JPH0987741A - Production of iron-nickel base invar alloy thin sheet for shadow mask excellent in sheet shape and heat shrinkage resistance - Google Patents

Production of iron-nickel base invar alloy thin sheet for shadow mask excellent in sheet shape and heat shrinkage resistance

Info

Publication number
JPH0987741A
JPH0987741A JP24623195A JP24623195A JPH0987741A JP H0987741 A JPH0987741 A JP H0987741A JP 24623195 A JP24623195 A JP 24623195A JP 24623195 A JP24623195 A JP 24623195A JP H0987741 A JPH0987741 A JP H0987741A
Authority
JP
Japan
Prior art keywords
tension
shadow mask
annealing
alloy thin
thin sheet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP24623195A
Other languages
Japanese (ja)
Inventor
Tomoaki Hyodo
知明 兵藤
Katsuhisa Yamauchi
克久 山内
Masaki Omura
雅紀 大村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
NKK Corp
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NKK Corp, Nippon Kokan Ltd filed Critical NKK Corp
Priority to JP24623195A priority Critical patent/JPH0987741A/en
Publication of JPH0987741A publication Critical patent/JPH0987741A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To produce an alloy thin sheet excellent in the sheet shape and anti-heat-shrinkability and suitable for a high precision shadow mask, at the tie of subjecting an Fe-Ni base invar alloy thin sheet for a shadow mask to stress relieving annealing, by applying specified tension to the alloy thin sheet. SOLUTION: The Fe-Ni base invar alloy thin sheet is subjected to stress relieving annealing in such a manner that tension of 5 to 45% of 0.2% proof stress thereof in the stress relieving annealing temp. is applied thereto. Since the steeping degree (%) of the parameter expressing the flattening degree of the thin sheet needed as the stock for a shadow mask = height (mm)/pitch (mm) × 100 is regulated to <=0.5%, the ratio of the tension/proof need to be regulated to >=0.05. Namely, there occurs the need that the annealing is executed in such a manner that tension of 5 to 45% of 0.2% proof stress of the above alloy thin sheet in the annealing temp. is applied thereto. Moreover, if the ratio of the tension/proof stress increases, its heat shrinkability increases. Since heat shrinkability needed as that of the stock for a shadow mask is <=0.08%, the ratio of the tension/proof stress need to be regulated to <=0.45. Namely, it is necessary that the annealing is executed in such a manner that tension of <=45% of 0.2% proof stress of the above alloy thin sheet in the annealing temp. is applied thereto.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、テレビジョンやコ
ンピュータディスプレイに使用されるシャドウマスク用
として使用されるFeーNi系アンバー合金薄板の製造
方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing an Fe-Ni based amber alloy thin plate used for a shadow mask used in a television or a computer display.

【0002】[0002]

【従来の技術】シャドウマスクは、テレビジョンおよび
コンピュータディスプレイのブラウン管に配設されてお
り、電子銃から発射された電子ビームをガラス体によっ
て支持された蛍光面上の所定の点に正確に照射するため
の細孔を有している。この時、発射されたビームのうち
蛍光体に照射される量は約2割で、残りの約8割はシャ
ドウマスクに衝突してしまうため、シャドウマスクは蛍
光面を支持するガラス体に比べて高温になる。
2. Description of the Related Art A shadow mask is arranged in a cathode ray tube of a television and a computer display and accurately irradiates an electron beam emitted from an electron gun to a predetermined point on a fluorescent surface supported by a glass body. Has pores for. At this time, about 20% of the emitted beam is applied to the phosphor, and about 80% of the remaining beam collides with the shadow mask. Therefore, the shadow mask is compared to the glass body that supports the phosphor screen. It gets hot.

【0003】シャドウマスク本体が高温になると、シャ
ドウマスク用素材として従来より用いられてきた低炭素
リムド鋼や低炭素アルミキルド鋼等の軟鋼板の場合は、
蛍光面を支持するガラス体に比べて熱膨張率がはるかに
大きいため、相互に位置ずれを生じて電子ビームを蛍光
面上の所定の点へ正確に照射することができなくなり、
画像が不鮮明になることが多かった。
When the shadow mask body is heated to a high temperature, in the case of a mild steel plate such as low carbon rimmed steel or low carbon aluminum killed steel which has been conventionally used as a material for a shadow mask,
Since the coefficient of thermal expansion is much larger than that of the glass body that supports the phosphor screen, it becomes impossible to precisely irradiate the electron beam to a predetermined point on the phosphor screen by causing a positional deviation between each other.
Images were often blurred.

