JPH098664A - Digital sigma modulator - Google Patents

Digital sigma modulator

Info

Publication number
JPH098664A
JPH098664A JP15315395A JP15315395A JPH098664A JP H098664 A JPH098664 A JP H098664A JP 15315395 A JP15315395 A JP 15315395A JP 15315395 A JP15315395 A JP 15315395A JP H098664 A JPH098664 A JP H098664A
Authority
JP
Japan
Prior art keywords
signal
circuit
bit
sigma modulator
clock
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP15315395A
Other languages
Japanese (ja)
Inventor
Tetsuya Matsumoto
哲也 松本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP15315395A priority Critical patent/JPH098664A/en
Publication of JPH098664A publication Critical patent/JPH098664A/en
Pending legal-status Critical Current

Links

Landscapes

  • Compression, Expansion, Code Conversion, And Decoders (AREA)
  • Analogue/Digital Conversion (AREA)

Abstract

PURPOSE: To make a digital sigma modulator immune to process fluctuation and to remove integration error by delaying a differential signal between a signal, for which a quantized output signal is integrated and D/A converted, and an input signal for one clock, quantizing that signal for one bit and outputting it as a signal Y. CONSTITUTION: An integrator 7 integrates a digital output signal Y and generates an integrated signal CD of (n) bits, and a DAC 8 of (n) bits D/A converts the signal CD and outputs an analog signal AA to an adder 1. The adder 1 performs the subtraction of the input signal X and the signal AA, generates the differential signal and sends it to a delayer 6 and in response to the supply of a clock, the delayer 1 delays that differential signal for one clock. A quantizer 3 quantizes that delayed differential signal with one bit and outputs the result as the digital output signal Y. Thus, since an analog circuit or the like such as an amplifier weak for capacitor or process fluctuation to cause the generation of integration error can be removed, this device can be easily made into an integrated circuit.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明はデルタシグマ変調器に関
し、特にA/D変換回路あるいはD/A変換回路に用い
られるデルタシグマ変調器に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a delta sigma modulator, and more particularly to a delta sigma modulator used in an A / D conversion circuit or a D / A conversion circuit.

【0002】[0002]

【従来の技術】デルタシグマ変調器はアナログ信号をこ
れに対応するパルス密度変調信号に変換するものであ
り、その基本原理は、例えば、電子情報通信学会編,デ
ィジタル信号処理ハンドブック,第235〜236頁,
オーム社(平成5年)(文献1)に記載されているよう
に、入力信号とD/A変換された信号との差を量子化し
てD/A変換器に戻すフイードバックループ内に雑音整
形用のフィルタを有し、このフィルタを量子化器の直前
に設けた方式の変調器であり、量子化雑音のスペクトラ
ムが高い周波数により多く分布することから雑音整形型
とも呼ばれる。量子化器を1ビットにすると、D/A変
換器の分解能も1ビットで済むので集積回路化に適し、
符号出力に間引フィルタを付加して高精度のA/D変換
器を構成したり、ディジタル信号列を補間フィルタに通
して高サンプリングレート化後ディジタルのデルタシグ
マ変調器を通すことにより高精度のD/A変換器を構成
する。
2. Description of the Related Art A delta-sigma modulator converts an analog signal into a corresponding pulse density modulated signal, and its basic principle is, for example, edited by Institute of Electronics, Information and Communication Engineers, Digital Signal Processing Handbook, No. 235-236. page,
As described in Ohmsha (1993) (Reference 1), for noise shaping in a feedback loop that quantizes the difference between the input signal and the D / A converted signal and returns it to the D / A converter. Is a modulator of the type in which this filter is provided immediately before the quantizer, and it is also called a noise shaping type because the spectrum of the quantization noise is distributed more in high frequencies. If the quantizer is set to 1 bit, the resolution of the D / A converter is also 1 bit, so it is suitable for integrated circuits.
By adding a thinning filter to the code output to form a high precision A / D converter, or by passing a digital signal sequence through an interpolation filter to a high sampling rate and then passing it through a digital delta sigma modulator, a high precision Configure a D / A converter.

【0003】従来のこの種のデルタシグマ変換器は、例
えば、特開平2−138609号公報(文献2)記載の
アナログ演算回路や特開平3−125517号公報(文
献3)記載のA/D変換器の各々の主要構成要素として
用いられている。
A conventional delta-sigma converter of this type is, for example, an analog arithmetic circuit described in Japanese Patent Laid-Open No. 138609/1990 (Reference 2) or an A / D converter described in Japanese Patent Laid-Open No. 125355/1993 (Reference 3). It is used as the main component of each vessel.

