JPH0985060A - Desalting of salt-water containing scale forming component - Google Patents

Desalting of salt-water containing scale forming component

Info

Publication number
JPH0985060A
JPH0985060A JP7246181A JP24618195A JPH0985060A JP H0985060 A JPH0985060 A JP H0985060A JP 7246181 A JP7246181 A JP 7246181A JP 24618195 A JP24618195 A JP 24618195A JP H0985060 A JPH0985060 A JP H0985060A
Authority
JP
Japan
Prior art keywords
brine
water
salt
exchange membrane
desalting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7246181A
Other languages
Japanese (ja)
Inventor
Masaaki Kato
正明 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Yukizai Corp
Original Assignee
Asahi Organic Chemicals Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Organic Chemicals Industry Co Ltd filed Critical Asahi Organic Chemicals Industry Co Ltd
Priority to JP7246181A priority Critical patent/JPH0985060A/en
Publication of JPH0985060A publication Critical patent/JPH0985060A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A20/00Water conservation; Efficient water supply; Efficient water use
    • Y02A20/124Water desalination

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a salt-water desalting method using an electrodialytic method capable of achieving a highly desalted water obtaining rate using salt- water containing a scale forming component, especially, calcium ions and sulfate ions. SOLUTION: When salt-water 12 containing a scale forming component is desalted by using an electrodialytic device 9 constituted by using a cation exchange membrane, an anion exchange membrane, an anode and a cathode as principal parts, seawater 13 is used as a conc. soln. to desalt salt-water 12.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明はイオン性成分を含有
する鹹水より、電気透析(以下EDと称す)法にてイオ
ン性成分を除去する脱塩方法に関する。
TECHNICAL FIELD The present invention relates to a desalination method for removing ionic components from brine containing ionic components by electrodialysis (hereinafter referred to as ED).

【0002】[0002]

【従来の技術】図2はED法鹹水脱塩の原理を示す説明
図である。陽イオン(例えばNa+ )を選択的に透過さ
せる陽イオン交換膜1(C)と、陰イオン(例えばCl
- )を選択的に透過させる陰イオン交換膜2(A)と
を、図2に示すごとく、交互に多数枚配列し、その両端
に1対の陽極3および陰極4を配置する。
2. Description of the Related Art FIG. 2 is an explanatory view showing the principle of ED method brine desalination. A cation exchange membrane 1 (C) that selectively permeates cations (eg Na + ) and anions (eg Cl).
2) and an anion exchange membrane 2 (A) which selectively permeate ( - ) are arranged alternately as shown in FIG. 2, and a pair of anode 3 and cathode 4 are arranged at both ends thereof.

【0003】陽極3側が陰イオン交換膜2で、陰極4側
が陽イオン交換膜1で仕切られた希釈室5、および陽極
3側が陽イオン交換膜1で、陰極4側が陰イオン交換膜
2で仕切られた濃縮室6に各々鹹水7,8を通し、両端
の陽極3と陰極4間に直流電圧を印加すると、鹹水中の
イオン成分は図2に示すごとく電気泳動し、結果として
希釈室5では塩分の脱塩が、濃縮室6では塩分の濃縮が
起こる。この意味から一般に希釈室5を通る液は希釈液
7と、および濃縮室6を通る液は濃縮液8とよばれる。
The anode 3 side is the anion exchange membrane 2 and the cathode 4 side is the cation exchange membrane 1, and the dilution chamber 5 is divided, and the anode 3 side is the cation exchange membrane 1 and the cathode 4 side is the anion exchange membrane 2. When the brine 7 and 8 are passed through the concentrated chambers 6 respectively and a DC voltage is applied between the anode 3 and the cathode 4 at both ends, the ionic components in the brine are electrophoresed as shown in FIG. Desalination of the salt occurs, and concentration of the salt occurs in the concentrating chamber 6. From this point of view, the liquid passing through the diluting chamber 5 is generally called the diluting liquid 7, and the liquid passing through the concentrating chamber 6 is called the condensing liquid 8.