【0004】画像が不鮮明になることを防止するため
に、シャドウマスクの懸架装置となる支持体の構造を工
夫して、相互の位置ずれを補償することも試みられてい
るが、必ずしも十分ではなかった。
In order to prevent the image from becoming unclear, attempts have been made to compensate for the mutual positional deviation by devising the structure of the support body that serves as a suspension system for the shadow mask, but this is not always sufficient. It was

【0005】こうした背景の下で、シャドウマスク用素
材として、36wt%前後のNiを含有するFeーNi
系合金いわゆるアンバー合金が検討され、現在その使用
が拡大しつつある。この合金は従来の低炭素鋼に比べて
熱膨張係数が約1/10と小さいため、電子ビームによ
って加熱されても、熱膨張による色ずれが生じ難く、高
輝度型画面に適している。
Against this background, Fe-Ni containing about 36 wt% Ni as a shadow mask material is used.
System alloys, so-called amber alloys, have been studied and their use is currently expanding. Since this alloy has a small thermal expansion coefficient of about 1/10 as compared with the conventional low carbon steel, color shift due to thermal expansion hardly occurs even when heated by an electron beam, and it is suitable for a high brightness type screen.

【0006】シャドウマスク用FeーNi系アンバー合
金薄板は、通常、連続鋳造法または造塊法によって溶製
され、次いで、造塊法の場合は分塊圧延、熱間圧延、冷
間圧延、焼鈍が施されて製造される。そして、この合金
薄板は、フォトエッチング加工で電子ビームの通過孔が
形成された後、焼鈍、成形加工および黒化処理等が施さ
れてシャドウマスクとなる。
The Fe-Ni type amber alloy thin plate for shadow mask is usually melted by a continuous casting method or an ingot making method, and then, in the case of the ingot making method, slabbing rolling, hot rolling, cold rolling and annealing. Is manufactured. Then, this alloy thin plate is subjected to photoetching processing to form electron beam passage holes, and then subjected to annealing, molding processing, blackening processing, etc. to form a shadow mask.

【0007】一方、テレビジョン画面の大型化およびコ
ンピュータディスプレイへの適用拡大とともに、ブラウ
ン管に対する画像のきめ細かさや高輝度化への要求が一
段と高まり、位置ずれ、色ずれの問題が顕在化してき
た。このために電子ビームの通過孔をより微細で高精度
に穿孔するようなエッチング加工が必要になってきてお
り、例えば、コンピュータディスプレイに使用される高
精細シャドウマスクでは、板厚0.15mm以下の素材
が使用され、直径120μmの孔が270μmピッチの
ファインピッチで穿孔されている。
On the other hand, as television screens have become larger and their application to computer displays has expanded, demands for finer image quality and higher brightness for CRTs have further increased, and the problems of positional deviation and color misregistration have become apparent. For this reason, it has become necessary to carry out an etching process for making a hole for passing an electron beam finer and with higher precision. A material is used, and holes having a diameter of 120 μm are formed at a fine pitch of 270 μm pitch.

【0008】このようにシャドウマスクのエッチング孔
には高い精度が必要とされるため、エッチング前の原板
に対しては、良好な板形状すなわち平坦であることが要
求される。また、エッチング後熱処理とプレス成形が繰
り返して施されるので、寸法変化(熱収縮)が小さいこ
とも必要とされる。熱収縮が大きい場合には、プレス成
形後におけるエッチング孔径の縦と横の比率がエッチン
グ直後の縦横比からずれるため、解像度不良の一因とな
る。
As described above, since the etching hole of the shadow mask requires high precision, the original plate before etching is required to have a good plate shape, that is, flat. In addition, since post-etching heat treatment and press molding are repeatedly performed, it is also necessary that the dimensional change (heat shrinkage) is small. If the heat shrinkage is large, the vertical to horizontal ratio of the etching hole diameter after press molding deviates from the vertical to horizontal ratio immediately after etching, which is one cause of poor resolution.

【0009】図3に、シャドウマスク素材のプレス型へ
の設置方法を模式的に示す。図の左図は位置決め穴のつ
いたシャドウマスク素材を示す図である。図の右図はプ
レス型に設けられた位置決めガイドにシャドウマスク素
材の位置決め穴を合わせて、シャドウマスク素材をプレ
ス型に設置したところを示す図である。
FIG. 3 schematically shows a method of installing the shadow mask material in the press die. The left view of the figure shows a shadow mask material with positioning holes. The right side of the figure is a view showing a position where the shadow mask material is set in the press die by aligning the positioning hole of the shadow mask material with the positioning guide provided in the press die.

【0010】シャドウマスク素材の熱収縮が大きいと、
素材の位置決め穴の位置がプレス型の位置決めガイドか
らずれて、がたつきが生じ、生産性を損なう問題も生じ
る。
When the heat shrinkage of the shadow mask material is large,
The position of the positioning hole of the material is displaced from the positioning guide of the press die, causing rattling, which causes a problem of impairing productivity.

【0011】これまで、シャドウマスク原板の平坦性を
高めるための形状矯正については、アルミキルド鋼を対
象としたものではあるが、特開平2ー175820号公
報に開示されている。それによると、冷間圧延時の圧下
率を70〜85%とし、歪み取り焼鈍の焼鈍温度を45
0〜500℃と規定することにより、冷間圧延後の板形
状が改善される。
Up to now, the shape correction for improving the flatness of the shadow mask original plate is intended for aluminum killed steel, but it is disclosed in Japanese Patent Laid-Open No. 175820/1990. According to this, the rolling reduction during cold rolling was 70 to 85%, and the annealing temperature for strain relief annealing was 45.
By defining 0 to 500 ° C, the plate shape after cold rolling is improved.

