加えて、電池用の電極として考えた場合は、
サイクル特性や高率放電特性が課題となる。For example, in such a solid solution alloy,
It has great malleability and is very difficult to mechanically grind. In such a case, in a hydrogen storage alloy, absorption and release of hydrogen can be repeated to pulverize by hydrogenation, but Ti-V type alloys are difficult to activate initially, and a high temperature atmosphere is required for hydrogenation. Will be needed. In addition to these industrially disadvantageous conditions, when considered as an electrode for batteries,
Cycle characteristics and high rate discharge characteristics are issues.
【0008】我々は合金組成および製法の面からこれを
改善することを目指し、検討を重ねた結果、上記従来の
課題を解決することができた。すなわち、水素吸蔵合金
の組成および製法を改善することにより、電極用合金と
して扱いやすく、サイクル劣化が少なく、高率放電特性
を改善させる水素吸蔵合金を開発した。[0008] As a result of repeated studies aimed at improving the alloy composition and the manufacturing method, the above-mentioned conventional problems could be solved. That is, by improving the composition and manufacturing method of the hydrogen storage alloy, we have developed a hydrogen storage alloy that is easy to handle as an electrode alloy, has little cycle deterioration, and improves high-rate discharge characteristics.
【0009】[0009]
【課題を解決するための手段】本発明の水素吸蔵合金
は、主にTi、V、Cr、Niからなる体心立方構造を
有する水素吸蔵合金において、合金中にLa、Ceの内
の一種類あるいはLa、Ceを含む希土類元素の混合物
(ミッシュメタル)を1〜10原子%含有することを特
徴とする水素吸蔵合金である。The hydrogen storage alloy of the present invention is a hydrogen storage alloy having a body-centered cubic structure mainly composed of Ti, V, Cr and Ni, and is one of La and Ce in the alloy. Alternatively, the hydrogen storage alloy is characterized by containing a rare earth element mixture (Misch metal) containing La and Ce in an amount of 1 to 10 atom%.
【0010】また、本発明の水素吸蔵合金は、一般式
が、Tix(VaCr1-a)1-xMbNic(0.5≦a≦
0.95,0.05≦b≦0.2,0.1≦c≦0.
6,0.2≦x≦0.4、MはLa、Ceの内の一種類
あるいはLa、Ceを含む希土類元素の混合物(ミッシ
ュメタル))で示され、合金相の主成分が体心立方構造
の合金である。[0010] The hydrogen storage alloy of the present invention have the general formula is, Ti x (V a Cr 1 -a) 1-x M b Ni c (0.5 ≦ a ≦
0.95, 0.05 ≦ b ≦ 0.2, 0.1 ≦ c ≦ 0.
6, 0.2 ≦ x ≦ 0.4, M is one kind of La and Ce or a mixture of rare earth elements containing La and Ce (Misch metal), and the main component of the alloy phase is body-centered cubic It is a structural alloy.
【0011】また、本発明の水素吸蔵合金は、合金相中
に主に希土類元素よりなる第2相を含むことを特徴とす
る合金である。The hydrogen storage alloy of the present invention is an alloy characterized in that the alloy phase contains a second phase mainly composed of a rare earth element.
【0012】また、本発明の水素吸蔵合金の製造法は、
合金材料を溶解後、103〜107℃/秒の冷却速度で急
冷することを特徴とする。さらに、好ましくは急冷造粒
法によって微粉末として製造する。The method for producing a hydrogen storage alloy of the present invention is
After melting the alloy material, it is characterized by being rapidly cooled at a cooling rate of 10 3 to 10 7 ° C / sec. Further, it is preferably produced as a fine powder by a quench granulation method.
【0013】さらに本発明の水素吸蔵合金電極は、上記
の水素吸蔵合金またはその水素化物から構成される。Further, the hydrogen storage alloy electrode of the present invention comprises the above hydrogen storage alloy or a hydride thereof.