【0004】文献1,2記載の従来のデルタシグマ変調
器をブロックで示す図4を参照すると、この従来のデル
タシグマ変調器は、出力信号Yを遅延させ遅延信号Dを
出力する遅延器4と、遅延信号Dを1ビットのアナログ
信号Aに変換する1ビットのD/A変換器(DAC)5
と、アナログ信号Aと入力信号Xとを減算し差信号Bを
生成する加算器1と、差信号Bを積分して積分信号Cを
生成するアナログの積分器2と、積分信号Cを量子化し
て出力信号Yを生成する比較器である量子化器3とを備
える。
Referring to FIG. 4 which shows a block diagram of a conventional delta sigma modulator described in Documents 1 and 2, this conventional delta sigma modulator is a delay device 4 for delaying an output signal Y and outputting a delay signal D. , A 1-bit D / A converter (DAC) 5 for converting the delay signal D into a 1-bit analog signal A
An adder 1 that subtracts the analog signal A and the input signal X to generate a difference signal B; an analog integrator 2 that integrates the difference signal B to generate an integrated signal C; And a quantizer 3 which is a comparator for generating an output signal Y.

【0005】次に、図4を参照して、従来のデルタシグ
マ変調器の動作について説明すると、まず、加算器1は
入力信号Xと1ビットDACの出力のアナログ信号Aと
の差信号Bを生成し、積分器2はこの差信号Bを積分し
て積分信号Cを生成し量子化器3に供給する。量子化器
3は、この積分信号Cを量子化するが、ここに量子化雑
音Qが加わるので出力信号Yは次式で表される。 Y=(X−YZ-1)/(1−Z-1)+Q……………………………………(1) これを変形して Y=X+Q(1−Z-1)………………………………………………………(2) ただし、Zは遅延演算子とする。さらに、わかりやすく
するためにこの式を周波数領域で表現すると次式が得ら
れる。
Next, referring to FIG. 4, the operation of the conventional delta-sigma modulator will be described. First, the adder 1 outputs the difference signal B between the input signal X and the analog signal A output from the 1-bit DAC. Then, the integrator 2 integrates the difference signal B to generate an integrated signal C, which is supplied to the quantizer 3. The quantizer 3 quantizes the integrated signal C, but since the quantization noise Q is added thereto, the output signal Y is expressed by the following equation. Y = (X−YZ −1 ) / (1−Z −1 ) + Q …………………………………… (1) Transforming this, Y = X + Q (1−Z −1 ). ……………………………………………………… (2) However, Z is a delay operator. Furthermore, if this expression is expressed in the frequency domain for the sake of clarity, the following expression is obtained.

【0006】 [0006]

【0007】よって、 |Y|=|X|+|Q||sin(πf/fs)|………………………(4) ただし、fsはサンプリング周波数とする。Therefore, | Y | = | X | + | Q || sin (πf / fs) | ... (4) where fs is the sampling frequency.

【0008】この結果から本構成による従来のデルタシ
グマ変調器が量子化雑音Qにたいして低周波を阻止する
特性となること、すなわち、変調動作を行っていること
がわかる。
From these results, it can be seen that the conventional delta-sigma modulator with this configuration has a characteristic of blocking low frequencies with respect to the quantization noise Q, that is, performs a modulation operation.

【0009】[0009]

【発明が解決しようとする課題】上述した従来のデルタ
シグマ変調器は、積分器としてアナログ積分器を必要と
するため、アナログ回路である演算増幅器等の高ゲイン
の増幅器と積分用のキャパシタとを必須構成要素として
用いるが、アナログ回路はプロセス変動に弱く、また、
上記キャパシタの電荷の漏れ等が積分誤差の要因となる
という欠点があった。
Since the above-mentioned conventional delta-sigma modulator requires an analog integrator as an integrator, it has a high gain amplifier such as an operational amplifier which is an analog circuit and a capacitor for integration. Although used as an essential component, analog circuits are vulnerable to process variations, and
There is a drawback in that the leakage of the electric charge of the capacitor causes an integration error.