【0012】熱収縮の低下と板形状の改善については、
リードフレーム用素材を対象としたものであるが、特開
平6ー271936号公報に開示されている。それによ
ると、炭素、窒素、クロム、ボロンなどを微量添加し、
さらにニオブ、ジルコニウム、銅、チタンなどを単独ま
たは複合で添加することで硬度を高め、720〜950
℃で再結晶焼鈍し、20%以上の圧下率で冷間圧延し、
0.3〜8.0kgf/mm2 の張力下で650〜80
0℃の焼鈍温度で10秒以上のテンションアニールを行
うことにより、板形状と耐熱収縮性が改善される。
Regarding reduction of heat shrinkage and improvement of plate shape,
Although it is intended for a lead frame material, it is disclosed in JP-A-6-271936. According to it, carbon, nitrogen, chromium, boron, etc. are added in trace amounts,
Further, niobium, zirconium, copper, titanium and the like are added individually or in combination to increase the hardness, and the hardness is increased to 720 to 950.
Recrystallization annealing at ℃, cold rolling at a reduction rate of 20% or more,
650 to 80 under tension of 0.3 to 8.0 kgf / mm 2.
By performing the tension annealing for 10 seconds or more at the annealing temperature of 0 ° C., the plate shape and the heat shrinkage resistance are improved.

【0013】また、同様にリードフレーム用素材を対象
としたものであるが、特開平6−216304号公報に
は、最終の焼鈍を温度530〜700℃、好ましくは6
30〜670℃、張力3kgf/mm2 以下、好ましく
は1kgf/mm2 以下の条件でテンションアニールす
ることで、歪みとバネ限界値を向上させ、二段プレスの
中間で行う焼鈍時の熱収縮を抑える技術が開示されてい
る。
Similarly, although it is intended for a lead frame material, in JP-A-6-216304, the final annealing is performed at a temperature of 530 to 700 ° C., preferably 6
By performing tension annealing under the conditions of 30 to 670 ° C. and a tension of 3 kgf / mm 2 or less, preferably 1 kgf / mm 2 or less, the strain and the spring limit value are improved, and the heat shrinkage during annealing performed in the middle of the two-stage press is performed. Techniques for suppressing are disclosed.

【0014】[0014]

【発明が解決しようとする課題】しかしながら、上記特
許公報に記載の技術を、高精度の微細エッチング孔が穿
孔されるシャドウマスク用Fe−Ni系アンバー合金薄
板に適用しても、板形状と熱収縮性を改善することは、
次のような理由で不十分であった。
However, even if the technique described in the above-mentioned patent application is applied to a Fe—Ni-based amber alloy thin plate for a shadow mask in which highly precise fine etching holes are formed, the plate shape and heat Improving contractility is
It was insufficient for the following reasons.

【0015】特開平2−175820号公報に記載の方
法では、板形状は歪み取り焼鈍条件を規定することによ
り改善されるが、熱収縮性は改善されない。
In the method described in Japanese Patent Application Laid-Open No. 2-175820, the plate shape is improved by defining the strain relief annealing conditions, but the heat shrinkability is not improved.

【0016】特開平6−271936号公報と特開平6
−216304号公報に記載の技術は、いずれもリード
フレームの未再結晶熱処理後の熱収縮を改善しようとし
たものである。すなわち、冷間圧延時に発生した残留歪
みを張力付与によって除去すると同時に、圧延方向の残
留圧縮応力の減少を通じて熱収縮を抑制する。このこと
は、張力がある限度未満では残留圧縮応力を緩和できな
いため熱収縮を防止できないと記載されていることも考
慮すると、テンションアニールの張力を増加するほど熱
収縮を抑制できることを意味している。
Japanese Unexamined Patent Publication No. Hei 6-271936 and Japanese Unexamined Patent Publication No.
The techniques described in Japanese Patent Laid-Open No. 216304 all attempt to improve the heat shrinkage of the lead frame after the heat treatment for non-recrystallization. That is, residual strain generated during cold rolling is removed by applying tension, and at the same time, thermal shrinkage is suppressed by reducing residual compressive stress in the rolling direction. This means that the thermal shrinkage can be suppressed as the tension of tension annealing is increased, considering that the thermal shrinkage cannot be prevented because the residual compressive stress cannot be relaxed if the tension is less than a certain limit. .

【0017】ところが、シャドウマスクのように、再結
晶焼鈍しプレス加工が容易なように軟化させる用途で
は、テンションアニールにおける張力を増加するほど再
結晶焼鈍後の熱収縮が増加する。これは再結晶によって
結晶粒およびそれらの粒界にテンションアニール時導入
された転位などに起因するミクロな残留応力が解放され
るためである。このようなミクロな残留応力に起因する
熱収縮は張力が高いほど増加する。したがって、リード
フレームにおける未再結晶温度以下の熱処理をそのまま
シャドウマスクの場合に適用できない。
However, in applications such as shadow masks where recrystallization annealing is performed to soften the material so that it can be easily pressed, heat shrinkage after recrystallization annealing increases as the tension in tension annealing increases. This is because recrystallization releases microscopic residual stress caused by dislocations introduced into crystal grains and their grain boundaries during tension annealing. The heat shrinkage due to such micro residual stress increases as the tension increases. Therefore, the heat treatment at the unrecrystallized temperature or lower in the lead frame cannot be directly applied to the shadow mask.

