JPH098620A - Overcurrent protective circuit for insulated gate type bipolar transistor - Google Patents

Overcurrent protective circuit for insulated gate type bipolar transistor

Info

Publication number
JPH098620A
JPH098620A JP7152910A JP15291095A JPH098620A JP H098620 A JPH098620 A JP H098620A JP 7152910 A JP7152910 A JP 7152910A JP 15291095 A JP15291095 A JP 15291095A JP H098620 A JPH098620 A JP H098620A
Authority
JP
Japan
Prior art keywords
terminal
igbt
film coil
bipolar transistor
thin film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7152910A
Other languages
Japanese (ja)
Inventor
Takashi Igarashi
隆 五十嵐
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP7152910A priority Critical patent/JPH098620A/en
Publication of JPH098620A publication Critical patent/JPH098620A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K17/00Electronic switching or gating, i.e. not by contact-making and –breaking
    • H03K17/08Modifications for protecting switching circuit against overcurrent or overvoltage
    • H03K17/082Modifications for protecting switching circuit against overcurrent or overvoltage by feedback from the output to the control circuit
    • H03K17/0828Modifications for protecting switching circuit against overcurrent or overvoltage by feedback from the output to the control circuit in composite switches

Abstract

PURPOSE: To surely protect an IGBT from an overcurrent by using a thin film coil for an overcurrent protective circuit and utilizing a voltage, which is generated at the thin film coil by a high di/dt when the overcurrent is generated, as the gate voltage of the IGBT. CONSTITUTION: One terminal of a thin film coil 2 and a gate terminal 33 of an MOSFET 3 are connected to an emitter terminal 12 of an IGBT 1, and a source terminal 32 of the MOSFET 3 is connected with the other terminal of the thin film coil 2. Then, a drain terminal 31 of the MOSFET 3 is connected with a cathode terminal 42 of a usual diode 4, an anode terminal 41 of this diode 4 is connected with an anode terminal 51 of a Zener diode 5, and a cathode terminal 52 of the Zener diode 5 is connected with a gate terminal 13 of the IGBT 1.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、絶縁ゲート型バイポ
ーラトランジスタ(IGBT)に過電流が発生した場合
に、その過電流を制限し、IGBTのラッチアップ破壊
を防止する絶縁ゲート型バイポーラトランジスタの過電
流保護回路に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an insulated gate bipolar transistor (IGBT) which has an overcurrent limit for limiting the overcurrent when the overcurrent occurs in the insulated gate bipolar transistor (IGBT) to prevent the latch-up breakdown of the IGBT. Regarding a current protection circuit.

【0002】[0002]