【0010】[0010]

【課題を解決するための手段】本発明のデルタシグマ変
調器は、ディジタル出力信号を積分しn(整数)ビット
の積分信号を出力するディジタル積分回路と、前記積分
信号をアナログ信号に変換するnビットのD/A変換回
路と、前記アナログ信号と入力信号との減算を行い差信
号を生成する加算回路と、クロックの供給に応答して前
記差信号を1クロック分遅延し遅延差信号を生成する遅
延回路と、前記遅延差信号を1ビットで量子化して前記
ディジタル出力信号を出力する量子化回路とを備えて構
成されている。
A delta-sigma modulator according to the present invention comprises a digital integrating circuit for integrating a digital output signal and outputting an integrated signal of n (integer) bits, and n for converting the integrated signal into an analog signal. A bit D / A conversion circuit, an adder circuit for subtracting the analog signal and the input signal to generate a difference signal, and a delay difference signal for delaying the difference signal by one clock in response to a clock supply to generate a delayed difference signal. And a quantization circuit that quantizes the delay difference signal with 1 bit and outputs the digital output signal.

【0011】[0011]

【実施例】次に、本発明の実施例を図4と共通の構成要
素には共通の参照文字/数字を付して同様にブロックで
示す図1を参照すると、この図に示す本実施例のデルタ
シグマ変調器は、従来と共通の加算器1と量子化器3と
に加えて、ディジタルの出力信号Yを積分してnビット
の積分信号CDを生成するディジタルの積分器7と、積
分信号CDをDA変換しアナログ信号AAを生成するn
ビットのDAC8と、クロックCKがHレベルのとき差
信号Bを量子化器3に転送する遅延器6とを備える。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT Next, referring to FIG. 1, which is a block diagram in which components common to those of FIG. 4 are designated by common reference characters / numerals, the embodiment of the present invention shown in FIG. In addition to the conventional adder 1 and quantizer 3, the delta sigma modulator of (1), a digital integrator 7 that integrates a digital output signal Y to generate an n-bit integrated signal CD, The signal CD is DA converted to generate an analog signal AA.
A bit DAC 8 and a delay unit 6 that transfers the difference signal B to the quantizer 3 when the clock CK is at the H level are provided.

【0012】次に、図1および各部のタイムチャートを
示す図2を参照して本実施例の動作について説明する
と、まず、遅延器6はクロックCKがHレベルのときに
前段の加算器1の差信号Bを量子化器3に転送する。図
2ではこのときの量子化器3のの出力信号Yが’+1’
となり、積分器7に累積され、このとき積分信号CDは
11となる。次のDA変換器8はこの積分信号CDに応
じたアナログ信号AAを出力し、加算器1は再び入力信
号Xとの差をとり差信号Bを出力する。このようにして
次々に出力信号Yを出力する。
Next, the operation of this embodiment will be described with reference to FIG. 1 and FIG. 2 showing the time charts of the respective parts. First, the delayer 6 operates when the clock CK is at the H level. The difference signal B is transferred to the quantizer 3. In FIG. 2, the output signal Y of the quantizer 3 at this time is “+1”.
And is accumulated in the integrator 7, and the integrated signal CD becomes 11 at this time. The next DA converter 8 outputs an analog signal AA corresponding to the integrated signal CD, and the adder 1 again takes the difference from the input signal X and outputs a difference signal B. In this way, the output signal Y is output one after another.

【0013】ここで説明の便宜上DAC8のビット数n
を5として、具体的な動作について説明する。
For convenience of explanation, the number of bits n of the DAC 8 is n.
5, the specific operation will be described.

【0014】まず、入力信号Xが’0.3’で積分結果
が’10’であるとすると、DAC8の出力信号AA
は’10/32’となる。加算器1で算出した入力信号
Xとアナログ信号AAとの差信号BをΔ(n)とすると
次式のようになる。 Δ(n)=0.3−10/32=−0.0125<0……………………(5) この差信号Bが遅延器2を経由して遅延信号DBとして
量子化器3に入力され、量子化器3は出力信号Y(n)
として’−1’を出力する。続いて、この出力信号Y
(n)の供給を受けて積分器7は内部をデクリメントし
積分信号CD’9’を出力する。入力信号Xは先ほどと
変わらないので加算器1の出力する差信号Bの値Δ(n
+1)は次式のようになる。 Δ(n+1)=0.3−9/32=0.01875>0…………………(6) この場合の量子化器3の出力信号Y(n+1)として’
+1’を出力する。以上を繰り返し実行することによ
り、出力信号Yを出力する。
First, assuming that the input signal X is "0.3" and the integration result is "10", the output signal AA of the DAC 8 is
Will be '10 / 32 '. When the difference signal B between the input signal X and the analog signal AA calculated by the adder 1 is Δ (n), the following equation is obtained. Δ (n) = 0.3−10 / 32 = −0.0125 <0 ……………… (5) This difference signal B passes through the delay device 2 and becomes the delay signal DB as the quantizer 3 , And the quantizer 3 outputs the output signal Y (n)
'-1' is output as. Then, this output signal Y
In response to the supply of (n), the integrator 7 decrements the inside and outputs an integrated signal CD'9 '. Since the input signal X is the same as before, the value Δ (n of the difference signal B output from the adder 1
+1) is as follows. Δ (n + 1) = 0.3-9 / 32 = 0.01875> 0 (6) As the output signal Y (n + 1) of the quantizer 3 in this case, '
+1 'is output. The output signal Y is output by repeatedly executing the above.