【0014】[0014]
【作用】本発明の水素吸蔵合金もしくはその水素化物を
用いた電極は、従来のTi−V−Ni系合金を改良した
ものであり、従来の合金組成にLa,Ceの少なくとも
一種あるいはこれらを含む希土類元素の混合物(ミッシ
ュメタル)を添加することにより、電極の放電容量およ
びサイクル特性を改善し、さらにCrを加えることによ
り、合金の水素化を容易にしている。La,Ceは単体
あるいは2種の混合物で用いた方が特性的には若干優れ
るが、さらにコストを下げたい場合には、希土類元素の
混合物であるミッシュメタルを用いればより安価にでき
る。The electrode using the hydrogen storage alloy or the hydride thereof of the present invention is an improvement of the conventional Ti-V-Ni alloy, and the conventional alloy composition contains at least one of La and Ce or these. Addition of a mixture of rare earth elements (Misch metal) improves the discharge capacity and cycle characteristics of the electrode, and addition of Cr facilitates hydrogenation of the alloy. La and Ce are slightly superior in characteristics when used alone or as a mixture of two kinds, but if it is desired to further reduce the cost, it can be made cheaper by using a misch metal which is a mixture of rare earth elements.
【0015】La,Ce等の希土類元素の添加効果につ
いては現在明確にはわかっていないが、アルカリ溶液中
でこれらが水酸化物となり電極反応の触媒として働いて
いることや、これらの元素が偏析相として点在し、合金
の微粉化を抑制していることが考えられる。我々の検討
結果ではこれらの元素はほとんどが単独あるいは若干の
Niを伴って偏析しており、母相にはほとんど含まれて
いなかった。したがって、特開平6−228699に開
示されているような希土類元素の添加による平衡圧の低
下も見られず、効果は全く異なるものである。Although the effect of adding rare earth elements such as La and Ce is not clearly known at present, they are hydroxides in an alkaline solution to act as a catalyst for the electrode reaction and segregation of these elements. It is considered that the phases are scattered and suppress the pulverization of the alloy. According to the results of our study, most of these elements are segregated alone or with some Ni, and they are hardly contained in the matrix. Therefore, there is no decrease in the equilibrium pressure due to the addition of the rare earth element as disclosed in JP-A-6-228699, and the effect is completely different.
【0016】これら希土類元素の添加量は母合金に対し
て1原子%以上加えなければ効果がなく、10原子%以
上加えても逆に容量が低下する。したがって、添加量c
は0.01≦b≦0.1の範囲がよい。The addition amount of these rare earth elements is not effective unless added in an amount of 1 atom% or more with respect to the mother alloy, and even if added in an amount of 10 atom% or more, the capacity decreases. Therefore, the addition amount c
Is preferably in the range of 0.01 ≦ b ≦ 0.1.
【0017】Crは活性化を容易にするために添加して
いる。通常、Ti−Ni系の合金では水素化を行うため
には、数百℃で高圧の水素雰囲気にしなければならな
い。これには特殊な装置が必要で、工業的な応用を考え
ると一般的ではない。しかしけれにCrを加えることに
よって、室温でも数十気圧の水素を導入すれば容易に水
素化できるようになる。また、機械的な脆さも増加する
ため、粉砕しやすくなる。Cr is added to facilitate activation. Usually, in order to perform hydrogenation in a Ti-Ni based alloy, a high pressure hydrogen atmosphere at several hundreds of degrees Celsius must be used. This requires special equipment and is uncommon for industrial applications. However, when Cr is added, hydrogen can be easily hydrogenated at room temperature by introducing hydrogen at several tens of atmospheric pressure. In addition, mechanical brittleness also increases, which facilitates crushing.
【0018】実際に、微粉砕を水素化によって行う場合
でも、ある程度までは機械的に粉砕することが必要で、
Crの添加による粉砕のしやすさは重要な特性である。Actually, even when fine pulverization is carried out by hydrogenation, it is necessary to mechanically pulverize it to a certain extent.
Ease of crushing by adding Cr is an important characteristic.
【0019】Cr量は多いほど粉砕しやすく、活性化も
容易になるが、逆に水素吸蔵量は減少し、水素平衡圧は
上昇する傾向にある。この相反する特性を満足するため
には、Cr量(1−a)はV量aに対して0.05≦1
−a≦0.5の範囲にあることが望ましい。The larger the Cr content, the easier the pulverization and the easier the activation, but conversely the hydrogen storage amount tends to decrease and the hydrogen equilibrium pressure tends to rise. In order to satisfy these contradictory characteristics, the Cr content (1-a) is 0.05 ≦ 1 with respect to the V content a.