【0018】さらに、これらの技術は製品寸法が100
mm程度の長さのリードフレーム素材に適用されるの
で、一定の張力以下でテンションアニールを行い未再結
晶温度での熱収縮を防止できれば、板形状については配
慮する必要はない。ところが、シャドウマスク素材は大
型のブラウン管に使用されるため600〜800mm以
上の寸法で厳しい板形状の管理が必要とされ、これらの
技術を転用し、熱収縮抑制のために張力を小さくすれば
板形状が悪化するという問題もあった。
Further, these techniques have a product size of 100.
Since it is applied to a lead frame material having a length of about mm, it is not necessary to consider the plate shape as long as tension annealing can be performed at a certain tension or less to prevent thermal contraction at a non-recrystallization temperature. However, since the shadow mask material is used for a large CRT, it is necessary to strictly control the plate shape with a dimension of 600 to 800 mm or more. If these techniques are diverted and the tension is reduced to suppress heat shrinkage, the plate can be reduced. There was also a problem that the shape deteriorates.

【0019】また、特開平6−271936号公報に記
載の方法には、次のような問題もある。すなわち、ニオ
ブやジルコニウムなどの微量元素を単独または複合で添
加しているが、これらの元素はシャドウマスクの黒化処
理性を損なう。こうした元素を添加しないと、Hv17
0以下の低硬度になり、シャドウマスク用としては適当
でない。
Further, the method described in Japanese Patent Laid-Open No. 6-271936 has the following problems. That is, trace elements such as niobium and zirconium are added alone or in combination, but these elements impair the blackening processability of the shadow mask. If these elements are not added, Hv17
It has a low hardness of 0 or less and is not suitable for a shadow mask.

【0020】本発明はこのような課題を解決するために
なされたもので、高精細シャドウマスク用として好適な
板形状および耐熱収縮性に優れたFeーNi系アンバー
合金薄板の製造方法を提供することを目的とする。
The present invention has been made to solve such problems, and provides a method for producing a Fe-Ni-based amber alloy thin plate which is suitable for a high-definition shadow mask and has excellent heat shrinkage resistance. The purpose is to

【0021】[0021]

【課題を解決するための手段】上記課題は、シャドウマ
スク用FeーNi系アンバー合金薄板の歪み取り焼鈍に
おいて、前記歪み取り焼鈍温度における前記FeーNi
系アンバー合金薄板の0.2%耐力の5〜45%の張力
を与えて歪み取り焼鈍することを特徴とする板形状およ
び耐熱収縮性に優れたシャドウマスク用FeーNi系ア
ンバー合金薄板の製造方法により解決される。
Means for Solving the Problems The above-mentioned problems are solved in the above-mentioned Fe-Ni at the strain-relief annealing temperature in the strain-relief annealing of Fe-Ni-based amber alloy thin plates for shadow masks.
Of Fe-Ni type amber alloy thin plate for shadow mask excellent in plate shape and heat shrinkage characterized by applying strain of 5 to 45% of 0.2% proof stress of amber type amber alloy thin plate and annealing Be solved by the method.

【0022】図1は、FeーNi系アンバー合金薄板の
歪み取り焼鈍後の急峻度と、焼鈍時に与えた張力と焼鈍
温度におけるFeーNi系アンバー合金薄板の0.2%
耐力の比(以下、張力/耐力比と呼ぶ)との関係を示
す。
FIG. 1 shows the steepness of a Fe—Ni-based amber alloy sheet after strain relief annealing, and 0.2% of the Fe—Ni-based amber alloy sheet at the tension and annealing temperature applied during annealing.
The relationship with the yield strength ratio (hereinafter referred to as the tension / bearing strength ratio) is shown.

【0023】ここで、急峻度は、歪み取り焼鈍後の薄板
の耳波あるいは中伸びの高さとピッチを測定し、次式に
より定義される。
Here, the steepness is defined by the following equation, which is obtained by measuring the height and pitch of the ear wave or medium elongation of the thin plate after the strain relief annealing.

【0024】 急峻度(%)=高さ(mm)/ピッチ(mm)×100 薄板の平坦度を表すパラメータで、急峻度が低いほど平
坦性に優れる。
Steepness (%) = Height (mm) / Pitch (mm) × 100 A parameter that represents the flatness of a thin plate. The lower the steepness, the better the flatness.

【0025】焼鈍温度が570℃、610℃、650℃
いずれの場合も、張力/耐力比が高くなると急峻度は低
下する。
Annealing temperatures are 570 ° C., 610 ° C. and 650 ° C.
In either case, the steepness decreases as the tension / proof strength ratio increases.