【0015】次に、入力信号Xを変化させていった場合
のシミュレーション結果を示す図3を参照してこの変調
器の動作を説明すると、まず、遅延器6と量子化器3と
で入力信号Xとディジタル積分信号CDのD/A変換後
のアナログ信号AAとの差が遅延器6と量子化器3とで
遅延比較されるため、ここに量子化雑音Qが加わり、し
たがって出力信号Yは次式で表される。 Y={X−Y/(1−Z-1)}Z-1+Q……………………………………(7) これを変形して Y=(XZ-1+Q)(1−Z-1)……………………………………………(8) ただし、Zは遅延演算子とする。さらに、わかりやすく
するためにこの式を周波数領域で表現すると次式が得ら
れる。
Next, the operation of this modulator will be described with reference to FIG. 3 showing simulation results when the input signal X is changed. First, the input signal of the delay device 6 and the quantizer 3 will be described. Since the difference between X and the analog signal AA after the D / A conversion of the digital integrated signal CD is delayed and compared by the delay device 6 and the quantizer 3, the quantization noise Q is added here, and therefore the output signal Y is It is expressed by the following equation. Y = {X−Y / (1−Z −1 )} Z −1 + Q ……………………………… (7) By modifying this, Y = (XZ −1 + Q) ( 1-Z -1 ) ………………………………………… (8) However, Z is a delay operator. Furthermore, if this expression is expressed in the frequency domain for the sake of clarity, the following expression is obtained.

【0016】 [0016]

【0017】よって、 |Y|=(|X|+|Q|)|sin(πf/fs)|………………(10) この結果から本実施例のデルタシグマ変調器が量子化雑
音Qにたいして低周波を阻止する特性となること、すな
わち、従来と同様の変調動作を行っていることがわか
る。
Therefore, | Y | = (| X | + | Q |) | sin (πf / fs) | ... (10) From these results, the delta-sigma modulator of the present embodiment can quantize noise. It can be seen that Q has a characteristic of blocking low frequencies, that is, the same modulation operation as in the past is performed.

【0018】このように、本実施例のデルタシグマ変調
器は、プロセス変動に弱くばらつきの多い高ゲインの演
算増幅器等のアナログ回路や誤差発生要因であった積分
用キャパシタを除去でき、集積回路化が容易になる。
As described above, the delta-sigma modulator according to the present embodiment can eliminate the analog circuit such as a high-gain operational amplifier which is weak in the process variation and has a large variation and the integrating capacitor which is a cause of the error, and can be integrated into an integrated circuit. Will be easier.

【0019】[0019]

【発明の効果】以上説明したように、本発明のデルタシ
グマ変調器は、ディジタル出力信号を積分しnビットの
積分信号を出力するディジタル積分回路と、nビットの
D/A変換回路とを備えることにより、積分誤差発生要
因となるキャパシタやプロセス変動に弱い増幅器等のア
ナログ回路等を除去できるので、集積回路化が容易にな
るという効果がある。
As described above, the delta-sigma modulator of the present invention includes a digital integrating circuit that integrates a digital output signal and outputs an n-bit integrated signal, and an n-bit D / A conversion circuit. As a result, it is possible to remove an analog circuit such as an amplifier or the like, which is a factor that causes an integration error and is weak against process fluctuations.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明のデルタシグマ変調器の一実施例を示す
ブロック図である。
FIG. 1 is a block diagram showing an embodiment of a delta-sigma modulator of the present invention.

【図2】本実施例のデルタシグマ変調器における動作の
一例を示すタイムチャートである。
FIG. 2 is a time chart showing an example of the operation of the delta sigma modulator of the present embodiment.