It is desirable to be in the range of −a ≦ 0.5.
【0020】次に、Niは水素吸蔵合金が電気化学的に
水素を吸蔵放出するための必須の元素である。しかし、
Niが増加すると、水素吸蔵量は減少するので、水素吸
蔵量と放電容量がバランスがとれて、もっとも放電容量
が大きくなるように調整する必要がある。そのためのN
i量cは0.1≦c≦0.6である。Next, Ni is an essential element for the hydrogen storage alloy to store and release hydrogen electrochemically. But,
Since the hydrogen storage amount decreases as Ni increases, it is necessary to adjust so that the hydrogen storage amount and the discharge capacity are balanced and the discharge capacity becomes the largest. N for that
The i amount c is 0.1 ≦ c ≦ 0.6.
【0021】TiのVとCr量に対する割合xは多すぎ
ると水素と親和力の強い元素が増えるため水素が合金内
で安定化し、放出できなくなる。また、少ない場合は吸
蔵量が減少する。その最適な範囲は0.2≦x≦0.4
である。If the ratio x of Ti to V and Cr is too large, the number of elements having a strong affinity for hydrogen increases, and hydrogen is stabilized in the alloy and cannot be released. Further, when the amount is small, the storage amount decreases. The optimum range is 0.2 ≦ x ≦ 0.4
It is.
【0022】次に、希土類元素の第2相の効果である
が、希土類元素添加の効果は、先に述べたように、触媒
点としての効果や、微粉化の防止が考えられる。したが
って、この相の分布は電極特性に影響を及ぼし、細かく
分布しているほど効果が大きいと考えられる。我々は、
合金の冷却速度を103〜107℃/秒とすることで第2
相が細かく分布し、電極特性が向上することができた。
また、このような冷却速度を持つ合金製造法としてはガ
スアトマイズや水アトマイズ、ロール急冷法などがある
が、このような微粉末を製造できる製法を用いれば、本
発明のような機械的に粉砕しにくい合金を容易に取り扱
うことができ、その工業的価値は大きい。Next, regarding the effect of the second phase of the rare earth element, the effect of adding the rare earth element is considered to be the effect as a catalytic point and the prevention of pulverization, as described above. Therefore, it is considered that the distribution of this phase affects the electrode characteristics, and the finer the distribution, the greater the effect. we,
Second, by setting the alloy cooling rate to 10 3 to 10 7 ° C / sec.
The phase was finely distributed, and the electrode characteristics could be improved.
Further, as an alloy production method having such a cooling rate, there are gas atomization, water atomization, roll quenching method, etc., but if a production method capable of producing such fine powder is used, it is mechanically pulverized as in the present invention. Hard alloys can be handled easily and have great industrial value.
【0023】以上のことから、高容量を有する水素吸蔵
合金電極を得るためには、本発明の合金組成の条件およ
び製法を満たすことが重要であることがわかる。From the above, it is understood that in order to obtain a hydrogen storage alloy electrode having a high capacity, it is important to satisfy the alloy composition conditions and the manufacturing method of the present invention.
【0024】[0024]
【実施例】以下に本発明をその実施例によりさらに詳し
く説明する。EXAMPLES The present invention will be described in more detail with reference to the examples.
【0025】(実施例1)まず、希土類元素の添加効果
について示す。一例として、Ti0.4(V0.7Cr 0.3)
0.6Ni0.1Lacという組成において、c=0、0.0
1、0.03、0.05、0.1、0.2と変化させた
場合とc=0.05としてLaをCe、Mm(ミッシュ
メタル)に変えた場合の特性を調べた。(Example 1) First, the effect of adding a rare earth element
About. As an example, Ti0.4(V0.7Cr 0.3)
0.6Ni0.1LacIn the composition, c = 0,0.0
Changed to 1, 0.03, 0.05, 0.1, 0.2
In the case of c = 0.05, La is Ce, Mm (Misch
The characteristics when changing to metal) were investigated.