【0026】シャドウマスク用素材として必要な急峻度
は、別途検討したところ、0.5%以下であったので、
張力/耐力比は0.05以上にする必要がある。すなわ
ち、焼鈍温度におけるFeーNi系アンバー合金薄板の
0.2%耐力の5%以上の張力を与えて歪み取り焼鈍す
る必要がある。
The steepness required as a material for the shadow mask was 0.5% or less when examined separately.
The tension / proof stress ratio must be 0.05 or more. That is, it is necessary to give a tension of 5% or more of the 0.2% proof stress of the Fe—Ni-based amber alloy thin plate at the annealing temperature to perform strain relief annealing.

【0027】張力/耐力比が高くなると急峻度は低下す
る理由は、冷間圧延後に板幅方向に存在する中伸びなど
の歪みが、焼鈍時に張力を付与することによって局部的
な降伏伸びを生じ均一に伸ばされるためと考えられる。
なお、急峻度と張力/耐力比の関係には、焼鈍温度の影
響がないことがわかる。
The reason why the steepness decreases with an increase in the tension / proof stress ratio is that strain such as medium elongation existing in the sheet width direction after cold rolling causes local yield elongation by applying tension during annealing. It is thought that this is because it is stretched uniformly.
It is understood that the relationship between the steepness and the tension / proof strength ratio is not affected by the annealing temperature.

【0028】図2に、FeーNi系アンバー合金薄板の
歪み取り焼鈍後の熱収縮率と張力/耐力比との関係を示
す。
FIG. 2 shows the relationship between the heat shrinkage ratio and the tension / proof stress ratio of the Fe-Ni amber alloy sheet after strain relief annealing.

【0029】ここで、熱収縮率は、歪み取り焼鈍後の薄
板の板幅中央部と端部から100mmの部分から、薄板
の長手方向に300mm(l)×100mm(w)×板
厚(t)の試験片を採取し、シャドウマスク成形前の焼
鈍工程をシミュレートした850〜900℃×30分間
の熱処理を行い、熱処理前後の試験片の長さの差と熱処
理前の試験片の長さの比を板幅中央部と端部に対してそ
れぞれ求め、両者を平均した値である。
Here, the heat shrinkage is 300 mm (l) × 100 mm (w) × thickness (t) in the longitudinal direction of the thin plate from the portion 100 mm from the center and the end of the sheet width after the strain relief annealing. ), The heat treatment at 850 to 900 ° C. for 30 minutes simulating the annealing step before shadow mask formation is performed, and the difference in the length of the test piece before and after the heat treatment and the length of the test piece before the heat treatment are performed. Is a value obtained by averaging the two values obtained for the central portion and the end portion of the plate width.

【0030】焼鈍温度が570℃、610℃、650℃
いずれの場合も、張力/耐力比が高くなると熱収縮率が
増加する。また、急峻度の場合と同様、熱収縮率にも焼
鈍温度の影響がない。
Annealing temperatures are 570 ° C., 610 ° C. and 650 ° C.
In either case, the thermal contraction rate increases as the tension / proof stress ratio increases. Further, as in the case of steepness, the thermal shrinkage is not affected by the annealing temperature.

【0031】シャドウマスク用素材として必要な熱収縮
率は、別途検討したところ、0.08%以下であったの
で、張力/耐力比は0.45以下にする必要がある。す
なわち、焼鈍温度におけるFeーNi系アンバー合金薄
板の0.2%耐力の45%以下の張力を与えて歪み取り
焼鈍する必要がある。
The heat shrinkage ratio required as the material for the shadow mask was 0.08% or less when examined separately, so that the tension / proof stress ratio needs to be 0.45 or less. That is, it is necessary to give a tension of 45% or less of the 0.2% proof stress of the Fe-Ni-based amber alloy thin plate at the annealing temperature to perform strain relief annealing.

【0032】熱収縮の発生の詳細なメカニズムは不明で
あるが、張力が付与されることによって、転位などの微
小な歪みが結晶粒界や結晶粒に蓄積され、シャドウマス
ク製造工程の再結晶焼鈍において、このミクロな残留応
力が解放され熱収縮を引き起こすと考えられる。なお、
ミクロな残留応力の発生源としては、 1)結晶粒の異方性によるもの、(結晶の熱膨張係数、
弾性定数などの異方性や結晶粒間の方位差)、 2)結晶粒内外での塑性変形によるもの、 3)不純物、析出物、あるいは変態による異相の出現、
などが考えられる(引用:米谷茂:残留応力の発生と対
策, P13[養賢堂])。
Although the detailed mechanism of the occurrence of heat shrinkage is unknown, a minute strain such as dislocation is accumulated in the crystal grain boundaries and crystal grains by applying tension, and recrystallization annealing in the shadow mask manufacturing process is performed. At, it is considered that this micro residual stress is released and causes thermal contraction. In addition,
Sources of micro residual stress are as follows: 1) due to anisotropy of crystal grains, (coefficient of thermal expansion of crystal,
Anisotropy such as elastic constant and misorientation between crystal grains), 2) plastic deformation inside and outside the crystal grains, 3) appearance of impurities, precipitates, or different phases due to transformation,
(Quotation: Shigeru Yoneya: Occurrence and Countermeasures for Residual Stress, P13 [Yokendo]).