【図3】本実施例のデルタシグマ変調器における各部信
号波形のシミュレーション結果の一例を示す波形図であ
る。
FIG. 3 is a waveform diagram showing an example of a simulation result of signal waveforms at various parts in the delta-sigma modulator of the present embodiment.

【図4】従来のデルタシグマ変調器の一例を示すブロッ
ク図である。
FIG. 4 is a block diagram showing an example of a conventional delta-sigma modulator.

【符号の説明】[Explanation of symbols]

1 加算器 2,7 積分器 3 量子化器 4,6 遅延器 5,8 DAC 1 adder 2,7 integrator 3 quantizer 4,6 delay device 5,8 DAC

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 ディジタル出力信号を積分しn(整数)
ビットの積分信号を出力するディジタル積分回路と、 前記積分信号をアナログ信号に変換するnビットのD/
A変換回路と、 前記アナログ信号と入力信号との減算を行い差信号を生
成する加算回路と、 クロックの供給に応答して前記差信号を1クロック分遅
延し遅延差信号を生成する遅延回路と、 前記遅延差信号を1ビットで量子化して前記ディジタル
出力信号を出力する量子化回路とを備えることを特徴と
するデルタシグマ変調器。
1. A digital output signal is integrated to obtain n (integer).
A digital integrator circuit that outputs a bit integration signal, and an n-bit D / that converts the integration signal into an analog signal
An A conversion circuit; an adder circuit that subtracts the analog signal and an input signal to generate a difference signal; and a delay circuit that delays the difference signal by one clock in response to the supply of a clock to generate a delayed difference signal. A quantized circuit that quantizes the delay difference signal with 1 bit and outputs the digital output signal.
【請求項2】 前記量子化回路が前記遅延差信号の正負
の判定を行い前記ディジタル出力信号を生成する比較回
路を備えることを特徴とする請求項1記載のデルタシグ
マ変調器。
2. The delta-sigma modulator according to claim 1, wherein the quantization circuit includes a comparison circuit that determines whether the delay difference signal is positive or negative and generates the digital output signal.
JP15315395A 1995-06-20 1995-06-20 Digital sigma modulator Pending JPH098664A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15315395A JPH098664A (en) 1995-06-20 1995-06-20 Digital sigma modulator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15315395A JPH098664A (en) 1995-06-20 1995-06-20 Digital sigma modulator

Publications (1)

Publication Number Publication Date
JPH098664A true JPH098664A (en) 1997-01-10

Family

ID=15556191

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15315395A Pending JPH098664A (en) 1995-06-20 1995-06-20 Digital sigma modulator

Country Status (1)

Country Link
JP (1) JPH098664A (en)

Similar Documents

Publication Publication Date Title
US7183957B1 (en) Signal processing system with analog-to-digital converter using delta-sigma modulation having an internal stabilizer loop
US7576671B2 (en) Mismatch-shaping dynamic element matching systems and methods for multi-bit sigma-delta data converters
US5745061A (en) Method of improving the stability of a sigma-delta modulator employing dither
US7557744B2 (en) PWM driver and class D amplifier using same
US20080272946A1 (en) Signal processing system using delta-sigma modulation having an internal stabilizer path with direct output-to-integrator connection
US6384761B1 (en) Second and higher order dynamic element matching in multibit digital to analog and analog to digital data converters
JPH0797749B2 (en) Delta-sigma modulation circuit of analog digital converter
JPH0738440A (en) D/a converter circuit
US7436336B2 (en) Analog digital converter (ADC) having improved stability and signal to noise ratio (SNR)
JP3371681B2 (en) Signal processing device
JP2005510110A (en) Sigma delta modulation
FI90296C (en) Method for cascading sigma-delta modulators and sigma-delta modulator system
JP3290314B2 (en) Method for cascading three sigma-delta modulators and sigma-delta modulator system
US5416483A (en) Method and circuit for noise shaping
JPH03165629A (en) Signal modulator
US10659074B2 (en) Delta-sigma modulator, electronic device, and method for controlling delta-sigma modulator
JP4339490B2 (en) Signal processing device
JP4058179B2 (en) Signal processing device
US10951229B1 (en) Digital filter
JPH01117527A (en) Code converter
JPH098664A (en) Digital sigma modulator
JP3807036B2 (en) Digital data processing apparatus and method
CN110235373B (en) D/A conversion apparatus, D/A conversion method, storage medium, electronic musical instrument, and information processing device
JP2002530989A (en) Sigma-delta D / A converter
JP3428412B2 (en) Delta sigma A / D converter

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 19971202