【0026】合金は市販のTi,V,Cr,Ni,L
a,Ce,Mm金属を原料として、アーク溶解によって
作製した。The alloys are commercially available Ti, V, Cr, Ni, L
It was prepared by arc melting using a, Ce, and Mm metals as raw materials.
【0027】この合金試料の一部はX線回折などの合金
分析及び水素ガス雰囲気における水素吸収−放出量測定
(通常のP(水素圧力)−C(組成)−T(温度)測
定)に使用し、残りは電極特性評価に用いた。A part of this alloy sample is used for alloy analysis such as X-ray diffraction and hydrogen absorption-desorption amount measurement (normal P (hydrogen pressure) -C (composition) -T (temperature) measurement) in a hydrogen gas atmosphere. The rest was used for electrode characteristic evaluation.
【0028】まず、各合金試料について、X線回折測定
を行った。その結果、いずれの合金試料についても合金
相の主成分は体心立方構造を有していることを確認し
た。First, X-ray diffraction measurement was performed on each alloy sample. As a result, it was confirmed that the main component of the alloy phase had a body-centered cubic structure in all the alloy samples.
【0029】また、PCT測定の結果から、希土類元素
の添加量に比例して水素吸蔵量は若干減少するが、水素
平衡圧に変化はなかった。From the results of PCT measurement, the hydrogen storage amount slightly decreased in proportion to the amount of the rare earth element added, but the hydrogen equilibrium pressure did not change.
【0030】以上のような合金について、電気化学的な
充放電反応によるアルカリ蓄電池用負極としての電極特
性を評価するために単電池試験を行った。The above alloys were subjected to a single cell test in order to evaluate the electrode characteristics as a negative electrode for an alkaline storage battery by an electrochemical charge / discharge reaction.
【0031】合金を水素を吸蔵放出させることによって
粉砕し、75μm以下に分級した。この合金粉末1gに
導電材としてのNi粉末を3g、結着材としてのポリエ
チレン粉末を0.12g混合し、ペレット状に加圧成形
したものを、130℃で結着材を溶融させて電極とし
た。これらを負極とし、対極に過剰の電気容量を有する
酸化ニッケル極を配し電解液に比重1.30の水酸化カ
リウム水溶液を用い、電解液が豊富な条件下で水素吸蔵
合金負極で容量規制を行なった開放系で充放電を行っ
た。充電は水素吸蔵合金1gあたり100mA×5.5
時間、放電は合金1gあたり50mAで端子電圧が0.
8Vまでとした。The alloy was crushed by occluding and releasing hydrogen and classified to 75 μm or less. 3 g of Ni powder as a conductive material and 0.12 g of polyethylene powder as a binder were mixed with 1 g of this alloy powder, and the mixture was pressure-molded into pellets, and the binder was melted at 130 ° C. to form an electrode. did. These are used as the negative electrode, a nickel oxide electrode having an excessive electric capacity is arranged on the counter electrode, and an aqueous solution of potassium hydroxide having a specific gravity of 1.30 is used as the electrolytic solution. Charging and discharging were performed in the open system. Charging is 100 mA x 5.5 per gram of hydrogen storage alloy.
The discharge time is 50 mA per gram of alloy and the terminal voltage is 0.
Up to 8V.
【0032】Laの添加量を変化させた場合のサイクル
特性を図1に、希土類元素を変化させた場合を図2に示
す。Laの添加量が増加するに従って、サイクルによる
容量低下が減少し、c=0.05でほぼ容量劣化がなく
なり最高容量を示した。その後は添加量に伴って容量が
減少した。FIG. 1 shows the cycle characteristics when the amount of La added was changed, and FIG. 2 shows the case where the rare earth element was changed. As the amount of La added increased, the capacity decrease due to the cycle decreased, and at c = 0.05, there was almost no capacity deterioration and the maximum capacity was exhibited. After that, the capacity decreased with the addition amount.
【0033】希土類元素の種類では、LaとCeではほ
とんど差がなく、Mmの場合には若干容量が低下した。
これはLa,Ce以外の元素の影響であると考えられ
る。また、LaとCeを混合したものを添加した場合で
も効果に差がないことも確認した。Regarding the types of rare earth elements, there was almost no difference between La and Ce, and the capacity was slightly reduced in the case of Mm.