【従来の技術】図4は従来のIGBTの過電流保護回路
を示す。主回路のIGBT1は電流検出端子16を有し
ており、この電流検出端子16に抵抗6の一方の端子が
接続され、この抵抗6の他方の端子はIGBT1のエミ
ッタ端子12に接続する。抵抗6の一方の端子はMOS
FET3のゲート端子33と接続し、抵抗6の他方の端
子とMOSFET3のソース端子32と接続する。MO
SFET3のドレイン端子31は通常のダイオード4の
カソード端子42と接続し、このダイオード4のアノー
ド端子41はIGBT1のゲート端子13と接続する。
点線内が過電流保護回路7である。この動作を次に説明
する。主回路に異常が発生し、過電流が流れると、電流
検出端子16に流れる電流と、電流検出端子16と直列
に接続した抵抗6とにより発生した電圧が、IGBT1
のゲート・エミッタ間に配置したMOSFET3のゲー
ト.ソース間に印加され、MOSFET3がオンし、I
GBT1のゲート・エミッタ間電圧が通常のダイオード
4のオン電圧とMOSFET3のオン電圧とを合わせた
電圧まで低下し、IGBT1のコレクタ電流は、そのゲ
ート・エミッタ間電圧とIGBT1の出力特性で決まる
電流値に制限され、IGBT1をラッチアップ破壊から
保護する。
2. Description of the Related Art FIG. 4 shows a conventional IGBT overcurrent protection circuit. The IGBT 1 of the main circuit has a current detection terminal 16, one terminal of the resistor 6 is connected to the current detection terminal 16, and the other terminal of the resistor 6 is connected to the emitter terminal 12 of the IGBT 1. One terminal of the resistor 6 is a MOS
It is connected to the gate terminal 33 of the FET 3, and is connected to the other terminal of the resistor 6 and the source terminal 32 of the MOSFET 3. MO
The drain terminal 31 of the SFET 3 is connected to the cathode terminal 42 of the normal diode 4, and the anode terminal 41 of this diode 4 is connected to the gate terminal 13 of the IGBT 1.
The area within the dotted line is the overcurrent protection circuit 7. This operation will be described below. When an abnormality occurs in the main circuit and an overcurrent flows, the current flowing through the current detection terminal 16 and the voltage generated by the resistor 6 connected in series with the current detection terminal 16 cause the IGBT 1
The gate of the MOSFET 3 arranged between the gate and the emitter of the. Applied between the sources, MOSFET3 turns on, I
The gate-emitter voltage of the IGBT 1 drops to a voltage that is the sum of the on-voltage of the diode 4 and the on-voltage of the MOSFET 3, and the collector current of the IGBT 1 is a current value determined by the gate-emitter voltage and the output characteristics of the IGBT 1. And protects the IGBT1 from latch-up breakdown.

【0003】[0003]

【発明が解決しようとする課題】従来のIGBTの過電
流保護回路では、IGBTチップにコレクタ電流を流す
主IGBTと電流検出用のセンスIGBTとを形成す
る。この電流検出用のセンスIGBT(このセンスIG
BTのエミッタは電流検出端子16と接続する)と、主
IGBT(コレクタ電流を流すIGBT)との出力特性
やVGE(th)特性の相関関係が、各チップで異なり、それ
に伴い、主IGBTとセンスIGBTとに流れる電流の
比率が異なることにより、過電流保護時の制限電流にバ
ラツキが生じる。また、保護回路を構成する抵抗の抵抗
値のバラツキ(以下抵抗のバラツキという)により、セ
ンスIGBTを流れる電流によって生じる抵抗の両端電
圧にバラツキが生じ、その抵抗の両端電圧がIGBTの
ゲート・エミッタ間のMOSFETをオンさせ、電流制
限をかけるため、過電流保護時に制限電流のバラツキが
生じる。
In a conventional IGBT overcurrent protection circuit, a main IGBT for supplying a collector current to an IGBT chip and a sense IGBT for current detection are formed. The sense IGBT for detecting this current (this sense IG
The output characteristics and VGE (th) characteristics of the BT's emitter are connected to the current detection terminal 16) and the main IGBT (IGBT through which the collector current flows) are different in each chip. Due to the difference in the ratio of the currents flowing through the IGBTs, the limiting current during overcurrent protection varies. Further, due to the variation in the resistance value of the resistors that form the protection circuit (hereinafter referred to as the variation in resistance), the voltage across the resistor caused by the current flowing through the sense IGBT also varies, and the voltage across the resistor is between the gate and emitter of the IGBT. Since the MOSFET is turned on to limit the current, the limit current varies during overcurrent protection.

【0004】上記のように、センスIGBTと主IGB
T間の特性バラツキと抵抗のバラツキにより、過電流保
護時の制限電流に大きなバラツキが生じるため、過電流
保護回路として精度が低いものとなっている。また精度
を高めるためには、IGBTと抵抗とを個々に調整する
必要があり、コストアップとなる。この発明は、前記課
題を解決するために、薄膜コイルで直接主電流を検出
し、前記のようなバラツキが生じない、高い精度の絶縁
ゲート型バイポーラトランジスタの過電流保護回路を提
供することを目的とする。
As described above, the sense IGBT and the main IGBT
Due to the characteristic variation between T and the variation in resistance, a large variation occurs in the limiting current at the time of overcurrent protection, so that the accuracy of the overcurrent protection circuit is low. Further, in order to improve the accuracy, it is necessary to individually adjust the IGBT and the resistance, which increases the cost. In order to solve the above problems, the present invention provides a high-precision insulated gate bipolar transistor overcurrent protection circuit that directly detects a main current with a thin-film coil and does not cause the above-described variations. And

