JPH0986936A - Recovery of technetium - Google Patents

Recovery of technetium

Info

Publication number
JPH0986936A
JPH0986936A JP25119295A JP25119295A JPH0986936A JP H0986936 A JPH0986936 A JP H0986936A JP 25119295 A JP25119295 A JP 25119295A JP 25119295 A JP25119295 A JP 25119295A JP H0986936 A JPH0986936 A JP H0986936A
Authority
JP
Japan
Prior art keywords
technetium
uranium
electrolytic solution
liquid
nitric acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP25119295A
Other languages
Japanese (ja)
Inventor
Keiji Toyabe
圭治 鳥谷部
Masahiro Nabeshima
正宏 鍋島
Noboru Ozeki
昇 大関
Koji Kuno
浩二 久野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP25119295A priority Critical patent/JPH0986936A/en
Publication of JPH0986936A publication Critical patent/JPH0986936A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies

Abstract

PROBLEM TO BE SOLVED: To separate technetium in a simple operation from a nitric acid solution containing uranium generated from spent nuclear fuel reprocessing plants. SOLUTION: Either ammonia gas, ammonia water or sodium hydroxide is added to a uranium-contg. nitric acid solution to form ammonium biuranate or sodium biuranate precipitate which is then subjected to solid-liquid separation. In this case, as uranium and technetium transfer to the solid phase and liquid phase, respectively, the liquid is electrolytically reduced to effect electrodeposition of the technetium which is then separated.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、使用済原子燃料の
再処理施設から発生するウランを含む硝酸溶液、あるい
は、原子燃料サイクルにおけるウラン濃縮施設、転換加
工施設、使用済原子燃料の再処理施設及び放射性同位元
素使用施設等の施設又は設備から発生するテクネチウム
含有廃液からテクネチウムを回収する方法に関する。
TECHNICAL FIELD The present invention relates to a nitric acid solution containing uranium generated from a spent nuclear fuel reprocessing facility, or a uranium enrichment facility, a conversion processing facility, and a spent nuclear fuel reprocessing facility in a nuclear fuel cycle. And a method for recovering technetium from technetium-containing waste liquid generated from facilities or equipment such as facilities using radioisotopes.

【0002】[0002]

【従来の技術】ピューレックス法による使用済原子燃料
の再処理工程においては、使用済原子燃料を硝酸に溶解
し、TBP/nドデカン溶媒を用いた溶媒抽出法によ
り、ウラン及びプルトニウムが回収される。使用済燃料
中には多種類の核分裂生成物が存在するが、この中でも
テクネチウムはその挙動が複雑であり、溶媒抽出工程に
おけるウラン及びプルトニウムからの分離精製が困難な
核種であると言われている。その理由は、使用済原子燃
料を硝酸に溶解した溶解液中において、テクネチウムが
UO2(NO3)(TcO4)などの化合物を形成し、ウラン
とともに溶媒側(TBP/nドデカン)に抽出されやす
くなるためである。ウランを抽出した溶媒は硝酸による
洗浄後、希硝酸によって溶媒から逆抽出され、さらに、
このような抽出・洗浄・逆抽出操作を繰り返すことによ
って、テクネチウム等の核分裂生成物とウランとの分離
・精製が行われる。
2. Description of the Related Art In the process of reprocessing spent nuclear fuel by the Purex method, uranium and plutonium are recovered by dissolving the spent nuclear fuel in nitric acid and by a solvent extraction method using a TBP / n dodecane solvent. . There are many kinds of fission products in the spent fuel, and among them, technetium has complicated behavior and is said to be a nuclide that is difficult to separate and purify from uranium and plutonium in the solvent extraction process. . The reason is that technetium forms compounds such as UO 2 (NO 3 ) (TcO 4 ) in a solution of spent nuclear fuel dissolved in nitric acid, and is extracted on the solvent side (TBP / n dodecane) together with uranium. This is because it becomes easier. The solvent from which uranium was extracted was washed with nitric acid and then back-extracted from the solvent with dilute nitric acid.
By repeating such extraction / washing / back-extraction operations, fission products such as technetium and uranium are separated / purified.