It is considered that this is an influence of elements other than La and Ce. It was also confirmed that there was no difference in effect even when a mixture of La and Ce was added.
【0034】(実施例2)次にTi、V、Cr、Niの
範囲について検討した例を示す。合金は実施例1と同様
の方法で作成した。(Example 2) Next, an example in which the ranges of Ti, V, Cr and Ni were examined will be shown. The alloy was prepared in the same manner as in Example 1.
【0035】この合金試料の一部はX線回折などの合金
分析及び水素ガス雰囲気における水素吸収−放出量測定
(通常のP(水素圧力)−C(組成)−T(温度)測
定)に使用し、残りは電極特性評価に用いた。A part of this alloy sample is used for alloy analysis such as X-ray diffraction and hydrogen absorption-desorption amount measurement (normal P (hydrogen pressure) -C (composition) -T (temperature) measurement) in a hydrogen gas atmosphere. The rest was used for electrode characteristic evaluation.
【0036】電極特性の評価は、実施例1と同様の方法
で、単極試験を行った。VとCrの比a、Ti量x、N
i量cをそれぞれ変化させた場合の最大の放電容量の変
化を、図3〜5に示す。For the evaluation of the electrode characteristics, a unipolar test was conducted in the same manner as in Example 1. Ratio of V and Cr a, Ti amount x, N
3 to 5 show changes in the maximum discharge capacity when the i amount c is changed.
【0037】合金組成が本発明の範囲内にあれば、放電
容量は300mAh/g以上となり、高容量な電極とな
る。When the alloy composition is within the range of the present invention, the discharge capacity is 300 mAh / g or more, and the electrode has a high capacity.
【0038】Crは容量に対してはよい効果を及ぼさな
いが、Cr量が0(a=1)では200℃で水素圧力を
50気圧程度印加しても活性化できず、機械的にも粉砕
することができなかった。Cr does not have a good effect on the capacity, but when the Cr amount is 0 (a = 1), it cannot be activated even if a hydrogen pressure of about 50 atm is applied at 200 ° C., and it is mechanically crushed. I couldn't.
【0039】しかし、a=0.95の合金は、上記の条
件で活性化することができ、a=0.7以下であれば、
超硬エリスモータポンチ等の器具を用いて5mm以下程
度までは機械的に粉砕できる。したがって、工業的な扱
い易さと、容量の両方を満足するためには、Cr量は本
発明の範囲にあることが必要である。However, the alloy of a = 0.95 can be activated under the above conditions, and if a = 0.7 or less,
It can be mechanically crushed up to about 5 mm or less by using a tool such as a cemented carbide eryth motor punch. Therefore, the amount of Cr needs to be within the range of the present invention in order to satisfy both industrial handling and capacity.
【0040】また、Ti,V,Cr,Niが請求項の範
囲からはずれた合金においては、容量は低いものの、サ
イクル特性は優れていた。したがって、希土類元素の添
加効果は、この合金組成範囲に限られたものではなく、
この周辺組成の体心立方構造を有する合金においても同
様に発揮される。また、さらに新たな元素が添加された
場合においても希土類元素は偏析として単独でサイクル
特性の向上に寄与しているので同様の効果が得られる。Further, in the alloys in which Ti, V, Cr and Ni were out of the scope of the claims, the capacity was low, but the cycle characteristics were excellent. Therefore, the effect of adding the rare earth element is not limited to this alloy composition range,
The alloy having a body-centered cubic structure with this peripheral composition is also similarly exhibited. Further, even when a new element is added, the rare earth element alone contributes to the improvement of cycle characteristics as segregation, so that the same effect can be obtained.
【0041】(実施例3)以上の実施例から明らかなよ
うに、希土類元素を添加することによって、高容量で、
サイクル性に優れた水素吸蔵合金電極が得られることが
わかった。この希土類元素は作用の欄で述べたとおり、
若干のNiとともに母相とは別に存在している。この分
布状態が電極特性にどのように影響をもたらすかを検討
した。(Embodiment 3) As is clear from the above embodiment, by adding a rare earth element, a high capacity can be obtained.
It was found that a hydrogen storage alloy electrode having excellent cycleability can be obtained. This rare earth element, as described in the section of action,
It exists separately from the parent phase together with some Ni. We examined how this distribution condition affects the electrode characteristics.