【0005】[0005]

【課題を解決するための手段】前記目的を達成するため
に、ツェナーダイオードのカソード端子が主回路の絶縁
ゲート型バイポーラトランジスタのゲート端子と接続
し、ツェナーダイオードのアノード端子がダイオードの
アノード端子と接続し、ダイオードのカソード端子がM
OSFETのドレイン端子と接続し、MOSFETのゲ
ート端子と主回路の絶縁ゲート型バイポーラトランジス
タのエミッタ端子と接続し、このエミッタ端子とMOS
FETのソース端子間に薄膜コイルを接続する。
To achieve the above object, the cathode terminal of the Zener diode is connected to the gate terminal of the insulated gate bipolar transistor of the main circuit, and the anode terminal of the Zener diode is connected to the anode terminal of the diode. The diode cathode terminal is M
Connected to the drain terminal of the OSFET, connected to the gate terminal of the MOSFET and the emitter terminal of the insulated gate bipolar transistor of the main circuit, and this emitter terminal and the MOS
A thin film coil is connected between the source terminals of the FET.

【0006】また主回路の絶縁ゲート型バイポーラトラ
ンジスタのエミッタ電極と一端が接続し、かつ絶縁膜を
介してエミッタ電極上に薄膜コイルを形成するとよい。
この薄膜コイルのインダクタンスが10pHないし10
00pHであるとよいが、さらに望ましくは10pHな
いし100pHであるとよい。
Further, it is preferable that one end is connected to the emitter electrode of the insulated gate bipolar transistor of the main circuit and a thin film coil is formed on the emitter electrode via an insulating film.
The inductance of this thin film coil is 10 pH to 10
The pH is preferably 00 pH, more preferably 10 to 100 pH.

【0007】[0007]

【作用】IGBTに流れる主電流(コレクタ電流)は、
電流値が大きくなると主電流の変化(di/dt)も大
きくなる。従って、主回路のIGBTのエミッタ端子に
薄膜コイルを接続することで、主電流の変化(di/d
t)を薄膜コイルのインダクタンスLで電圧(L×di
/dt)に変換して検出すると、主電流が過大になる
と、この電圧も大きくなり、この電圧で過電流保護回路
のMOSFETのゲートを制御することで、確実にIG
BTの主電流を抑制する。また従来のような各素子間で
の主電流の検出ばらつきは、この保護回路では生じな
い。
The main current (collector current) flowing through the IGBT is
As the current value increases, the change (di / dt) in the main current also increases. Therefore, by connecting the thin film coil to the emitter terminal of the IGBT of the main circuit, the change of the main current (di / d
t) is a voltage (L × di
If the main current becomes too large, this voltage will also become large by controlling the gate of the MOSFET of the overcurrent protection circuit by this voltage.
The main current of BT is suppressed. Further, the detection variation of the main current between the respective elements as in the conventional case does not occur in this protection circuit.

【0008】また薄膜コイルをIGBTと同一半導体基
板上に形成し、この薄膜コイルとIGBTのコレクタ端
子とを半導体基板上で配線することで、配線インダクタ
ンスのバラツキを極めて小さくでき、結果として高精度
の過電流保護回路となる。
By forming the thin-film coil on the same semiconductor substrate as the IGBT and wiring the thin-film coil and the collector terminal of the IGBT on the semiconductor substrate, variations in wiring inductance can be made extremely small, resulting in high precision. It becomes an overcurrent protection circuit.