【0003】原子燃料サイクルにおいては、このように
して回収されたウランは、転換施設、濃縮施設、再転換
加工施設における処理を経て原子燃料として再利用され
る。この場合、前述の再処理工程においてウランとテク
ネチウムとの分離が不十分であると、原子燃料サイクル
の各工程においてテクネチウムが残存し、上記の施設か
ら発生する廃液等にテクネチウムが含有されることにな
り、それらの廃液からテクネチウムを除去することが必
要になる。廃液からテクネチウムを除去する方法として
は沈澱法や吸着法等がある。
In the nuclear fuel cycle, the uranium thus recovered is reused as nuclear fuel after being processed in a conversion facility, an enrichment facility, and a reconversion processing facility. In this case, if the separation of uranium and technetium is insufficient in the above-mentioned reprocessing step, technetium will remain in each step of the nuclear fuel cycle, and technetium will be contained in the waste liquid generated from the above facility. It becomes necessary to remove technetium from these waste liquors. As a method for removing technetium from the waste liquid, there are a precipitation method and an adsorption method.

【0004】[0004]

【発明が解決しようとする課題】前述のように、再処理
工程においては溶媒抽出法によって抽出、洗浄及び逆抽
出のサイクルを繰り返すため、プロセスが複雑になり、
分離・精製のコストが高くならざるを得ない。
As described above, since the cycle of extraction, washing and back-extraction is repeated by the solvent extraction method in the reprocessing step, the process becomes complicated,
The cost of separation and purification must be high.

【0005】廃液からテクネチウムを除去する場合、沈
澱法としては一般的にフェライト沈澱法が用いられる。
通常、還元剤等が存在しない廃液中においては、テクネ
チウムはTcO4 - の形態で存在しており、この廃液に
対してフェライト沈澱法を行うと、フェライトが生成す
るときの還元力によってTcO4 - がTcO2 に還元さ
れ、フェライト中にTcO2 が取り込まれることにな
る。しかしながら、フェライトを生成させるときには、
Fe2+の濃度が一定値以上であることが必要であり、さ
らに、フェライト生成時のpHも6乃至8の範囲に限ら
れるという条件がある。また、フェライト沈殿法では多
量の使用済のフェライトが放射性廃棄物として排出され
る。
When removing technetium from the waste liquid, a ferrite precipitation method is generally used as a precipitation method.
In a waste liquid containing no reducing agent or the like, technetium is usually present in the form of TcO 4 , and when a ferrite precipitation method is applied to this waste liquid, TcO 4 is produced due to the reducing power when ferrite is formed. There is reduced to TcO 2, so that the TcO 2 is taken in the ferrite. However, when producing ferrite,
There is a condition that the concentration of Fe 2+ needs to be a certain value or more, and the pH at the time of ferrite formation is also limited to the range of 6 to 8. Further, in the ferrite precipitation method, a large amount of used ferrite is discharged as radioactive waste.

【0006】吸着法はイオン交換又は活性炭吸着などを
利用して行われるが、その原理は、廃液中のTcO4 -
イオンを陰イオン交換反応によって吸着させようとする
ものである。しかしながら、廃液中に硝酸銀などの陰イ
オンが共存する場合には、これら陰イオンとの競争交換
反応のために、テクネチウムの吸着性能が著しく低下す
る。また、吸着法においても、使用済の樹脂や活性炭が
二次廃棄物として排出される。
[0006] Although adsorption method is performed by utilizing an ion-exchange or activated carbon adsorption, the principle is, TcO in the effluent 4 -
It is intended to adsorb ions by anion exchange reaction. However, when anions such as silver nitrate coexist in the waste liquid, the competitive exchange reaction with these anions significantly reduces the adsorption performance of technetium. Also in the adsorption method, used resin and activated carbon are discharged as secondary waste.