【0042】Ti0.4(V0.5Cr0.5)0.6Ni0.1La
0.07の組成の合金を、高周波溶解の後、鉄製の鋳型で鋳
造したもの、ガスアトマイズ法によって粉末化したも
の、水冷双ロール法でリボン状にしたものを作製した。Ti 0.4 (V 0.5 Cr 0.5 ) 0.6 Ni 0.1 La
An alloy having a composition of 0.07 was melted by high frequency and then cast in an iron mold, powdered by a gas atomizing method, and ribbon-shaped by a water-cooled twin roll method.
【0043】これらの合金をEPMAによって分析した
ところ、鋳造品は希土類の第2相が5〜10μmの大き
な塊としてまばらに分布しているのに対し、ガスアトマ
イズや双ロール法による合金では、数μm以下となっ
て、細かく分散している。さらに、これらの合金を実施
例1と同様の方法で電極特性を評価した。When these alloys were analyzed by EPMA, the second phase of the rare earth was sparsely distributed as a large lump of 5 to 10 μm in the cast product, whereas it was several μm in the alloy by the gas atomization or twin roll method. It becomes the following and is dispersed finely. Further, the electrode characteristics of these alloys were evaluated in the same manner as in Example 1.
【0044】その結果を図6に示すが、偏析相が大きい
鋳造品は希土類添加効果が少なく、サイクル劣化が大き
くなったのに対し、ガスアトマイズや双ロール製の合金
はよいサイクル特性を示した。したがって、ガスアトマ
イズの冷却速度は103〜105℃/s程度、双ロール法
の冷却速度は105〜107℃/s程度であるので、合金
作製においては103℃/s以上の冷却速度で冷却する
ことによって希土類元素の分散がよくなり、サイクル特
性が向上する。これ以上の冷却速度で冷却しても特性に
それほど変化はないと考えられるが、このような超急冷
法はあまり一般的ではないのでコストなどの面を考える
と実用には向いていないと考えられる。したがって、実
用的なコストで量産もでき、電極特性にも優れる合金を
作製するためには、冷却速度を103〜107℃/s程度
にすることが必要である。The results are shown in FIG. 6. In the cast product having a large segregation phase, the effect of rare earth addition was small and the cycle deterioration was large, whereas the gas atomized and twin roll alloys showed good cycle characteristics. Therefore, the cooling rate is 10 3 ~10 5 ℃ / s about gas atomization, the cooling rate of the twin roll method is 10 5 ~10 7 ℃ / s or so, the cooling rate of more than 10 3 ° C. / s in the alloy produced Cooling improves the dispersion of rare earth elements and improves cycle characteristics. It is considered that the characteristics do not change so much even if it is cooled at a cooling rate higher than this, but it is considered that it is not suitable for practical use in view of cost etc. because such a super-quenching method is not so common. . Therefore, in order to produce an alloy that can be mass-produced at a practical cost and has excellent electrode characteristics, it is necessary to set the cooling rate to about 10 3 to 10 7 ° C / s.
【0045】[0045]
【発明の効果】上記実施例から明らかなように、本発明
の水素吸蔵合金電極は従来の水素吸蔵合金電極の合金組
成にLa、Ceの内の少なくとも1種、あるいはLa,
Ceを含む希土類元素の混合物(ミッシュメタル)を添
加することにより、高い放電容量と優れたサイクル特性
を有する。As is apparent from the above embodiments, the hydrogen storage alloy electrode of the present invention has at least one of La and Ce as the alloy composition of the conventional hydrogen storage alloy electrode, or La and Ce.
By adding a mixture of rare earth elements containing Ce (Misch metal), it has a high discharge capacity and excellent cycle characteristics.
【図1】本発明の一実施例におけるLaの添加量と電極
のサイクル特性を示した図FIG. 1 is a diagram showing the amount of La added and the cycle characteristics of electrodes in an example of the present invention.
【図2】本発明の添加する希土類元素によるサイクル特
性の変化を示す図FIG. 2 is a diagram showing changes in cycle characteristics due to the rare earth element added in the present invention.