【0033】[0033]

【発明の実施の形態】本発明におけるFeーNi系アン
バー合金としては、アンバー特性を示すFeーNi系合
金であればどんな成分系の合金でも適用可能である。
BEST MODE FOR CARRYING OUT THE INVENTION As the Fe-Ni-based amber alloy in the present invention, any component-based alloy can be applied as long as it is an Fe-Ni-based alloy exhibiting an amber characteristic.

【0034】通常は、Niを32〜38wt%含むFe
ーNi合金や、それにCoなどを添加したFeーNi系
合金が良く用いられる。Coを添加した場合は、アンバ
ー特性を確保するために、(Ni+Co)量を30〜3
8wt%にし、かつ、エッチング性を損なわないため
に、Co量を7wt%以下にすることが望ましい。
Usually, Fe containing 32 to 38 wt% of Ni
-Ni alloys and Fe-Ni alloys with Co added thereto are often used. When Co is added, the amount of (Ni + Co) is 30 to 3 in order to secure the amber characteristic.
It is desirable that the amount of Co be 7 wt% or less so that the amount of Co is 8 wt% and the etching property is not impaired.

【0035】Siは脱酸剤として必要であるが、焼鈍時
に表面に形成されるSiの酸化物が、プレス時に型かじ
りを引き起こす場合があるので、0.07wt%以下に
することが望ましい。
Si is necessary as a deoxidizing agent, but since the oxide of Si formed on the surface during annealing may cause galling during pressing, it is preferably 0.07 wt% or less.

【0036】Mnは、不純物元素Sによる熱間加工性の
劣化を防止するため0.1wt%以上含有させること
が、また、シャドウマスクの黒化膜の黒色度を低下させ
ないために0.5wt%以下にすることが望ましい。
Mn should be contained in an amount of 0.1 wt% or more in order to prevent deterioration of hot workability due to the impurity element S, and 0.5 wt% in order not to reduce the blackness of the blackened film of the shadow mask. The following is desirable.

【0037】こうしたFeーNi系合金の溶製には、成
分偏析や異常組織の発生防止のため、電磁攪拌などの処
理を行うことが望ましい。
In the melting of such an Fe-Ni alloy, it is desirable to perform a treatment such as electromagnetic stirring in order to prevent the occurrence of component segregation and abnormal structure.

【0038】スラブは、インゴットを分塊圧延して製造
しても、連続鋳造により直接製造してもよい。また、薄
スラブとしても、本発明にとっては、何ら問題ない。分
塊圧延する場合は、成分偏析を軽減するためにインゴッ
トを1150〜1250℃で20時間以上加熱し、16
0〜250mmのスラブ厚にすることが望ましい。
The slab may be manufactured by slab-rolling an ingot or directly by continuous casting. Further, even a thin slab has no problem for the present invention. In the case of slab rolling, the ingot is heated at 1150 to 1250 ° C. for 20 hours or more to reduce component segregation,
It is desirable to have a slab thickness of 0 to 250 mm.

【0039】こうしたスラブは、1050〜1250℃
で30分以上加熱し、2〜3mmの板厚に熱間圧延する
ことが好ましい。
Such a slab has a temperature of 1050-1250 ° C.
It is preferable to heat for 30 minutes or more and hot-roll to a plate thickness of 2 to 3 mm.

【0040】そして、冷間圧延、再結晶焼鈍および歪み
取り焼鈍を少なくとも1回以上繰り返し、板厚0.1〜
0.3mmのシャドウマスク用原板にする。
Then, cold rolling, recrystallization annealing, and strain relief annealing are repeated at least once to obtain a sheet thickness of 0.1.
Use a 0.3 mm shadow mask master plate.

【0041】インゴットからスタートするときは、イン
ゴットから最終原板までの累積圧延率は99.9%以上
にすることが望ましい。
When starting from an ingot, it is desirable that the cumulative rolling rate from the ingot to the final original plate be 99.9% or more.

【0042】[0042]

【実施例】表1に示す主要な成分を有する3種類のFe
ーNi系アンバー合金No.A〜Cを溶製し、そのイン
ゴットを1150〜1250℃×20〜50時間加熱
し、分塊圧延してスラブを製造した。このスラブを11
00℃×1〜5時間加熱後、板厚2.0mmまで熱間圧
延した。そして、冷間圧延と750℃以上の再結晶焼鈍
と表2に示す条件で歪み取り焼鈍を行い、板厚0.10
〜0.22mmの32種の試料を作成した。表2で、N
o.1〜22が本発明例であり、No.23〜32が比
較例である。
EXAMPLES Three kinds of Fe having major components shown in Table 1
-Ni-based amber alloy No. A to C were melted, the ingot was heated at 1150 to 1250 ° C. for 20 to 50 hours, and slab-rolled to manufacture a slab. This slab is 11
After heating at 00 ° C for 1 to 5 hours, hot rolling was performed to a plate thickness of 2.0 mm. Then, cold rolling, recrystallization annealing at 750 ° C. or higher, and strain relief annealing under the conditions shown in Table 2 were performed to obtain a sheet thickness of 0.10.
32 kinds of samples having a size of 0.22 mm were prepared. In Table 2, N
o. Nos. 1 to 22 are examples of the present invention, and No. 23 to 32 are comparative examples.