【0007】本発明は、上述のような従来のテクネチウ
ム回収方法が有する問題点に鑑みてなされたものであ
り、再処理施設の溶媒抽出工程において発生するテクネ
チウムを含有するウランの硝酸溶液からウランとテクネ
チウムとを単純な操作で分離し、再処理施設において回
収されるウラン中にテクネチウムを残存させないための
方法を提供することを目的とする。さらに、原子燃料サ
イクルの各施設において廃液側に移行するテクネチウム
を効率的に除去し、かつ、二次廃棄物の発生量を極力低
減させるためのテクネチウム回収方法を提供することを
目的とする。
The present invention has been made in view of the problems of the conventional technetium recovery method as described above, and it is possible to obtain uranium from a uranium nitrate solution containing technetium generated in a solvent extraction step of a reprocessing facility. An object of the present invention is to provide a method for separating technetium from technetium by a simple operation and preventing technetium from remaining in uranium collected in a reprocessing facility. Another object of the present invention is to provide a technetium recovery method for efficiently removing technetium that migrates to the waste liquid side in each facility of the nuclear fuel cycle and for reducing the amount of secondary waste generated as much as possible.

【0008】[0008]

【課題を解決するための手段】本発明に係るテクネチウ
ムの回収方法は、再処理施設の溶媒抽出工程においてテ
クネチウムとウランとが溶媒に抽出され、希硝酸によっ
てウランとともに溶媒から逆抽出されたテクネチウムを
含むウランの硝酸溶液にアンモニアガス、アンモニア水
又は水酸化ナトリウムの何れかを添加し、重ウラン酸ア
ンモニウム又は重ウラン酸ナトリウムの沈澱物を生成さ
せる過程と、前記沈澱物を固液分離し、固体側にウラン
を、液体側にテクネチウムを移行させる過程と、からな
る。
Means for Solving the Problems A method for recovering technetium according to the present invention is a method in which technetium and uranium are extracted into a solvent in a solvent extraction step of a reprocessing facility, and technetium is back-extracted from the solvent together with uranium by dilute nitric acid. A process of adding ammonia gas, aqueous ammonia or sodium hydroxide to a nitric acid solution containing uranium to form a precipitate of ammonium diuranate or sodium diuranate, and solid-liquid separation of the precipitate to obtain a solid. The process of transferring uranium to the liquid side and technetium to the liquid side.

【0009】テクネチウムは重ウラン酸アンモニウム又
は重ウラン酸ナトリウムの沈澱物には移行しないため、
固液分離を行うことによって、ウランとテクネチウムと
が分離される。
Since technetium does not migrate to ammonium biuranate or sodium diuranate precipitates,
By performing solid-liquid separation, uranium and technetium are separated.

【0010】固液分離の方法としては、テクネチウムを
含有する濾液を電解液として電解還元を行うことが好ま
しい。この電解還元によって、カソード上にテクネチウ
ムを還元析出させ、回収することができる。濾液はテク
ネチウムを含有しない廃液として環境に放出される。前
記電解還元における電解液の温度は常温から沸点以下に
設定され、かつ、該電解液のPH値は0乃至14の間に
設定されることが好ましい。特に好ましい電解液の温度
は摂氏50乃至60度の範囲である。
As a solid-liquid separation method, it is preferable to carry out electrolytic reduction using a filtrate containing technetium as an electrolytic solution. By this electrolytic reduction, technetium can be reduced and deposited on the cathode and recovered. The filtrate is released to the environment as a technetium-free waste solution. It is preferable that the temperature of the electrolytic solution in the electrolytic reduction is set from room temperature to the boiling point or less, and the PH value of the electrolytic solution is set between 0 and 14. A particularly preferable temperature of the electrolytic solution is in the range of 50 to 60 degrees Celsius.

【0011】なお、本発明に係るテクネチウム回収方法
において、電解還元の対象となる廃液は前述の濾液には
限らず、原子燃料サイクルにおける転換施設、濃縮施
設、再転換加工施設、放射性同位元素使用施設及び医療
施設等から発生する廃液も対象となる。
In the technetium recovery method according to the present invention, the waste liquid to be subjected to electrolytic reduction is not limited to the above-mentioned filtrate, but a conversion facility, a concentration facility, a reconversion processing facility, a facility using radioactive isotopes in a nuclear fuel cycle. Also, waste liquid generated from medical facilities, etc. is also applicable.