【0004】かゝるED法を用いて鹹水の脱塩を行うに
際し、長期間にわたって安定的な運転を行う為に極めて
重要なこととして、スケール生成防止があげられる。鹹
水中にカルシウムイオン、硫酸イオン、燐酸イオン、炭
酸イオンなどのスケール生成成分を含有する場合、濃縮
室6内、濃縮室6に面したイオン交換膜表面およびイオ
ン交換膜内部へのスケール生成を防止することが技術的
に極めて重要なポイントとなる。濃縮室6内へのスケー
ル析出防止については、一般的には濃縮液8内のスケー
ル生成成分の濃度をスケールの溶解度以下に保つことに
より達成出来るが、イオン交換膜面およびイオン交換膜
内へのスケール析出を防止する一般的技術は確立されて
おらず、実際の装置と鹹水を用いて確認することが必要
である。
Prevention of scale formation is extremely important for stable operation over a long period of time when desalting brine by using the ED method. When calcium salt, sulfate ion, phosphate ion, carbonate ion and other scale-forming components are contained in the brine, it prevents the generation of scale on the inside of the concentrating chamber 6, the surface of the ion-exchange membrane facing the concentrating chamber 6 and the inside of the ion-exchange membrane. It is a very important point technically. The prevention of scale deposition in the concentrating chamber 6 can be generally achieved by keeping the concentration of the scale-forming component in the concentrate 8 below the solubility of the scale. A general technique to prevent scale precipitation has not been established, and it is necessary to confirm it using actual equipment and brine.

【0005】しかし、いかなる場合にも濃縮液8のスケ
ール生成成分の濃度は、スケールの溶解度以下に保たれ
ねばならない。ED法によって鹹水の脱塩を行うに際
し、従来技術では、もっぱら希釈液7および濃縮液8は
同一鹹水源からの鹹水が用いられている為、この溶解度
の制約から、全鹹水使用量(A)に対する脱塩水取得量
(B)の割合(B)/(A)≡αを高めることに制約が
存在した。
However, in any case, the concentration of the scale-forming component in the concentrate 8 must be kept below the solubility of the scale. When demineralizing the brine by the ED method, in the prior art, since the diluting liquid 7 and the concentrating liquid 8 exclusively use the brine from the same brine source, the total amount of the brine used (A) is limited due to the solubility limitation. There was a limitation in increasing the ratio (B) / (A) ≡α of the deionized water acquisition amount (B) to

【0006】例えば、化学と工業,16,NO.6,9
0,(1963)には、全溶解固形分1,450ppm 、
カルシウムイオン濃度208ppm 、硫酸イオン濃度68
3ppmの地下鹹水をED法で脱塩した例が紹介されてい
るが、α=57.1%である。又、工業用水,136
60,(1970)には同じく地下鹹水のED法脱塩例
が紹介されているが、α=88%である。又、工業用
水,239,80,(1978)にはED法による海水
淡水化の例が紹介されているが、この場合には鹹水は海
水であり、やはり希釈水7および濃縮水8には同一の鹹
水源である海水が用いられており、α=50〜60%で
ある。この他、ED法による鹹水の脱塩例は数多く存在
するが、いずれも海外以外の鹹水を脱塩する場合、濃縮
液8に海水を用いた例は無く、いずれも希釈水7および
濃縮液8に、同一鹹水源からの鹹水を用いている為、α
の上限値に制約が存在していた。
For example, chemistry and industry, 16 , NO. 6,9
0, (1963), total dissolved solids 1,450ppm,
Calcium ion concentration 208ppm, sulfate ion concentration 68
An example of desalting 3 ppm of underground brine by the ED method is introduced, but α = 57.1%. Also, industrial water, 136 ,
60, (1970) also introduces an example of desalination of underground brine by the ED method, where α = 88%. An example of seawater desalination by the ED method is introduced in Industrial Water, 239 , 80, (1978), but in this case, the brine is seawater, and the dilution water 7 and the concentrated water 8 are the same. Seawater, which is the source of the saltwater, is used, and α = 50 to 60%. In addition to this, there are many examples of desalination of brine by the ED method. However, when desalting brine other than those in foreign countries, there is no example of using seawater as the concentrate 8, and both of the dilution water 7 and the concentrate 8 are used. , Because we use the brine from the same source,
There was a constraint on the upper limit of.