【0043】歪み取り焼鈍後の板形状および熱収縮率
を、前述した方法で測定した。結果を表2に示す。歪み
取り焼鈍時に本発明範囲内の張力を与えた試料No.1
〜22では、急峻度が0. 5%以下の良好な板形状およ
び0. 08%以下の低熱収縮率を示す。
The plate shape and the heat shrinkage ratio after the strain relief annealing were measured by the above-mentioned methods. Table 2 shows the results. Sample No. 1 which was given a tension within the range of the present invention at the time of strain relief annealing. 1
In the range of up to 22, a steepness of 0.5% or less and a good plate shape and 0.08% or less of low heat shrinkage are exhibited.

【0044】張力が、表2に示す板温度における試料の
0.2%耐力の5%未満だと板形状が不良となり、45
%を超えると0.08%を超える高い熱収縮率となる。
If the tension is less than 5% of the 0.2% proof stress of the sample at the plate temperature shown in Table 2, the plate shape becomes defective and 45
When it exceeds%, the heat shrinkage rate becomes high and exceeds 0.08%.

【0045】[0045]

【表1】 [Table 1]

【0046】[0046]

【表2】 [Table 2]

【0047】[0047]

【発明の効果】本発明は以上説明したように構成されて
いるので、高精細シャドウマスク用として好適な板形状
および耐熱収縮性に優れたFeーNi系アンバー合金薄
板の製造方法を提供できる。
EFFECTS OF THE INVENTION Since the present invention is constituted as described above, it is possible to provide a method for producing a Fe—Ni-based amber alloy thin plate which is suitable for a high-definition shadow mask and has excellent heat shrinkage resistance.

【図面の簡単な説明】[Brief description of drawings]

【図1】FeーNi系アンバー合金薄板の歪み取り焼鈍
後の急峻度と、焼鈍時に与えた張力と焼鈍温度における
FeーNi系アンバー合金薄板の0.2%耐力の比との
関係を示す図である。
FIG. 1 shows the relationship between the steepness of a Fe—Ni based amber alloy sheet after strain relief annealing and the ratio of the tension applied during annealing to the 0.2% proof stress of the Fe—Ni based amber alloy sheet at the annealing temperature. It is a figure.

【図2】FeーNi系アンバー合金薄板の歪み取り焼鈍
後の熱収縮率と、焼鈍時に与えた張力と焼鈍温度におけ
るFeーNi系アンバー合金薄板の0.2%耐力の比と
の関係を示す図である。
FIG. 2 shows the relationship between the heat shrinkage ratio of the Fe—Ni-based amber alloy sheet after strain relief annealing and the ratio of the tension applied during the annealing and the 0.2% proof stress of the Fe—Ni-based amber alloy sheet at the annealing temperature. FIG.

【図3】シャドウマスク素材のプレス型への設置方法を
模式的に示す図である。
FIG. 3 is a diagram schematically showing a method of installing a shadow mask material in a press die.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 シャドウマスク用FeーNi系アンバー
合金薄板の歪み取り焼鈍において、前記歪み取り焼鈍温
度における前記FeーNi系アンバー合金薄板の0.2
%耐力の5〜45%の張力を与えて歪み取り焼鈍するこ
とを特徴とする板形状および耐熱収縮性に優れたシャド
ウマスク用FeーNi系アンバー合金薄板の製造方法。
1. In the strain relief annealing of a Fe—Ni based amber alloy sheet for a shadow mask, 0.2 of the Fe—Ni based amber alloy sheet at the strain relief annealing temperature.
A method for producing a Fe—Ni-based amber alloy thin plate for a shadow mask, which is excellent in plate shape and heat shrinkage, characterized by applying a strain of 5 to 45% of% proof stress and annealing for strain relief.
JP24623195A 1995-09-25 1995-09-25 Production of iron-nickel base invar alloy thin sheet for shadow mask excellent in sheet shape and heat shrinkage resistance Pending JPH0987741A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24623195A JPH0987741A (en) 1995-09-25 1995-09-25 Production of iron-nickel base invar alloy thin sheet for shadow mask excellent in sheet shape and heat shrinkage resistance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24623195A JPH0987741A (en) 1995-09-25 1995-09-25 Production of iron-nickel base invar alloy thin sheet for shadow mask excellent in sheet shape and heat shrinkage resistance

Publications (1)

Publication Number Publication Date
JPH0987741A true JPH0987741A (en) 1997-03-31

Family

ID=17145468

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24623195A Pending JPH0987741A (en) 1995-09-25 1995-09-25 Production of iron-nickel base invar alloy thin sheet for shadow mask excellent in sheet shape and heat shrinkage resistance