【0012】[0012]

【発明の実施の形態】使用済原子燃料再処理施設の分離
・精製工程において、ウランの硝酸溶液中のテクネチウ
ムは7価の過テクネチウム酸イオン(TcO4 - )とし
て存在している。この溶液にアンモニアガス、アンモニ
ア水又は水酸化ナトリウム溶液の何れかを添加して中和
させると、以下の反応に従って、重ウラン酸アンモニウ
ム又は重ウラン酸ナトリウムの沈澱が生成する。 2UO2(NO3)2 +6NH3 +3H2 O→ (NH4)2 ・U2 7 ↓+4NH4 NO3 (1) 2UO2(NO3)2 +6NaOH→ Na2 ・U2 7 ↓+4NaNO3 +3H2 O (2)
BEST MODE FOR CARRYING OUT THE INVENTION In the separation / purification process of a spent nuclear fuel reprocessing facility, technetium in a nitric acid solution of uranium exists as a 7-valent pertechnetate ion (TcO 4 ). When ammonia gas, aqueous ammonia or sodium hydroxide solution is added to the solution for neutralization, a precipitate of ammonium diuranate or sodium diuranate is produced according to the following reaction. 2UO 2 (NO 3 ) 2 + 6NH 3 + 3H 2 O → (NH 4 ) 2 · U 2 O 7 ↓ + 4NH 4 NO 3 (1) 2UO 2 (NO 3 ) 2 + 6NaOH → Na 2 · U 2 O 7 ↓ + 4NaNO 3 + 3H 2 O (2)

【0013】これらの反応において、テクネチウムはT
cO4 - のまま溶液中に残存するため、重ウラン酸アン
モニウム又は重ウラン酸ナトリウムの沈澱を固液分離す
ることによって、テクネチウムをウランから分離するこ
とができる。一方、テクネチウムは電気化学的には比較
的貴な元素であるため、前述の濾液を電解液として電解
を行うと、TcO4 - はカソードで還元され、電極に析
出する。このようにして、濾液中からテクネチウムを除
去することができる。
In these reactions, technetium is the T
Since cO 4 remains in the solution as it is, technetium can be separated from uranium by solid-liquid separation of a precipitate of ammonium diuranate or sodium diuranate. On the other hand, since technetium is a relatively noble element electrochemically, when electrolysis is performed using the above-mentioned filtrate as the electrolytic solution, TcO 4 is reduced at the cathode and deposited on the electrode. In this way, technetium can be removed from the filtrate.

【0014】なお、この場合の電解液のpH値は0乃至
14の範囲であればよく、プロセスコントロールが容易
である。但し、テクネチウム還元速度を大きくする場合
には、pH値は1乃至13程度の範囲にあることが好ま
しい。また、電解液の温度は常温から沸点までの範囲に
設定することが可能であるが、テクネチウム還元速度を
大きくする場合には摂氏50乃至60度の範囲に設定す
ることが好ましい。
In this case, the pH value of the electrolytic solution may be in the range of 0 to 14, and the process control is easy. However, when increasing the technetium reduction rate, the pH value is preferably in the range of about 1 to 13. The temperature of the electrolytic solution can be set in the range from room temperature to the boiling point, but in the case of increasing the technetium reduction rate, it is preferably set in the range of 50 to 60 degrees Celsius.

【0015】カソードに還元析出されたテクネチウム
は、該カソードを極性変換してアノードとし、再度Tc
4 - に酸化した後に電極から除去することができるた
め、電極は繰り返し使用することができる。従って、使
用済の電極が廃棄物として排出されることはなく、二次
廃棄物の発生量を低減させることが可能である。
The technetium reduced and deposited on the cathode is converted into a cathode by changing the polarity of the cathode, and is again converted into Tc.
The electrode can be reused because it can be removed from the electrode after being oxidized to O 4 . Therefore, the used electrode is not discharged as waste, and the amount of secondary waste generated can be reduced.

