JPH0985582A - Thermal displacement estimating device of machine tool - Google Patents

Thermal displacement estimating device of machine tool

Info

Publication number
JPH0985582A
JPH0985582A JP24790095A JP24790095A JPH0985582A JP H0985582 A JPH0985582 A JP H0985582A JP 24790095 A JP24790095 A JP 24790095A JP 24790095 A JP24790095 A JP 24790095A JP H0985582 A JPH0985582 A JP H0985582A
Authority
JP
Japan
Prior art keywords
temperature
sensor
spindle
main spindle
measured
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP24790095A
Other languages
Japanese (ja)
Inventor
Kazunari Itou
万成 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Okuma Corp
Original Assignee
Okuma Machinery Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Okuma Machinery Works Ltd filed Critical Okuma Machinery Works Ltd
Priority to JP24790095A priority Critical patent/JPH0985582A/en
Publication of JPH0985582A publication Critical patent/JPH0985582A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To accurately estimate the relative displacement between a tool cutting edge and a work by grasping the temperature distribution of the whole main spindle system. SOLUTION: The temperature of an outer race of a bearing 10 for supporting the tip of a main spindle 1 is measured by a first sensor 21. The temperature of the outer periphery of a stator 15b in a motor 15 is measured by a second sensor 22. A third sensor 23 is provided on a main spindle head 2 at the position separated from the first sensor 21 and the second sensor 22, and the temperature of the intermediate part to be heated by thermal transfer in rotating of the main spindle is measured. A fourth sensor 24 for measuring the reference temperature is provided on a bed not to be heated with the rotation of the main spindle. Outputs of respective sensors are input into an NC device 26 through an analog-to-digital converter 25, and the relative displacement between a tool 18 at the tip of the main spindle and a work is calculated by the calculating means on the basis of the measured temperatures of respective sensors.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、工作機械において
主軸回転時の発熱により発生する工具刃先とワークとの
相対変位を推定する装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an apparatus for estimating a relative displacement between a tool edge and a workpiece generated by heat generated when a spindle rotates in a machine tool.

【0002】[0002]

【従来の技術】主軸の熱変位を推定する方法として、従
来、熱源である軸受近傍の温度と、主軸回転時に発熱し
ない部位(例えばベッド)の基準温度とをそれぞれセン
サで測定し、各測定温度の差に基づいて主軸端とワーク
との相対変位を推定する技術が提案されている。
2. Description of the Related Art Conventionally, as a method for estimating the thermal displacement of a spindle, a temperature near a bearing, which is a heat source, and a reference temperature of a portion (for example, a bed) that does not generate heat when the spindle rotates are measured by sensors, and the measured temperature is measured. A technique for estimating the relative displacement between the spindle end and the workpiece based on the difference between the two has been proposed.

【0003】[0003]

【発明が解決しようとする課題】ところが、従来の推定
方法によると、熱源を軸受に限定しているため、主軸系
全体の温度状況を正確に把握することができず、熱変位
の推定値と実際値とに誤差が発生するという問題点があ
った。なぜなら、主軸の発熱要因は軸受の損失のみなら
ず主軸駆動モータの損失をも含むからである。しかも、
軸受の発熱量は基本的に主軸回転数の増加に伴って増大
するのに対し、モータの発熱量はモータ効率や負荷状況
によって変動する。つまり、軸受の昇温特性とモータの
昇温特性との間に関連性がないため、軸受近傍の温度の
みによっては主軸系全体の温度分布を一義的に特定する
ことができず、結果、推定誤差を招く。また、モータの
温度を測定し、このモータ温度と軸受温度と基準温度と
の差に基づいて熱変位を推定したとしても、温度変化の
熱源を特定できないため、主軸系全体の温度分布を把握
することは困難である。
However, according to the conventional estimation method, since the heat source is limited to the bearing, it is not possible to accurately grasp the temperature condition of the entire main spindle system, and the estimated value of the thermal displacement is obtained. There was a problem that an error occurred with the actual value. This is because the heat generation factor of the spindle includes not only the bearing loss but also the spindle drive motor loss. Moreover,
The heat generation amount of the bearing basically increases as the main shaft rotation speed increases, whereas the heat generation amount of the motor changes depending on the motor efficiency and the load condition. In other words, since there is no relationship between the temperature rise characteristics of the bearing and the temperature rise characteristics of the motor, the temperature distribution of the entire main spindle system cannot be uniquely specified only by the temperature in the vicinity of the bearing. It causes an error. Even if the temperature of the motor is measured and the thermal displacement is estimated based on the difference between the motor temperature, the bearing temperature, and the reference temperature, the heat source of the temperature change cannot be identified, so the temperature distribution of the entire main spindle system is understood. Is difficult.