【0009】[0009]

【実施例】図1は一実施例のIGBTの過電流保護回路
を示す。主回路のIGBT1はコレクタ端子11、エミ
ッタ端子12およびゲート端子13を有し、エミッタ端
子12に薄膜コイル2の一方の端子が接続し、この薄膜
コイル2の一方の端子はMOSFET3のゲート端子3
3とも接続し、MOSFET3のソース端子32は薄膜
コイル2の他方の端子と接続する。MOSFET3のド
レイン端子31は通常のダイオード4のカソード端子4
2と接続し、このダイオード4のアノード端子41はツ
ェナーダイオード5のアノード端子51と接続し、ツェ
ナーダイオード5のカソード端子52はIGBT1のゲ
ート端子13と接続する。点線内が過電流保護回路7で
ある。
FIG. 1 shows an IGBT overcurrent protection circuit according to an embodiment. The IGBT 1 of the main circuit has a collector terminal 11, an emitter terminal 12, and a gate terminal 13. One terminal of the thin film coil 2 is connected to the emitter terminal 12, and one terminal of this thin film coil 2 is the gate terminal 3 of the MOSFET 3.
3 and the source terminal 32 of the MOSFET 3 is connected to the other terminal of the thin film coil 2. The drain terminal 31 of the MOSFET 3 is the cathode terminal 4 of the normal diode 4.
2, the anode terminal 41 of the diode 4 is connected to the anode terminal 51 of the Zener diode 5, and the cathode terminal 52 of the Zener diode 5 is connected to the gate terminal 13 of the IGBT 1. The area within the dotted line is the overcurrent protection circuit 7.

【0010】図2は薄膜コイルをIGBT上に形成した
図で、同図(a)は平面図、同図(b)は同図(a)の
X−X線切断部の断面図を示す。同図(a)において、
IGBT1のゲートパッド15、エミッタ電極14およ
び薄膜コイル2が示されている。IGBT1のエミッタ
電極14上に絶縁膜を介して薄膜コイル2を形成し、薄
膜コイル2の一端は接続部21でエミッタ電極14と接
続し、他端はコレクタ電流が流れ出す主端子(図示され
ていない)へ接続する。薄膜コイル2の両側からは図示
されていないコイル補助端子が出ている。このコイル補
助端子が外部の保護回路のMOSFETのゲート端子お
よびソース端子と接続される。同図(b)において、半
導体基板にIGBT1が形成され、エミッタ電極14上
に絶縁膜22を選択的に形成し、この絶縁膜22上に薄
膜コイル2を形成し、薄膜コイル2の一端がエミッタ電
極14と接続部21で接続される。他端はコレクタ電流
が流れ出す主端子(図示されていない)と接続する。
2A and 2B are views showing the thin film coil formed on the IGBT. FIG. 2A is a plan view and FIG. 2B is a sectional view taken along the line X--X in FIG. 2A. In FIG.
The gate pad 15, the emitter electrode 14, and the thin-film coil 2 of the IGBT 1 are shown. The thin-film coil 2 is formed on the emitter electrode 14 of the IGBT 1 via an insulating film, one end of the thin-film coil 2 is connected to the emitter electrode 14 at the connecting portion 21, and the other end is a main terminal through which a collector current flows (not shown). ) To. From both sides of the thin film coil 2, coil auxiliary terminals (not shown) are projected. The coil auxiliary terminal is connected to the gate terminal and the source terminal of the MOSFET of the external protection circuit. In FIG. 1B, the IGBT 1 is formed on the semiconductor substrate, the insulating film 22 is selectively formed on the emitter electrode 14, the thin film coil 2 is formed on the insulating film 22, and one end of the thin film coil 2 is an emitter. The electrode 14 and the connection portion 21 are connected. The other end is connected to a main terminal (not shown) through which the collector current flows.