【0016】[0016]

【実施例】本発明に従って、テクネチウムを含有する硝
酸ウラニル溶液からテクネチウムを回収する実験を行っ
た。以下、その結果を述べる。 〔実施例1〕テクネチウムを含有する硝酸ウラニル溶液
にアンモニアを添加し、pHを7に調整し、重ウラン酸
アンモニウムの沈澱を生成させた。固液分離を行った
後、重ウラン酸アンモニウムの沈澱は希アンモニア水で
洗浄し、この洗浄液は濾液に加えた。該重ウラン酸アン
モニウムの沈澱及び該濾液中のテクネチウムの放射能測
定を行ったところ、表1に示す結果を得た。
EXAMPLE In accordance with the present invention, an experiment was conducted to recover technetium from a uranyl nitrate solution containing technetium. The results will be described below. [Example 1] Ammonia was added to a uranyl nitrate solution containing technetium to adjust the pH to 7, thereby forming a precipitate of ammonium diuranate. After solid-liquid separation was performed, the ammonium biuranate precipitate was washed with dilute aqueous ammonia, and this washing liquid was added to the filtrate. The results shown in Table 1 were obtained when the precipitation of the ammonium diuranate and the radioactivity measurement of technetium in the filtrate were carried out.

【0017】(表1)重ウラン酸アンモニウム沈澱中及
び濾液中のテクネチウム放射能 重ウラン酸アンモニウム沈澱中(Bq) 150 濾液中(Bq) 19,800
(Table 1) Technetium radioactivity during ammonium diuranate precipitation and in filtrate Ammonium diuranate precipitation (Bq) 150 In filtrate (Bq) 19,800

【0018】このように、テクネチウムはその1%以下
(〔150÷(150+19800)〕<0.01)が
重ウラン酸アンモニウム沈澱中へ移行し、99%以上が
濾液側に移行し、さらに、ウランは該濾液中には検出さ
れなかったことから、テクネチウムが効率的に分離され
ていることが確認された。
As described above, 1% or less ([150 ÷ (150 + 19800)] <0.01) of technetium migrated into the ammonium diuranate precipitation, 99% or more migrated to the filtrate side, and further uranium. Since it was not detected in the filtrate, it was confirmed that technetium was efficiently separated.

【0019】〔実施例2〕実施例1のテクネチウムを含
有する濾液(0.2M,NH4 NO3 性)のpH値を0
乃至14の範囲内に調整して電解液とし、Ptメッシュ
(表面積=135cm2)をカソード、Pt板(表面積=
51cm2)をアノードとし、カソード電流密度=30m
A/cm2 で1時間の定電流電解を行った後、電解液中
に残存するテクネチウムの濃度を測定した。なお、電解
液の温度は摂氏60に保った。その結果は図1に示す通
りである。
Example 2 The pH value of the technetium-containing filtrate (0.2 M, NH 4 NO 3 property) of Example 1 was adjusted to 0.
To Pt mesh (surface area = 135 cm 2 ) as the cathode and Pt plate (surface area =
51 cm 2 ) as the anode, and cathode current density = 30 m
After conducting constant current electrolysis at A / cm 2 for 1 hour, the concentration of technetium remaining in the electrolytic solution was measured. The temperature of the electrolytic solution was kept at 60 degrees Celsius. The result is as shown in FIG.

【0020】このように、テクネチウムがカソードに還
元析出され、電解液中からテクネチウムが除去されるこ
とが確認された。電解液のpH値は0乃至14の範囲内
であれば何れのpH値にも設定し得る。なお、図1から
明らかであるように、より短時間にテクネチウムを電析
させるためには、電解液のpH値は1乃至13の範囲内
にあることが好ましい。
As described above, it was confirmed that technetium was reduced and deposited on the cathode to remove technetium from the electrolytic solution. The pH value of the electrolytic solution can be set to any pH value within the range of 0 to 14. As is clear from FIG. 1, the pH value of the electrolytic solution is preferably in the range of 1 to 13 in order to deposit technetium in a shorter time.