【0004】そこで、本発明の課題は、主軸系全体の温
度分布を把握して、主軸端とワークとの相対変位を正確
に推定できる工作機械の熱変位推定装置を提供すること
にある。
Therefore, an object of the present invention is to provide a thermal displacement estimating device for a machine tool which can grasp the temperature distribution of the entire spindle system and accurately estimate the relative displacement between the spindle end and the workpiece.

【0005】[0005]

【課題を解決するための手段】上記の課題を解決するた
めに、本発明の熱変位推定装置は、工作機械において、
主軸回転時の発熱により発生する工具刃先とワークとの
相対変位を推定する装置であって、主軸を支持する軸受
近傍の温度を測定する第1センサと、主軸を駆動するモ
ータ近傍の温度を測定する第2センサと、第1センサ及
び第2センサから離れた位置で主軸時に温度変化する部
位の温度を測定する第3センサと、第1乃至第3センサ
から離れた位置で主軸回転時に発熱しない部位の温度を
測定する第4センサと、第1乃至第4センサの測定温度
に基づいて主軸端とワークとの相対変位を演算する手段
とから構成される。
In order to solve the above-mentioned problems, the thermal displacement estimation device of the present invention is
A device that estimates the relative displacement between the tool edge and the workpiece that is generated by heat generated when the spindle rotates, and measures the temperature near the bearing that supports the spindle and the temperature near the motor that drives the spindle. The second sensor, the third sensor that measures the temperature of the portion where the temperature changes at the time of the spindle at the positions distant from the first sensor and the second sensor, and the position that is distant from the first to third sensors does not generate heat when the spindle rotates. It is composed of a fourth sensor for measuring the temperature of the part and a means for calculating the relative displacement between the spindle end and the workpiece based on the temperatures measured by the first to fourth sensors.

【0006】ここで、NC工作機械の場合、前記演算手
段がNC装置の一部によって構成され、NC装置のプロ
グラムメモリには所定の関数式がストアされ、この関数
式に第1乃至第4センサの測定温度を変数として代入す
ることで、工具刃先−ワークの相対変位が求められる。
また、この関数式を用いて各温度毎に予め求めた相対変
位量をプログラムメモリにストアすることで、機械運転
中のNC装置の演算処理量を軽減できるように構成して
もよい。
Here, in the case of an NC machine tool, the calculation means is constituted by a part of the NC device, and a predetermined functional expression is stored in the program memory of the NC device, and the first to fourth sensors are stored in this functional expression. By substituting the measured temperature of 1 as a variable, the relative displacement between the tool edge and the workpiece can be obtained.
Further, by storing the relative displacement amount obtained in advance for each temperature using this functional expression in the program memory, it may be possible to reduce the calculation processing amount of the NC device during machine operation.

【0007】[0007]

【発明の実施の形態】以下、本発明をマシニングセンタ
に具体化した一実施形態を図面に基づいて説明する。図
1に示すように、横型マシニングセンタの主軸1は主軸
頭2に回転可能に支持されている。主軸頭2はサドル3
を介しコラム4に支持され、サーボモータ(図示略)に
よってY方向の任意位置に位置めされる。コラム4はベ
ッド5上に設置され、サーボモータ(図示略)によって
Z方向の任意位置に位置決めされる。ワーク6はテーブ
ル7上に載置され、テーブル7はベッド5に対しサーボ
モータ(図示略)によりX−Y方向の任意位置に位置決
めされる。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment in which the present invention is embodied in a machining center will be described below with reference to the drawings. As shown in FIG. 1, a spindle 1 of a horizontal machining center is rotatably supported by a spindle head 2. Spindle head 2 is saddle 3
It is supported by the column 4 via the and is positioned at an arbitrary position in the Y direction by a servo motor (not shown). The column 4 is installed on the bed 5 and is positioned at an arbitrary position in the Z direction by a servo motor (not shown). The work 6 is placed on the table 7, and the table 7 is positioned at an arbitrary position in the XY direction with respect to the bed 5 by a servo motor (not shown).