【0011】図3は電圧共振回路にIGBTを適用した
場合の動作波形図で、同図(a)はIGBTのコレクタ
電流波形図、同図(b)は薄膜コイルのコイル電圧波形
図、同図(c)はIGBTのゲート電圧波形図を示す。
同図(a)において、コレクタ電流が増大するとコレク
タ電流の電流の変化(電流上昇率:di/dt)が大き
くなる。同図(b)において、薄膜コイルに発生するコ
イル電圧は電流値が小さい段階では小さく、電流値が大
きくなると、つまり過電流になると、この電圧は大きく
なる。この電圧がMOSFETのゲートしきい値電圧
(VGS(th))を越えるとMOSFETはオンする。同図
(c)において、IGBTのゲート電圧はMOSFET
がオンするまではゲート駆動電源から与えられる高いゲ
ート電圧を維持し、MOSFETがオンした時点でツェ
ナーダイオードのツェナー電圧、通常のダイオードのオ
ン電圧およびMOSFETのオン電圧とを加えた電圧ま
で低下する。
FIG. 3 is an operation waveform diagram when the IGBT is applied to the voltage resonance circuit. FIG. 3A is a collector current waveform diagram of the IGBT, and FIG. 3B is a coil voltage waveform diagram of the thin film coil. (C) shows a gate voltage waveform diagram of the IGBT.
In FIG. 6A, when the collector current increases, the change in the collector current (current increase rate: di / dt) increases. In the same figure (b), the coil voltage generated in the thin film coil is small when the current value is small, and becomes large when the current value becomes large, that is, when an overcurrent occurs. When this voltage exceeds the gate threshold voltage (VGS (th)) of the MOSFET, the MOSFET turns on. In the same figure (c), the gate voltage of the IGBT is MOSFET
Keeps a high gate voltage supplied from the gate drive power supply until the MOSFET turns on, and when the MOSFET turns on, the voltage drops to the sum of the Zener voltage of the Zener diode, the normal diode ON voltage and the MOSFET ON voltage.

【0012】この低下した電圧がゲート電圧となりIG
BTのコレクタ電流を出力特性で決まるコレクタ電流ま
で減少させる。このようにして過電流は制限され、過電
流制限レベルをIGBTのラッチアップレベル以下にす
ることにより、IGBTは過電流によるラッチアップ破
壊から保護される。前記のdi/dtは数十〜数千A/
μsであり、一方、MOSFETのゲート駆動電圧は数
Vから十数Vであるため、薄膜コイル4の必要とするイ
ンダクタンスは10〜1000pHとなる。しかし、殆
どの場合di/dtは100A/μs以上で、しかも薄
膜コイルのインダクタンスを増大させることは製造上困
難を伴うので、実用的なインダクタンスとしては10〜
100pHである。
This lowered voltage becomes the gate voltage and IG
The collector current of BT is reduced to the collector current determined by the output characteristics. In this way, the overcurrent is limited, and the IGBT is protected from the latchup breakdown due to the overcurrent by setting the overcurrent limitation level to the latchup level of the IGBT or less. The above di / dt is several tens to several thousands A /
On the other hand, since the gate drive voltage of the MOSFET is several V to several tens of V, the inductance required for the thin film coil 4 is 10 to 1000 pH. However, in most cases, di / dt is 100 A / μs or more, and it is difficult to increase the inductance of the thin-film coil in terms of manufacturing.
It is 100 pH.

【0013】[0013]

【発明の効果】この発明によれば、薄膜コイルを過電流
保護回路に用い、過電流発生時の高いdi/dtによる
薄膜コイルに発生する電圧を、ゲート電圧として利用す
ることで、バラツキの少ないゲート電圧をMOSFET
に与えることができ、確実にMOSFETをオンさせ、
IGBTのゲート電圧をバラツキなく所定の値に低下さ
せ、過電流を所定の値に制限し、IGBTを過電流から
確実に保護することができる。
According to the present invention, the thin-film coil is used in the overcurrent protection circuit, and the voltage generated in the thin-film coil due to the high di / dt when the overcurrent is generated is used as the gate voltage. Gate voltage is MOSFET
To turn on the MOSFET without fail,
It is possible to reliably reduce the gate voltage of the IGBT to a predetermined value, limit the overcurrent to a predetermined value, and reliably protect the IGBT from the overcurrent.