【0007】一方近年、長年にわたる農産植物への施
肥、畜産排泄物の地下浸透の影響で、地下水中の硝酸態
窒素濃度が上昇し、飲料水基準値10ppm を越える事例
が増加している。特に深刻なケースとして、日本の南位
に位置する離島の飲料水問題がクローズアップしてい
る。かゝる離島の多くは、石灰岩地質に富み、その地下
水は硝酸態窒素汚染のみならず、全溶解固形分濃度が大
で、且つカルシウム硬度も大であるという問題をはらん
でいるものが多い。その上、鹹水そのものの量自体豊富
ではなく、脱塩水取得率αを高めることは極めて重要な
ニーズとなっている。
On the other hand, in recent years, the concentration of nitrate nitrogen in groundwater has increased due to the effects of fertilization on agricultural plants and underground infiltration of livestock excrement for many years, and the number of cases where the drinking water standard value exceeds 10 ppm is increasing. As a particularly serious case, the problem of drinking water on a remote island located in the southern part of Japan is being highlighted. Many of these remote islands are rich in limestone geology, and their groundwater is not only contaminated with nitrate nitrogen, but also has the problem of high total dissolved solids concentration and high calcium hardness. . Moreover, the amount of brine itself is not abundant, and increasing the desalination water acquisition rate α is a very important need.

【0008】[0008]

【発明が解決しようとする課題】本発明は上記のごとき
従来技術に鑑みなされたものであり、スケール生成成
分、特にカルシウムイオンおよび硫酸イオンを含有する
鹹水を用いて高脱塩水取得率の達成を可能ならしめるE
D法による鹹水脱塩方法を提供することを目的とするも
のである。
The present invention has been made in view of the prior art as described above, and achieves a high demineralized water acquisition rate by using a brine containing scale-forming components, particularly calcium ions and sulfate ions. E if possible
It is an object of the present invention to provide a method for desalinizing brine by method D.

【0009】[0009]

【課題を解決するための手段】前述のごとく、硝酸態窒
素及び全溶解固形分が多く、カルシウム硬度が高いこと
などの地下水問題をかかえる多くの離島では、一般に海
水を取得することは容易である。又、一般に海水中にお
ける難溶解性塩、特に硫酸カルシウムの溶解度は純水中
におけるそれよりも大であることは既知であったが、希
釈液としてスケール生成成分、特にカルシウムイオンお
よび硫酸イオンを含有する鹹水を用い、濃縮液として海
水を用いた系において、前述のごときスケール生成トラ
ブルも無く、高脱塩水取得の可否については未知であっ
た。
[Means for Solving the Problems] As described above, it is generally easy to obtain seawater on many remote islands that have groundwater problems such as high nitrate nitrogen and total dissolved solids and high calcium hardness. . It was also known that the solubility of sparingly soluble salts in seawater, especially calcium sulfate, is generally higher than that in pure water, but it contains a scale-forming component, especially calcium ion and sulfate ion, as a diluent. It was unknown whether or not highly desalinated water could be obtained in the system that used salt water and seawater as the concentrate without the above-mentioned scale formation troubles.

【0010】本発明者は後記実施例で詳述するごとく、
鋭意研究を重ねた結果、濃縮液として海水を用いること
により、貴重な鹹水を無駄無く脱塩水に転換し得ること
を見出し、本発明を完成するに到った。
The present inventor, as will be described in detail in the examples below,
As a result of earnest studies, it was found that by using seawater as a concentrate, valuable brine can be converted to desalted water without waste, and the present invention has been completed.

【0011】すなわち本発明は陽イオン交換膜、陰イオ
ン交換膜、陽極および陰極を主要部品として構成される
電気透析装置を用いて、スケール生成成分を含有する鹹
水を脱塩するに際し、濃縮液として海水を用いることを
特徴とする鹹水の脱塩方法に関するものである。
That is, the present invention uses an electrodialyzer composed mainly of a cation exchange membrane, an anion exchange membrane, an anode and a cathode as a concentrated liquid when desalting brine containing scale-forming components. The present invention relates to a desalination method of brine, which is characterized by using seawater.