【0021】〔実施例3〕実施例2と同様のテクネチウ
ムを含有する濾液のpH値を7に調整して電解液とし、
実施例2と同様の電解条件の下で、電解液の温度を摂氏
25乃至60度として1時間の定電流電解を行った。電
解後の電解液中に残存するテクネチウムの濃度を測定し
た結果を図2に示す。
[Example 3] A pH value of a technetium-containing filtrate similar to that in Example 2 was adjusted to 7 to prepare an electrolytic solution.
Under the same electrolysis conditions as in Example 2, constant current electrolysis was performed for 1 hour with the temperature of the electrolytic solution being 25 to 60 degrees Celsius. The results of measuring the concentration of technetium remaining in the electrolytic solution after electrolysis are shown in FIG.

【0022】このように、電解液の温度が摂氏25度の
場合でも、電解時間を1時間とすることで95%以上の
除去率が得られる。電解液の温度の上昇とともにテクネ
チウム除去率は高くなるが、電解液の温度が摂氏50度
の場合と摂氏60度の場合ではテクネチウム除去率に顕
著な差は認められない。従って、電解液の温度が摂氏5
0度になると、テクネチウム除去率の上昇は停止するこ
とがわかる。
As described above, even when the temperature of the electrolytic solution is 25 ° C., the removal rate of 95% or more can be obtained by setting the electrolysis time to 1 hour. The technetium removal rate increases as the temperature of the electrolyte increases, but no significant difference is observed in the technetium removal rate when the temperature of the electrolyte is 50 degrees Celsius and 60 degrees Celsius. Therefore, the temperature of the electrolyte is 5 degrees Celsius.
It can be seen that the technetium removal rate stops increasing at 0 degrees.

【0023】〔実施例4〕テクネチウムを含有する硝酸
ウラニル溶液についてNaOH溶液を添加し、pHを7
に調整して重ウラン酸アンモニウムの沈殿を生成させ
た。固液分離を行った後の濾液(0.2M,NaNO3
性)のpH値を0乃至14の範囲に調整し、実施例2と
同様の電解条件の下に1時間の定電流電解を行った後、
電解液中に残存するテクネチウムの濃度を測定した。そ
の結果を図3に示す。テクネチウム除去率は実施例1と
ほぼ同様の傾向を示している。従って、電解液の液性が
NaNO3 の場合でも、NH4 NO3 の場合でも本発明
の効果に差異はないことが確認された。
Example 4 For a uranyl nitrate solution containing technetium, a NaOH solution was added to adjust the pH to 7
Was adjusted to produce a precipitate of ammonium diuranate. Filtrate after solid-liquid separation (0.2 M, NaNO 3
Property) is adjusted to a range of 0 to 14 and subjected to constant current electrolysis for 1 hour under the same electrolysis conditions as in Example 2,
The concentration of technetium remaining in the electrolytic solution was measured. The result is shown in FIG. The technetium removal rate shows almost the same tendency as in Example 1. Therefore, it was confirmed that there is no difference in the effect of the present invention regardless of whether the electrolyte is NaNO 3 or NH 4 NO 3 .

【0024】〔実施例5〕実施例2〜4では、重ウラン
酸アンモニウム又は重ウラン酸ナトリウムの濾液を電解
液としてテクネチウムの電析を行ったが、原子燃料サイ
クルの各施設からはさらに高塩濃度の廃液が発生する。
このため、電解液をNaNO3 塩とし、塩濃度とpHを
変化させて、実施例2と同様の電解条件でテクネチウム
の電析を行った。その結果を表2に示す。
[Example 5] In Examples 2 to 4, technetium was electrodeposited using the filtrate of ammonium heavy uranate or sodium diuranate as an electrolytic solution. Waste liquid of concentration is generated.
Therefore, the electrolytic solution was NaNO 3 salt, the salt concentration and pH were changed, and technetium was electrodeposited under the same electrolysis conditions as in Example 2. The results are shown in Table 2.