Country Status (1)

Country Link
JP (1) JPH0987741A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5455099B1 (en) * 2013-09-13 2014-03-26 大日本印刷株式会社 Metal plate, metal plate manufacturing method, and mask manufacturing method using metal plate
US10570498B2 (en) 2015-02-10 2020-02-25 Dai Nippon Printing Co., Ltd. Manufacturing method for deposition mask, metal plate used for producing deposition mask, and manufacturing method for said metal sheet
US10600963B2 (en) 2014-05-13 2020-03-24 Dai Nippon Printing Co., Ltd. Metal plate, method of manufacturing metal plate, and method of manufacturing mask by using metal plate
US11486031B2 (en) 2013-10-15 2022-11-01 Dai Nippon Printing Co., Ltd. Metal plate

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5455099B1 (en) * 2013-09-13 2014-03-26 大日本印刷株式会社 Metal plate, metal plate manufacturing method, and mask manufacturing method using metal plate
WO2015037709A1 (en) * 2013-09-13 2015-03-19 大日本印刷株式会社 Metal plate, metal plate manufacturing method, and method for manufacturing mask using metal plate
US10233546B2 (en) 2013-09-13 2019-03-19 Dai Nippon Printing Co., Ltd. Metal plate, method of manufacturing metal plate, and method of manufacturing mask by use of metal plate
US10731261B2 (en) 2013-09-13 2020-08-04 Dai Nippon Printing Co., Ltd. Metal plate, method of manufacturing metal plate, and method of manufacturing mask by use of metal plate
US11486031B2 (en) 2013-10-15 2022-11-01 Dai Nippon Printing Co., Ltd. Metal plate
US10600963B2 (en) 2014-05-13 2020-03-24 Dai Nippon Printing Co., Ltd. Metal plate, method of manufacturing metal plate, and method of manufacturing mask by using metal plate
US11217750B2 (en) 2014-05-13 2022-01-04 Dai Nippon Printing Co., Ltd. Metal plate, method of manufacturing metal plate, and method of manufacturing mask by using metal plate
US10570498B2 (en) 2015-02-10 2020-02-25 Dai Nippon Printing Co., Ltd. Manufacturing method for deposition mask, metal plate used for producing deposition mask, and manufacturing method for said metal sheet
US10612124B2 (en) 2015-02-10 2020-04-07 Dai Nippon Printing Co., Ltd. Manufacturing method for deposition mask, metal plate used for producing deposition mask, and manufacturing method for said metal sheet

Similar Documents

Publication Publication Date Title
EP0561120B1 (en) Thin Fe-Ni alloy sheet for shadow mask and method for manufacturing thereof
JPH1060525A (en) Production of low thermal expansion alloy thin sheet excellent in sheet shape and thermal shrinkage resistance
JPH06264190A (en) Stock for shadow mask
JPH0987741A (en) Production of iron-nickel base invar alloy thin sheet for shadow mask excellent in sheet shape and heat shrinkage resistance
JPS60128253A (en) Manufacture of iron-nickel alloy for shadow mask which inhibits streaking during etching
JP3379368B2 (en) Method for producing low thermal expansion alloy sheet excellent in sheet shape and heat shrink resistance
KR100756747B1 (en) Magnetostriction control alloy sheet, a part of a braun tube, and a manufacturing method for a magnetostriction control alloy sheet
JP3379301B2 (en) Method for producing low thermal expansion alloy thin plate for shadow mask excellent in plate shape and heat shrink resistance
KR100723441B1 (en) Method for producing a metal strip from an iron-nickel alloy for tensioned shadow masks
JP3401307B2 (en) Material for shadow mask excellent in recrystallization characteristics and manufacturing method
JP3515769B2 (en) Fe-Ni-Co alloy ribbon for press-molded flat mask
JP3871150B2 (en) Method for producing Fe-Ni alloy thin plate for electronic member
JP3022573B2 (en) Fe-Ni alloy excellent in etching processability and method for producing the same
JP2988973B2 (en) Shadow mask material
JP2933913B1 (en) Fe-Ni-based shadow mask material and method of manufacturing the same
JP3509643B2 (en) Low thermal expansion alloy steel slab excellent in etchability after thinning and method for producing the same
JPH1180839A (en) Production of low thermal expansion alloy thin sheet for electronic parts excellent in effect of suppressing unevenness in stripe
JPH08260051A (en) Production of magnetic shielding material
JPS63193440A (en) Shadow mask alloy plate and shadow mask
JPH0687398B2 (en) Method for manufacturing shed mask
JPH07166298A (en) Tube interior parts
KR19990047277A (en) Shadow mask for cathode ray tube and manufacturing method
JP2002060908A (en) LOW THERMAL EXPANSION Fe-Ni BASED ALLOY SHEET FOR SHADOW MASK EXCELLENT IN ETCHING PROPERTY AND DEFORMATION RESISTANCE AND ITS PRODUCTION METHOD
JP3536059B2 (en) Fe-Ni alloy ribbon for press-molded flat mask
KR890002363B1 (en) Producing method of shadlowmask

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20020305