【0012】本発明は、海水を濃縮液として使用するた
め、同一鹹水源からの鹹水を濃縮液として使用する従来
技術に比し、貴重な鹹水を無駄に消費することなく、無
限に存在する海水を用いることにより目的を達成するこ
とができるという利点を有する他、海水より大なる重炭
酸イオン濃度を有する鹹水の場合には従来技術に比し、
濃縮液pH調整用の酸使用量を減ずる経済的利点も副次的
効果として有する。
Since the present invention uses seawater as a concentrated liquid, it is possible to limit the existence of infinite seawater without wasting valuable brine as compared with the prior art in which brine from the same brine source is used as a concentrated liquid. In addition to having the advantage that the purpose can be achieved by using, in the case of brine having a bicarbonate ion concentration higher than that of seawater, as compared with the prior art,
It also has the economic advantage of reducing the amount of acid used for adjusting the pH of the concentrate as a secondary effect.

【0013】[0013]

【実施例】図1は本発明の実施例を説明する為の装置の
概略図兼フローシートである。以下、図1にもとづいて
実施例を説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 is a schematic diagram and flow sheet of an apparatus for explaining an embodiment of the present invention. An embodiment will be described below with reference to FIG.

【0014】(実施例1)ED法電気透析装置9は、有
効通電面積236mm(縦)×220mm(横)×0.2mm
(厚)の陰・陽イオン交換膜50対、1対の陽極(白金
メッキチタン板)および陰極(ステンレス板)より構成
され、イオン交換膜は旭化成工業(株)製ACIPLE
X(商品名)A−201およびK−101が用いられて
いる。図1においては、50室の希釈室をまとめてD、
51室の濃縮室をまとめてCと表示してある。10およ
び11は各々希釈液循環タンクおよび濃縮液循環タンク
であり、容量は各々50Lおよび20Lである。希釈液
循環タンク10には鹹水12が、濃縮液循環タンク11
には海水13が、ダイヤフラム型定量ポンプ(図1には
省略されている)で各々メークアップされる。更に濃縮
液循環タンク11には、pH調整の為の鉱酸14が添加さ
れる。
(Embodiment 1) The ED electrodialyzer 9 has an effective energization area of 236 mm (length) x 220 mm (width) x 0.2 mm.
It consists of 50 pairs of (thick) anion / cation exchange membrane, one pair of anode (platinum-plated titanium plate) and cathode (stainless steel plate), and the ion exchange membrane is ACIPLE manufactured by Asahi Kasei Corporation.
X (trade name) A-201 and K-101 are used. In FIG. 1, 50 dilution chambers are collectively shown as D,
The 51 concentrating chambers are collectively labeled as C. 10 and 11 are a diluting liquid circulating tank and a concentrate circulating tank, respectively, and their capacities are 50 L and 20 L, respectively. Boiled water 12 and concentrated liquid circulation tank 11 are placed in the diluted liquid circulation tank 10.
The seawater 13 is made up by a diaphragm type metering pump (not shown in FIG. 1). Further, a mineral acid 14 for pH adjustment is added to the concentrated liquid circulation tank 11.

【0015】希釈液として表1に示す組成、濃度の鹹水
を、濃縮液として表2に示す組成、濃度の海水を用い、
表3に示す条件で運転を行った。
Brine water having the composition and concentration shown in Table 1 is used as the diluent, and seawater having the composition and concentration shown in Table 2 is used as the concentrate.
The operation was performed under the conditions shown in Table 3.

【0016】[0016]

【表1】 [Table 1]

【0017】[0017]

【表2】 [Table 2]

【0018】[0018]

【表3】 [Table 3]