【図3】本発明のVとCrの原子比率aと最大放電容量
の関係を示す図FIG. 3 is a diagram showing the relationship between the atomic ratio a of V and Cr and the maximum discharge capacity of the present invention.
【図4】本発明のTi量xと最大放電容量の関係を示す
図FIG. 4 is a diagram showing the relationship between the Ti amount x and the maximum discharge capacity of the present invention.
【図5】本発明のNi量cと最大放電容量の関係を示す
図FIG. 5 is a diagram showing the relationship between the Ni amount c and the maximum discharge capacity of the present invention.
【図6】本発明の合金の製法によるサイクル特性を比較
した図FIG. 6 is a diagram comparing the cycle characteristics according to the manufacturing method of the alloy of the present invention.
───────────────────────────────────────────────────── フロントページの続き (72)発明者 山田 敏弘 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 (72)発明者 豊口 吉徳 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 ─────────────────────────────────────────────────── ─── Continuation of front page (72) Inventor Toshihiro Yamada 1006 Kadoma, Kadoma City, Osaka Prefecture Matsushita Electric Industrial Co., Ltd.
Claims (6)
方構造を有する水素吸蔵合金において、合金中にLa、
Ceの内の少なくとも一種類を含む希土類元素の混合物
(ミッシュメタル)を1〜10原子%含有することを特
徴とする水素吸蔵合金。1. A hydrogen storage alloy having a body-centered cubic structure mainly composed of Ti, V, Cr and Ni, wherein La,
A hydrogen storage alloy, characterized by containing 1 to 10 atom% of a mixture of rare earth elements (Misch metal) containing at least one of Ce.
ic(0.5≦a≦0.95,0.01≦b≦0.1,
0.1≦c≦0.6,0.2≦x≦0.4、Mは、L
a、Ceの内の少なくとも一種類あるいはLa、Ceを
含む希土類元素の混合物(ミッシュメタル))で示さ
れ、合金相の主成分が体心立方構造である水素吸蔵合
金。2. The general formula is Ti x (V a Cr 1-a ) 1-x M b N
i c (0.5 ≦ a ≦ 0.95, 0.01 ≦ b ≦ 0.1,
0.1 ≦ c ≦ 0.6, 0.2 ≦ x ≦ 0.4, M is L
A hydrogen storage alloy which is represented by a mixture of at least one of a and Ce or a rare earth element containing La and Ce (Misch metal), and whose main component of the alloy phase is a body-centered cubic structure.
を含むことを特徴とする請求項1または2記載の水素吸
蔵合金。3. The hydrogen storage alloy according to claim 1, wherein the alloy phase contains a second phase mainly composed of a rare earth element.
冷却速度で急冷することを特徴とする請求項1または2
記載の水素吸蔵合金の製造法。4. After dissolving the alloy material, according to claim 1 or 2, characterized in that quenching at a cooling rate of 10 3 ~10 7 ℃ / sec
A method for producing the hydrogen storage alloy described.
粉末として製造されることを特徴とする請求項1または
2記載の水素吸蔵合金の製造法。5. The method for producing a hydrogen storage alloy according to claim 1, wherein the alloy material is produced as fine powder by a quench granulation method after melting.
合金、または請求項4または5記載の製造法による水素
吸蔵合金もしくはその水素化物を構成要素とする水素吸
蔵合金電極。6. A hydrogen storage alloy electrode comprising the hydrogen storage alloy according to any one of claims 1 to 4 or the hydrogen storage alloy according to claim 4 or 5 or a hydride thereof as a constituent element.