【0008】図2に示すように、主軸1上には3つの軸
受10,11,12が配設されている。軸受10,11
はスリーブ13を介し、軸受12はスリーブ14を介し
てそれぞれ主軸頭2の内側に挿着されている。主軸頭2
には主軸1を回転駆動するビルトイン型のモータ15が
内蔵され、該モータ15は主軸1側のロータ15aと主
軸頭2側のステータ15bとから構成されている。主軸
頭2及びスリーブ13には冷却通路16が形成され、こ
こを流れる冷却液17によって主軸1が冷却される。主
軸1の先端にはワーク6を加工する工具18が挿入さ
れ、スプリング19によりドローシャフト20を介して
保持されている。
As shown in FIG. 2, three bearings 10, 11, 12 are arranged on the main shaft 1. Bearing 10, 11
Via a sleeve 13 and the bearing 12 via a sleeve 14 inside the spindle head 2. Spindle head 2
Has a built-in motor 15 for driving the spindle 1 to rotate. The motor 15 is composed of a rotor 15a on the spindle 1 side and a stator 15b on the spindle head 2 side. A cooling passage 16 is formed in the spindle head 2 and the sleeve 13, and the spindle 1 is cooled by a cooling liquid 17 flowing therethrough. A tool 18 for processing the work 6 is inserted into the tip of the main shaft 1 and held by a spring 19 via a draw shaft 20.

【0009】主軸1の先端部を支持する軸受10の近傍
においてスリーブ13には、軸受10の外輪温度T1を
測定する第1センサ21が設けられている。モータ15
の近傍において主軸頭2には、ステータ15bの外周温
度T2を測定する第2センサ22が設けられている。第
1センサ21及び第2センサ22から離れた位置におい
て主軸頭2には、主軸1の回転時に主に軸受10,11
及びモータ15からの熱伝導によって発熱する中間部位
の温度T3を測定する第3センサ23が設けられてい
る。また、図1に示すように、第1乃至第3センサ2
1,22,23から遠く離れた位置のベッド5には、主
軸1の回転時に軸受10,11,12及びモータ15か
らの熱伝導によって発熱しない部位の温度T4を基準温
度として測定する第4センサ24が設けられている。そ
して、各センサ21,22,23,24の出力はアナロ
グデジタル変換器25で数値情報に変換されたのちにN
C装置26に入力され、該装置26の演算手段によって
以下に述べる処理が実行され、各センサ21〜24の測
定温度に基づき主軸1先端の工具18とワーク6との相
対変位が演算されるようになっている。
A first sensor 21 for measuring the outer ring temperature T1 of the bearing 10 is provided in the sleeve 13 near the bearing 10 supporting the tip of the main shaft 1. Motor 15
A second sensor 22 for measuring the outer peripheral temperature T2 of the stator 15b is provided on the spindle head 2 in the vicinity of. At a position apart from the first sensor 21 and the second sensor 22, the spindle head 2 mainly has the bearings 10 and 11 when the spindle 1 rotates.
Also, a third sensor 23 for measuring the temperature T3 of the intermediate portion that generates heat due to heat conduction from the motor 15 is provided. In addition, as shown in FIG. 1, the first to third sensors 2
A fourth sensor for measuring, as a reference temperature, a temperature T4 of a portion of the bed 5 located far away from the bearings 1, 22, 23 and 23, which does not generate heat due to heat conduction from the bearings 10, 11, 12 and the motor 15 when the spindle 1 rotates. 24 are provided. Then, the outputs of the respective sensors 21, 22, 23, 24 are converted into numerical information by the analog-digital converter 25, and then N
C is input to the device 26, and the processing described below is executed by the calculating means of the device 26 so that the relative displacement between the tool 18 at the tip of the spindle 1 and the workpiece 6 is calculated based on the temperature measured by each sensor 21-24. It has become.