【0019】陽極が格納されている陽極室17には海水
を2リットル/分で通液し、陽極室通過液はそのまゝ装
置外に排出した。また陰極が格納されている陰極室18
には塩酸でpHを2.0に調整した鹹水を2リットル/分
で循環通液し、運転中は希釈酸を添加しつつpHを2.0
±0.2に調節した。運転は、希釈液循環タンク10か
らのオーバーフロー液15、および濃縮液循環タンク1
1からのオーバーフロー液16の組成、濃度が一定にな
ってから更に72時間継続した。72時間経過後のオー
バーフロー液15および16の組成、濃度を表4に示
す。
Seawater was passed through the anode chamber 17 containing the anode at a rate of 2 liters / minute, and the liquid passing through the anode chamber was discharged to the outside of the apparatus. Also, the cathode chamber 18 in which the cathode is stored
For this, brine is circulated at a rate of 2 liters / minute with the pH adjusted to 2.0 with hydrochloric acid, and the pH is adjusted to 2.0 while adding diluted acid during operation.
Adjusted to ± 0.2. The operation is performed by the overflow liquid 15 from the diluent circulating tank 10 and the concentrate circulating tank 1
After the composition and concentration of overflow liquid 16 from No. 1 became constant, it was continued for another 72 hours. Table 4 shows the compositions and concentrations of the overflow liquids 15 and 16 after 72 hours have passed.

【0020】[0020]

【表4】 [Table 4]

【0021】脱塩の電流効率は80.1%であった。
又、運転終了後、ED装置を解体点検したところ、スケ
ール析出などの異常は認められなかった。本実施例での
脱塩水取得率αは測定の誤差範囲内でほゞ100%であ
った。
The current efficiency of desalting was 80.1%.
After the operation was completed, the ED device was disassembled and inspected, and no abnormality such as scale deposition was found. The deionized water acquisition rate α in this example was about 100% within the error range of the measurement.

【0022】(実施例2)希釈液として表5に示す組
成、濃度の鹹水を、濃縮液として表2に示す組成の海水
を用い、表6に示す条件で運転を行った。その他の条件
は実施例1と同一とした。得られたオーバーフロー液の
組成、濃度を表7に示す。
(Example 2) Brine water having the composition and concentration shown in Table 5 was used as the diluting solution, and seawater having the composition shown in Table 2 was used as the concentrating solution, and the operation was carried out under the conditions shown in Table 6. Other conditions were the same as in Example 1. Table 7 shows the composition and concentration of the obtained overflow liquid.

【0023】[0023]

【表5】 [Table 5]

【0024】[0024]

【表6】 [Table 6]

【0025】[0025]

【表7】 [Table 7]

【0026】脱塩の電流効率は81.1%であった。
又、運転終了後、ED装置を解体点検したところ、スケ
ール析出などの異常は認められなかった。本実施例での
脱塩水取得率αは測定の誤差範囲内でほゞ100%であ
った。
The current efficiency of desalting was 81.1%.
After the operation was completed, the ED device was disassembled and inspected, and no abnormality such as scale deposition was found. The deionized water acquisition rate α in this example was about 100% within the error range of the measurement.

【0027】(比較例1)希釈液、濃縮液共に表1に示
す組成、濃度の鹹水を用い、表8に示す条件で運転を行
った。その他の条件は実施例1に同じとした。得られた
オーバーフロー液の組成、濃度を表9に示す。
Comparative Example 1 Boiled water having the composition and concentration shown in Table 1 was used for both the diluted solution and the concentrated solution, and the operation was performed under the conditions shown in Table 8. Other conditions were the same as in Example 1. Table 9 shows the composition and concentration of the obtained overflow liquid.

【0028】[0028]

【表8】 [Table 8]

【0029】[0029]

【表9】 [Table 9]

【0030】脱塩の電流効率は85.8%であった。
又、運転終了後、ED装置を解体点検したところ、スケ
ール析出などの異常は認められなかった。本比較例での
脱塩水取得率αは80.2%であった。
The current efficiency of desalting was 85.8%.
After the operation was completed, the ED device was disassembled and inspected, and no abnormality such as scale deposition was found. The desalinated water acquisition rate α in this comparative example was 80.2%.

【0031】(比較例2)濃縮液メークアップ13の量
を0.32リットル/分、電流値を0.81アンペアと
した以外はすべて比較例1と同一条件で運転を行った。
得られたオーバーフロー液の組成、濃度を表10に示
す。
(Comparative Example 2) The operation was performed under the same conditions as in Comparative Example 1 except that the amount of the concentrated solution makeup 13 was 0.32 liters / minute and the current value was 0.81 amperes.
Table 10 shows the composition and concentration of the obtained overflow liquid.