【図面の簡単な説明】[Brief description of drawings]

【図1】この発明の一実施例で、IGBTの過電流保護
回路図
FIG. 1 is a circuit diagram of an IGBT overcurrent protection circuit according to an embodiment of the present invention.

【図2】薄膜コイルを半導体基板に形成した図で(a)
は平面図、(b)は(a)のX−X線切断部の断面図
FIG. 2 is a view showing a thin film coil formed on a semiconductor substrate (a).
Is a plan view, (b) is a cross-sectional view taken along line X-X of (a)

【図3】電圧共振回路にIGBTを適用した場合の動作
波形図で、(a)はIGBTのコレクタ電流波形図、
(b)は薄膜コイルの電圧波形図、(c)はIGBTの
ゲート電圧波形図
FIG. 3 is an operation waveform diagram when an IGBT is applied to a voltage resonance circuit, (a) is a collector current waveform diagram of the IGBT,
(B) is a voltage waveform diagram of the thin film coil, (c) is a gate voltage waveform diagram of the IGBT

【図4】従来のIGBTの過電流保護回路図FIG. 4 is a circuit diagram of a conventional IGBT overcurrent protection circuit.

【符号の説明】[Explanation of symbols]

1 IGBT 11 コレクタ端子 12 エミッタ端子 13 ゲート端子 14 エミッタ電極 15 ゲートパッド 16 電流検出端子 2 薄膜コイル 21 接続部 22 絶縁膜 3 MOSFET 31 ソース端子 32 ドレイン端子 33 ゲート端子 4 通常のダイオード 41 アノード端子 42 カソード端子 5 ツェナーダイオード 51 アノード端子 52 カソード端子 6 抵抗 7 過電流保護回路 1 IGBT 11 Collector Terminal 12 Emitter Terminal 13 Gate Terminal 14 Emitter Electrode 15 Gate Pad 16 Current Detection Terminal 2 Thin Film Coil 21 Connection Part 22 Insulating Film 3 MOSFET 31 Source Terminal 32 Drain Terminal 33 Gate Terminal 4 Normal Diode 41 Anode Terminal 42 Cathode Terminal 5 Zener diode 51 Anode terminal 52 Cathode terminal 6 Resistance 7 Overcurrent protection circuit

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】ツェナーダイオードのカソード端子が主回
路の絶縁ゲート型バイポーラトランジスタのゲート端子
と接続し、ツェナーダイオードのアノード端子がダイオ
ードのアノード端子と接続し、ダイオードのカソード端
子がMOSFETのドレイン端子と接続し、MOSFE
Tのゲート端子と主回路の絶縁ゲート型バイポーラトラ
ンジスタのエミッタ端子と接続し、このエミッタ端子と
MOSFETのソース端子とに両端がそれぞれ接続され
る薄膜コイルを有することを特徴とする絶縁ゲート型バ
イポーラトランジスタの過電流保護回路。
1. A cathode terminal of a Zener diode is connected to a gate terminal of an insulated gate bipolar transistor of a main circuit, an anode terminal of a Zener diode is connected to an anode terminal of a diode, and a cathode terminal of the diode is a drain terminal of a MOSFET. Connect, MOSFE
An insulated gate bipolar transistor having a thin film coil connected to a gate terminal of T and an emitter terminal of an insulated gate bipolar transistor of a main circuit, and having both ends connected to the emitter terminal and a source terminal of a MOSFET. Overcurrent protection circuit.
【請求項2】薄膜コイルが主回路の絶縁ゲート型バイポ
ーラトランジスタのエミッタ電極と一端が接続し、かつ
絶縁膜を介してエミッタ電極上に形成されることを特徴
とする請求項1記載の絶縁ゲート型バイポーラトランジ
スタの過電流保護回路。
2. The insulated gate according to claim 1, wherein the thin film coil has one end connected to the emitter electrode of the insulated gate bipolar transistor of the main circuit, and is formed on the emitter electrode through the insulating film. Type bipolar transistor overcurrent protection circuit.
【請求項3】薄膜コイルのインダクタンスが10pHな
いし1000pHであることを特徴とする請求項1また
は2記載の絶縁ゲート型バイポーラトランジスタの過電
流保護回路。
3. The overcurrent protection circuit for an insulated gate bipolar transistor according to claim 1, wherein the thin film coil has an inductance of 10 pH to 1000 pH.
JP7152910A 1995-06-20 1995-06-20 Overcurrent protective circuit for insulated gate type bipolar transistor Pending JPH098620A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7152910A JPH098620A (en) 1995-06-20 1995-06-20 Overcurrent protective circuit for insulated gate type bipolar transistor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7152910A JPH098620A (en) 1995-06-20 1995-06-20 Overcurrent protective circuit for insulated gate type bipolar transistor