【0010】すなわち、図3に示すフローチャートにお
いて、まず、各センサ21〜24の出力に基づいて数値
化された温度情報、つまり、軸受温度T1、モータ温度
T2、中間部位温度T3、及び基準温度T4がNC装置
26に入力される(ステップS1)。次いで、T1とT
3との差分ΔT13、及び、T2とT3との差分ΔT2
3が算出される(ステップS2)。次に、実験等で予め
求めた定数a,bと前記差分ΔT13及びΔT23とに
より温度分布補正係数Tkが算出されるとともに、T3
とT4との差分ΔT34が算出される(ステップS
3)。続いて、ΔT34とTkとを加算して実効温度上
昇量ΔTが算出される(ステップS4)。さらに、前記
ΔTに実験等で予め求めた定数cを掛け、主軸回転時に
おける工具18とワーク6との相対変位量Δlが算出さ
れる(ステップS5)。そして、この相対変位量Δlは
NC装置26の補正部に出力され(ステップS6)、そ
の後、NC装置26による周知の補正方法に従って工具
−ワークの相対変位が補正される。
That is, in the flow chart shown in FIG. 3, first, temperature information numerically converted based on the outputs of the respective sensors 21 to 24, that is, the bearing temperature T1, the motor temperature T2, the intermediate portion temperature T3, and the reference temperature T4. Is input to the NC device 26 (step S1). Then T1 and T
3 difference ΔT13 and T2 and T3 difference ΔT2
3 is calculated (step S2). Next, the temperature distribution correction coefficient Tk is calculated from the constants a and b obtained in advance by experiments and the differences ΔT13 and ΔT23, and T3 is calculated.
And the difference ΔT34 between T4 and T4 is calculated (step S
3). Then, ΔT34 and Tk are added to calculate the effective temperature increase amount ΔT (step S4). Further, ΔT is multiplied by a constant c previously obtained by experiments or the like to calculate the relative displacement amount Δl between the tool 18 and the workpiece 6 during the spindle rotation (step S5). Then, the relative displacement amount Δl is output to the correction unit of the NC device 26 (step S6), and then the relative displacement between the tool and the work is corrected according to a known correction method by the NC device 26.

【0011】なお、前記定数a,b,cは事前に測定し
た相対変位と温度との関係から求めた係数であることが
望ましい。図3のフローチャートに示す近似式は、同一
設計の機械に対し共通に適用可能であるが、各機械毎に
その特性に応じて定数a,b,cを調整すれば、推定精
度をより向上させることができる。上記実施形態では、
温度分布補正係数ΔTkを線形式を用いて算出したが、
温度の測定位置や主軸系冷却機構の特性によっては非線
形式を用いて近似的に算出することも勿論可能である。
また、変数としては、温度測定値のほか、温度測定値の
変化履歴情報や時間平均値等を用いることも有効であ
る。
The constants a, b, and c are preferably coefficients obtained from the relationship between the relative displacement and the temperature measured in advance. The approximate expression shown in the flowchart of FIG. 3 can be commonly applied to machines of the same design, but if the constants a, b, and c are adjusted according to the characteristics of each machine, the estimation accuracy is further improved. be able to. In the above embodiment,
The temperature distribution correction coefficient ΔTk was calculated using the linear form,
Depending on the temperature measurement position and the characteristics of the spindle cooling mechanism, it is of course possible to use a non-linear expression to approximately calculate.
In addition to the temperature measurement value, it is also effective to use the change history information of the temperature measurement value, the time average value, or the like as the variable.

【0012】[0012]

【発明の効果】以上詳述したように、本発明によれば、
4つのセンサの測定温度に基づき主軸系全体の温度分布
を把握して、工具刃先とワークとの相対変位を正確に推
定できるという優れた効果を奏する。特に、発熱部であ
る軸受け温度およびモータ温度と、その影響を受ける中
間部位の温度の差分を取り、これより補正係数を算出
し、これと基準温度より温度分布を推定することによ
り、工具刃先とワークの相対変位をより高精度に推定で
きる。
As described in detail above, according to the present invention,
The temperature distribution of the entire spindle system can be grasped based on the temperatures measured by the four sensors, and the relative displacement between the tool cutting edge and the workpiece can be accurately estimated, which is an excellent effect. In particular, by taking the difference between the bearing temperature and the motor temperature, which are the heat generating parts, and the temperature of the intermediate part affected by that, calculating the correction coefficient from this, and estimating the temperature distribution from this and the reference temperature, The relative displacement of the work can be estimated with higher accuracy.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施形態を示すマシニングセンタの
概略図である。
FIG. 1 is a schematic view of a machining center showing an embodiment of the present invention.

【図2】同マシニングセンタの熱変位推定装置を示す主
軸頭の断面図である。
FIG. 2 is a cross-sectional view of a spindle head showing a thermal displacement estimation device of the machining center.

【図3】同推定装置の演算処理内容を示すフローチャー
トである。
FIG. 3 is a flowchart showing the contents of arithmetic processing of the estimation device.