【0032】[0032]

【表10】 [Table 10]

【0033】脱塩の電流効率は83.6%であった。
又、運転終了後、ED装置を解体点検したところ、濃縮
室内、イオン交換膜面、イオン交換膜内部の計18ヶ所
に硫酸カルシウムのスケール析出が認められた。本比較
例での脱塩水取得率αは82.4%であった。
The current efficiency of desalting was 83.6%.
Further, after the operation was completed, the ED device was disassembled and inspected, and scale deposits of calcium sulfate were found in a total of 18 places inside the concentration chamber, on the surface of the ion exchange membrane, and inside the ion exchange membrane. The desalinated water acquisition rate α in this comparative example was 82.4%.

【0034】(比較例3)表5に示す組成、濃度の鹹水
を用い、表11に示す条件で運転を行った。その他の条
件は実施例1と同一とした。得られたオーバーフロー液
の組成、濃度を表12に示す。
(Comparative Example 3) Using brine having the composition and concentration shown in Table 5, operation was carried out under the conditions shown in Table 11. Other conditions were the same as in Example 1. Table 12 shows the composition and concentration of the obtained overflow liquid.

【0035】[0035]

【表11】 [Table 11]

【0036】[0036]

【表12】 [Table 12]

【0037】脱塩の電流効率は84.0%であった。
又、運転終了後、ED装置を解体点検したところ、濃縮
室内、イオン交換膜面、イオン交換膜内部の計13ヶ所
に硫酸カルシウムのスケール析出が認められた。本比較
例での脱塩水取得率αは75.6%であった。
The current efficiency of desalting was 84.0%.
Further, when the ED device was disassembled and inspected after the operation was completed, calcium sulfate scale deposition was found in a total of 13 places inside the concentration chamber, inside the ion exchange membrane, and inside the ion exchange membrane. The deionized water acquisition rate α in this comparative example was 75.6%.

【0038】比較例1では、スケール生成などの異常は
認められなかったものの、80.2%の脱塩水取得率し
か得られていない。比較例2では、82.4%とやゝ高
い脱塩水取得率で運転されたもののスケール生成が認め
られた。
In Comparative Example 1, although no abnormalities such as scale formation were found, only a demineralized water acquisition rate of 80.2% was obtained. In Comparative Example 2, it was observed that the scale was generated although the operation was performed at a desalination water acquisition rate as high as 82.4%.

【0039】すなわち、表1に示す組成、濃度の鹹水を
脱塩する場合、従来技術ではスケール生成なく運転し得
る為には、脱塩水取得率を80.2〜82.4%以下に
押えねばならない。これに対し実施例1では、比較例
1,2よりも少量の濃縮液メークアップ量を用いている
にもかかわらず、スケール生成も無く、ほゞ100%の
脱塩水取得率で運転が可能であった。比較例3と実施例
2を比較しても全く同じことが言える。
That is, in the case of desalting brine having the composition and concentration shown in Table 1, in order to be able to operate without scale formation in the prior art, the desalinated water acquisition rate must be kept to 80.2 to 82.4% or less. I won't. On the other hand, in Example 1, although a smaller amount of concentrated liquid make-up was used than in Comparative Examples 1 and 2, there was no scale formation, and operation was possible with a demineralized water acquisition rate of about 100%. there were. The same can be said when comparing Comparative Example 3 and Example 2.

【0040】[0040]

【発明の効果】以上詳述したごとく本発明によれば、ス
ケール生成成分、特にカルシウムイオンおよび硫酸イオ
ンを含有する鹹水をED法で脱塩するに際し、用いた鹹
水の殆どすべてを脱塩水に転換させることが可能とな
る。
As described in detail above, according to the present invention, when desalting brine containing scale-forming components, particularly calcium ions and sulfate ions by the ED method, almost all of the brine used is converted to desalinated water. It becomes possible.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例を説明する為の装置の概略図兼
フローシートである。
FIG. 1 is a schematic diagram and a flow sheet of an apparatus for explaining an embodiment of the present invention.