【0025】 (表2)NaNO3 の塩濃度、pHとテクネチウム除去率 NaNO3 濃度(M) pH テクネチウム除去率(%) 0.2 0 70 0.2 1 95 0.2 7 99 0.2 10 95 0.2 13 87 0.2 14 77 1.25 0 70 1.25 14 70 6.0 0 18 6.0 1 54 6.0 7 49 6.0 14 34(Table 2) NaNO 3 salt concentration, pH and technetium removal rate NaNO 3 concentration (M) pH technetium removal rate (%) 0.2 0 70 0.2 1 95 95 0.2 7 99 0.2 10 95 0.2 13 87 0.2 0.2 14 77 1.25 0 70 1.25 14 70 6.0 0 18 6.0 6.0 1 54 6.0 6.0 7 49 6.0 14 34

【0026】このように、塩濃度が高くなるとテクネチ
ウムの除去率が低下するが、電解時間をさらに長くする
ことによって、塩濃度が0.2Mの場合と同様のテクネ
チウム除去率を得ることができる。
As described above, although the removal rate of technetium decreases as the salt concentration increases, the technetium removal rate similar to that when the salt concentration is 0.2 M can be obtained by further lengthening the electrolysis time.

【0027】[0027]

【発明の効果】以上のように、本発明に係るテクネチウ
ムの回収方法によれば、使用済原子燃料の再処理施設か
ら発生するウラン含有硝酸溶液からテクネチウムを効率
的に除去することができる。また、使用済原子燃料の再
処理施設、原子燃料転換加工施設及び放射性同位元素使
用施設等の施設や設備から発生するテクネチウム含有廃
液からもテクネチウムを除去することができ、放射性廃
棄物の発生量を著しく低減させることができる。
As described above, according to the technetium recovery method of the present invention, technetium can be efficiently removed from the uranium-containing nitric acid solution generated from the spent nuclear fuel reprocessing facility. In addition, technetium can be removed from technetium-containing waste liquid generated from facilities and equipment such as spent nuclear fuel reprocessing facilities, nuclear fuel conversion processing facilities, and radioactive isotope use facilities. It can be significantly reduced.

【図面の簡単な説明】[Brief description of drawings]

【図1】テクネチウム除去率と電解液のpHとの関係を
示すグラフである。
FIG. 1 is a graph showing the relationship between the technetium removal rate and the pH of an electrolytic solution.

【図2】テクネチウム除去率と電解液の温度との関係を
示すグラフである。
FIG. 2 is a graph showing the relationship between the technetium removal rate and the temperature of the electrolytic solution.

【図3】テクネチウム除去率と電解液のpHとの関係を
示すグラフである。
FIG. 3 is a graph showing the relationship between the technetium removal rate and the pH of the electrolytic solution.

フロントページの続き (72)発明者 久野 浩二 茨城県那珂郡東海村石神外宿2600 住友金 属鉱山株式会社エネルギー・環境事業部内Front page continued (72) Inventor Koji Kuno 2600 Ishigami Sojuku, Tokai-mura, Naka-gun, Ibaraki Prefecture Sumitomo Kinzoku Mining Co., Ltd.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 ウランを含む硝酸溶液にアンモニアガ
ス、アンモニア水又は水酸化ナトリウムの何れかを添加
し、重ウラン酸アンモニウム又は重ウラン酸ナトリウム
の沈澱物を生成させる過程と、 前記沈澱物を固液分離し、固体側にウランを、液体側に
テクネチウムを移行させる過程と、からなるテクネチウ
ムの回収方法。
1. A process of adding ammonium gas, aqueous ammonia, or sodium hydroxide to a nitric acid solution containing uranium to form a precipitate of ammonium diuranate or sodium diuranate, and the solidification of the precipitate. A method for recovering technetium, comprising the steps of liquid separation and transferring uranium to the solid side and technetium to the liquid side.
【請求項2】 テクネチウムを含有する前記液体を電解
還元し、カソード上にテクネチウムを電析させ、前記液
体からテクネチウムを分離させることを特徴とする請求
項1に記載のテクネチウムの回収方法。
2. The method for recovering technetium according to claim 1, wherein the liquid containing technetium is electrolytically reduced, and technetium is electrodeposited on the cathode to separate technetium from the liquid.
【請求項3】 前記電解還元における電解液の温度は常
温から沸点以下に設定され、かつ、該電解液のPH値は
0乃至14の間に設定されるものであることを特徴とす
る請求項2に記載のテクネチウムの回収方法。
3. The temperature of the electrolytic solution in the electrolytic reduction is set from room temperature to the boiling point or less, and the PH value of the electrolytic solution is set to be 0 to 14. The method for recovering technetium according to 2.
【請求項4】 前記電解液の温度は摂氏50乃至60度
の範囲に設定されることを特徴とする請求項3に記載の
テクネチウムの回収方法。
4. The method for recovering technetium according to claim 3, wherein the temperature of the electrolytic solution is set in a range of 50 to 60 degrees Celsius.
JP25119295A 1995-09-28 1995-09-28 Recovery of technetium Pending JPH0986936A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25119295A JPH0986936A (en) 1995-09-28 1995-09-28 Recovery of technetium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25119295A JPH0986936A (en) 1995-09-28 1995-09-28 Recovery of technetium