Publications (1)

Publication Number Publication Date
JPH098620A true JPH098620A (en) 1997-01-10

Family

ID=15550820

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7152910A Pending JPH098620A (en) 1995-06-20 1995-06-20 Overcurrent protective circuit for insulated gate type bipolar transistor

Country Status (1)

Country Link
JP (1) JPH098620A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7414867B2 (en) 2006-08-01 2008-08-19 Mitsubishi Electric Corporation Power conversion device
JP2010246251A (en) * 2009-04-06 2010-10-28 Denso Corp Drive circuit of power conversion circuit
JP2012090108A (en) * 2010-10-20 2012-05-10 Rohm Co Ltd High side switch circuit, interface circuit and electronic apparatus
WO2016047455A1 (en) * 2014-09-26 2016-03-31 株式会社日立パワーデバイス Semiconductor power module and semiconductor drive device

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7414867B2 (en) 2006-08-01 2008-08-19 Mitsubishi Electric Corporation Power conversion device
KR100884782B1 (en) * 2006-08-01 2009-02-23 미쓰비시덴키 가부시키가이샤 Power conversion device
JP2010246251A (en) * 2009-04-06 2010-10-28 Denso Corp Drive circuit of power conversion circuit
JP2012090108A (en) * 2010-10-20 2012-05-10 Rohm Co Ltd High side switch circuit, interface circuit and electronic apparatus
WO2016047455A1 (en) * 2014-09-26 2016-03-31 株式会社日立パワーデバイス Semiconductor power module and semiconductor drive device
JP2016066974A (en) * 2014-09-26 2016-04-28 株式会社日立製作所 Semiconductor power module and semiconductor driving device

Similar Documents

Publication Publication Date Title
US5497285A (en) Power MOSFET with overcurrent and over-temperature protection
JP2988859B2 (en) Power MOSFET
US5642252A (en) Insulated gate semiconductor device and driving circuit device and electronic system both using the same
US6888711B2 (en) Semiconductor device including a surge protecting circuit
JP3243902B2 (en) Semiconductor device
US6215634B1 (en) Drive circuit for power device
JPH02266712A (en) Semiconductor device
US5963407A (en) Overvoltage protection device for the protection of a power transistor having a MOS control terminal
JPH08111524A (en) Current detection circuit
JPH07236229A (en) Offline bootstrap type start-up circuit
JPH06132800A (en) Insulated gate type semiconductor device
US20010042886A1 (en) Depletion type MOS semiconductor device and MOS power IC
JPH07245394A (en) Insulation gate bipolar transistor
EP0733283A1 (en) A protected switch
US5581432A (en) Clamp circuit and method for identifying a safe operating area
JP2018046685A (en) Semiconductor device and power control device
EP0869342B1 (en) Temperature detecting electronic device and electronic switching apparatus including the same
JPH098620A (en) Overcurrent protective circuit for insulated gate type bipolar transistor
JPH05259853A (en) Current limit circuit
JPH0758331A (en) Semiconductor device
JP2001284589A (en) Control circuit built-in insulated gate semiconductor device
EP0670600A2 (en) Insulated gate-type bipolar transistor
KR20040010128A (en) Gate driving circuit in power module
JPH08316472A (en) Current feeding circuit
JP3431127B2 (en) Electronic device and electronic switch device