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP19850195A JP3307176B2 (en) | 1995-07-18 | 1995-08-03 | Hydrogen storage alloy, method for producing the same, and hydrogen storage alloy electrode using the same |
DE69608182T DE69608182T2 (en) | 1995-07-18 | 1996-07-11 | Hydrogen-storing alloy and electrode made of it |
EP96111200A EP0755898B1 (en) | 1995-07-18 | 1996-07-11 | Hydrogen storage alloy and electrode therefrom |
US08/683,559 US5738736A (en) | 1995-07-18 | 1996-07-15 | Hydrogen storage alloy and electrode therefrom |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP7-181290 | 1995-07-18 | ||
JP18129095 | 1995-07-18 | ||
JP19850195A JP3307176B2 (en) | 1995-07-18 | 1995-08-03 | Hydrogen storage alloy, method for producing the same, and hydrogen storage alloy electrode using the same |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH0987781A true JPH0987781A (en) | 1997-03-31 |
JP3307176B2 JP3307176B2 (en) | 2002-07-24 |
Family
ID=26500540
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP19850195A Expired - Fee Related JP3307176B2 (en) | 1995-07-18 | 1995-08-03 | Hydrogen storage alloy, method for producing the same, and hydrogen storage alloy electrode using the same |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3307176B2 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6048644A (en) * | 1997-03-24 | 2000-04-11 | Matsushita Electric Industrial Co., Ltd. | Hydrogen storage alloy electrode |
US6419764B1 (en) * | 1999-06-21 | 2002-07-16 | Aisin Seiki Kabushiki Kaisha | Hydrogen storage material |
JP2015520798A (en) * | 2012-04-19 | 2015-07-23 | オヴォニック バッテリー カンパニー インコーポレイテッド | Metal hydride alloys with improved activity and high speed performance |
-
1995
- 1995-08-03 JP JP19850195A patent/JP3307176B2/en not_active Expired - Fee Related
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6048644A (en) * | 1997-03-24 | 2000-04-11 | Matsushita Electric Industrial Co., Ltd. | Hydrogen storage alloy electrode |
US6419764B1 (en) * | 1999-06-21 | 2002-07-16 | Aisin Seiki Kabushiki Kaisha | Hydrogen storage material |
JP2015520798A (en) * | 2012-04-19 | 2015-07-23 | オヴォニック バッテリー カンパニー インコーポレイテッド | Metal hydride alloys with improved activity and high speed performance |
Also Published As
Publication number | Publication date |
---|---|
JP3307176B2 (en) | 2002-07-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6030724A (en) | Hydrogen-storage alloy and alkali secondary battery using same | |
JP2951331B2 (en) | Active material for hydrogen storage electrode, method for forming the same, and electrochemical application | |
JPH0514017B2 (en) | ||
US5738736A (en) | Hydrogen storage alloy and electrode therefrom | |
JP3992075B1 (en) | Hydrogen storage alloy and electrode for nickel-hydrogen battery | |
JPWO2003054240A1 (en) | Hydrogen storage alloy, hydrogen storage alloy powder, production method thereof, and negative electrode for nickel metal hydride secondary battery | |
JP4121711B2 (en) | Hydrogen storage metal-containing material and method for producing the same | |
JP3307176B2 (en) | Hydrogen storage alloy, method for producing the same, and hydrogen storage alloy electrode using the same | |
JPS5944748B2 (en) | Chikudenchi | |
JPH0953136A (en) | Hydrogen storage alloy and hydrogen storage alloy electrode | |
JPH11217643A (en) | New hydrogen storage alloy and hydrogen electrode using the alloy | |
JPH0765833A (en) | Hydrogen storage alloy electrode | |
WO2003056047A1 (en) | Hydrogen-occluding alloy, powder of hydrogen-occluding alloy, processes for producing these, and negative electrode for nickel-hydrogen secondary battery | |
JP3141140B2 (en) | Method for producing hydrogen storage alloy for battery | |
JP3449670B2 (en) | Hydrogen storage alloy electrode and method for producing the same | |
JP2828680B2 (en) | Hydrogen storage alloy electrode | |
JP3454615B2 (en) | Hydrogen storage alloy electrode and method for producing the same | |
JP2989356B2 (en) | Hydrogen storage alloy electrode | |
JPH09274912A (en) | Hydrogen storage electrode | |
JPH0949034A (en) | Production of hydrogen storage alloy | |
JPH04126361A (en) | Manufacture of hydrogen absorbing alloy powder for storage battery and hydrogen absorbing electrode | |
JP2715434B2 (en) | Hydrogen storage alloy electrode | |
JPH0953135A (en) | Hydrogen storage alloy and hydrogen storage alloy electrode | |
JPH0949040A (en) | Hydrogen storage alloy and hydrogen storage alloy electrode | |
JPH08236111A (en) | Nickel-hydrogen storage battery |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
LAPS | Cancellation because of no payment of annual fees |