Publications (1)

Publication Number Publication Date
JPH0986936A true JPH0986936A (en) 1997-03-31

Family

ID=17219059

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25119295A Pending JPH0986936A (en) 1995-09-28 1995-09-28 Recovery of technetium

Country Status (1)

Country Link
JP (1) JPH0986936A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2755789A1 (en) * 1996-11-08 1998-05-15 Aea Technology Plc METHOD AND APPARATUS FOR TREATING A RADIOACTIVE WASTE SOLUTION
WO2001033575A3 (en) * 1999-10-29 2001-11-29 Ca Atomic Energy Ltd Process for recycling irradiated fuel

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2755789A1 (en) * 1996-11-08 1998-05-15 Aea Technology Plc METHOD AND APPARATUS FOR TREATING A RADIOACTIVE WASTE SOLUTION
WO2001033575A3 (en) * 1999-10-29 2001-11-29 Ca Atomic Energy Ltd Process for recycling irradiated fuel

Similar Documents

Publication Publication Date Title
Mathur et al. Extraction of actinides and fission products by octyl (phenyl)-N, N-diisobutylcarbamoylmethyl-phosphine oxide from nitric acid media
US3922231A (en) Process for the recovery of fission products from waste solutions utilizing controlled cathodic potential electrolysis
JPS60636B2 (en) Treatment method for radioactive waste liquid
JPH05209998A (en) Extraction method of technetium from radioactive polluted metal
CN1039321A (en) The method of electrolytic reduction-extraction neptunium recovery from radioactive liquid waste
CN111087114A (en) Treatment method of tantalum-niobium production wastewater
JPH0986936A (en) Recovery of technetium
Jenkins Solvent extraction chemistry in the atomic energy industry—a review
Ballestra et al. Low-level measurements of actinides and long-lived radionuclides in biological and environmental samples: Measurement of technetium-99 in large volume water samples
Mukhachev et al. Purification of rare earth elements from thorium, uranium, and radioactive isotopes
KUNIN et al. Ion exchange in the atomic energy program
Felker et al. Separation of americium, curium, and plutonium from irradiated targets
JP2971638B2 (en) Technetium separation and recovery method
CN211350122U (en) Tantalum niobium waste water&#39;s processing apparatus
JP2530150B2 (en) How to recover valuable metals
JP4113053B2 (en) Method and apparatus for wet treatment of uranium waste
US4756853A (en) Process for the conversion into usable condition of actinide ions contained in the solid residue of a sulfate reprocessing process for organic, actinide-containing radioactive solid waste
JP3159220B2 (en) Method for recovering uranium, plutonium and neptunium from spent nuclear fuel
RU2235374C2 (en) Method for extracting palladium from nitric acid solutions
Navratil Process chemistry of 241Am
Blanco et al. Removal of Fission Products from High Level Radioactive Waste Solutions
US3275421A (en) Recovery of actinides from halite debris
JP2997568B2 (en) How to treat radioactive liquid waste
Volynskii et al. Regenerating/sup 227/Ac from highly contaminated preparations
Navratil Production and recovery of Americium-241