【符号の説明】[Explanation of symbols]

1・・主軸、5・・ベッド、10,11,12・・軸
受、15・・モータ、18・・工具、21・・第1セン
サ、22・・第2センサ、23・・第3センサ、24・
・第4センサ、26・・NC装置。
1 ... Spindle, 5 ... Bed, 10, 11, 12 ... Bearing, 15 ... Motor, 18 ... Tool, 21 ... First sensor, 22 ... Second sensor, 23 ... Third sensor, 24.
4th sensor, 26 ... NC device.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 工作機械において、主軸回転時の発熱に
より発生する工具刃先とワークとの相対変位を推定する
装置であって、主軸を支持する軸受近傍の温度を測定す
る第1センサと、主軸を駆動するモータ近傍の温度を測
定する第2センサと、第1センサ及び第2センサから離
れた位置で主軸回転時に温度変化する部位の温度を測定
する第3センサと、第1乃至第3センサから離れた位置
で主軸回転時に発熱しない部位の温度を測定する第4セ
ンサと、第1乃至第4センサの測定温度に基づいて主軸
端とワークとの相対変位を演算する手段とからなる工作
機械の熱変位推定装置。
1. A machine tool, comprising: a device for estimating relative displacement between a tool cutting edge and a workpiece, which is generated by heat generated when a spindle rotates, a first sensor for measuring a temperature near a bearing supporting the spindle, and the spindle. Second sensor for measuring the temperature in the vicinity of the motor for driving the motor, a third sensor for measuring the temperature of a portion distant from the first and second sensors when the spindle rotates, and first to third sensors Machine tool comprising a fourth sensor for measuring the temperature of a portion which does not generate heat when the spindle rotates at a position distant from and a means for calculating the relative displacement between the spindle end and the workpiece based on the temperature measured by the first to fourth sensors. Thermal displacement estimation device.
JP24790095A 1995-09-26 1995-09-26 Thermal displacement estimating device of machine tool Pending JPH0985582A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24790095A JPH0985582A (en) 1995-09-26 1995-09-26 Thermal displacement estimating device of machine tool

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24790095A JPH0985582A (en) 1995-09-26 1995-09-26 Thermal displacement estimating device of machine tool

Publications (1)

Publication Number Publication Date
JPH0985582A true JPH0985582A (en) 1997-03-31

Family

ID=17170240

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24790095A Pending JPH0985582A (en) 1995-09-26 1995-09-26 Thermal displacement estimating device of machine tool

Country Status (1)

Country Link
JP (1) JPH0985582A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015075994A (en) * 2013-10-10 2015-04-20 ファナック株式会社 Machine tool control apparatus and control method for changing operation depending on motor temperature
CN110253337A (en) * 2019-07-15 2019-09-20 北京工业大学 A kind of main shaft of numerical control machine tool thermal stretching various dimensions detection device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015075994A (en) * 2013-10-10 2015-04-20 ファナック株式会社 Machine tool control apparatus and control method for changing operation depending on motor temperature
US9755566B2 (en) 2013-10-10 2017-09-05 Fanuc Corporation Controller and control method for machine tool capable of changing motion depending on motor temperature
CN110253337A (en) * 2019-07-15 2019-09-20 北京工业大学 A kind of main shaft of numerical control machine tool thermal stretching various dimensions detection device

Similar Documents

Publication Publication Date Title
JP3792266B2 (en) Method and apparatus for correcting thermal displacement of machine tool
JP4891104B2 (en) Thermal displacement estimation method for machine tools
JP5698798B2 (en) Machine tool with thermal displacement compensation function
JP3407972B2 (en) Thermal displacement compensation method for machine tools
JP3151655B2 (en) Estimation method of thermal displacement of machine tools
JP2002086329A (en) Method and apparatus for calculating thermal displacement correction quantity of machine tool
JP2010120150A (en) Estimation method for thermal deformation compensation of machine tool
JPH1158183A (en) Thermal displacement estimating method of machine tool
JPH10244440A (en) Main spindle end displacement correction device for machine tool
JP4505385B2 (en) Thermal displacement estimation method for machine tools
JPH0985582A (en) Thermal displacement estimating device of machine tool
JP2004042260A (en) Thermal displacement correcting method for machine tool, and device thereof
JPH106183A (en) Thermal displacement correction amount calculating method for machine tool
JP6350481B2 (en) Machine tool controller
JP3422462B2 (en) Estimation method of thermal displacement of machine tools
JP6656945B2 (en) Compensation method for thermal displacement of machine tools
JPH0847842A (en) Machine tool and method of work
JP3495255B2 (en) Estimation method of thermal displacement of machine tool
JP2004148443A (en) Method for correcting thermal displacement of tool
JP2004154907A (en) Thermal displacement correction method and device for multishaft machining tool
JP2002052439A (en) Thermal displacement correcting method for lathe
JP2004195594A (en) Machining method of machine tool
JPH10277886A (en) Machine tool
JP5127603B2 (en) Processing method and processing apparatus
JP2002326141A (en) Thermal displacement compensation method for machine tool