【図2】ED法鹹水脱塩の原理を示す説明図である。FIG. 2 is an explanatory diagram showing the principle of ED method brine desalination.

【符号の説明】[Explanation of symbols]

1…陽イオン交換膜 2…陰イオン交換膜 3…陽極 4…陰極 5…希釈室 6…濃縮室 7…鹹水(希釈液) 8…鹹水(濃縮液) 9…電気透析装置 10…希釈液循環タンク 11…濃縮液循環タンク 12…鹹水 13…海水 14…鉱酸 15…オーバーフロー液 16…オーバーフロー液 17…陽極室 18…陰極室 DESCRIPTION OF SYMBOLS 1 ... Cation exchange membrane 2 ... Anion exchange membrane 3 ... Anode 4 ... Cathode 5 ... Diluting chamber 6 ... Concentration chamber 7 ... Brine water (diluting liquid) 8 ... Brine water (concentrating liquid) 9 ... Electrodialysis device 10 ... Diluting liquid circulation Tank 11 ... Concentrated liquid circulation tank 12 ... Brine water 13 ... Seawater 14 ... Mineral acid 15 ... Overflow liquid 16 ... Overflow liquid 17 ... Anode chamber 18 ... Cathode chamber

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 陽イオン交換膜、陰イオン交換膜、陽極
および陰極を主要部品として構成される電気透析装置を
用いて、スケール生成成分を含有する海水以外の鹹水を
脱塩するに際し、濃縮液として海水を用いることを特徴
とする鹹水の脱塩方法。
1. A concentrated solution for desalting brine other than seawater containing scale-forming components by using an electrodialyzer composed mainly of a cation exchange membrane, an anion exchange membrane, an anode and a cathode. A method for desalinating brine, which comprises using seawater as the water.
【請求項2】 スケール生成成分が、カルシウムイオン
および硫酸イオンであることを特徴とする請求項1に記
載の脱塩方法。
2. The desalting method according to claim 1, wherein the scale-forming component is calcium ion and sulfate ion.
JP7246181A 1995-09-25 1995-09-25 Desalting of salt-water containing scale forming component Pending JPH0985060A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7246181A JPH0985060A (en) 1995-09-25 1995-09-25 Desalting of salt-water containing scale forming component

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7246181A JPH0985060A (en) 1995-09-25 1995-09-25 Desalting of salt-water containing scale forming component

Publications (1)

Publication Number Publication Date
JPH0985060A true JPH0985060A (en) 1997-03-31

Family

ID=17144724

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7246181A Pending JPH0985060A (en) 1995-09-25 1995-09-25 Desalting of salt-water containing scale forming component

Country Status (1)

Country Link
JP (1) JPH0985060A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2018164143A1 (en) * 2017-03-10 2020-01-16 株式会社アストム Electrodialysis and reverse electrodialysis

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2018164143A1 (en) * 2017-03-10 2020-01-16 株式会社アストム Electrodialysis and reverse electrodialysis

Similar Documents

Publication Publication Date Title
US8980101B2 (en) Method for inhibiting scale formation and deposition in membrane systems via the use of an AA-AMPS copolymer
Amor et al. Optimization of fluoride removal from brackish water by electrodialysis
US6398965B1 (en) Water treatment system and process
US6929748B2 (en) Apparatus and method for continuous electrodeionization
Tahaikt et al. Defluoridation of Moroccan groundwater by electrodialysis: continuous operation
US5376250A (en) Method of producing water having a reduced salt content
US20140227151A1 (en) Recovery and purification of monovalent salt contaminated with divalent salt
US11655166B2 (en) Water treatment of sodic, high salinity, or high sodium waters for agricultural application
Turek et al. Energy consumption and gypsum scaling assessment in a hybrid nanofiltration‐reverse osmosis‐electrodialysis system
US20030173296A1 (en) High recovery reverse osmosis process and apparatus
EP0946269B1 (en) Inhibition and delay of deposit formation in membrane processes
Oldani et al. On the nitrate and monovalent cation selectivity of ion exchange membranes used in drinking water purification
JP3137831B2 (en) Membrane processing equipment
Pronk et al. Treatment of source-separated urine by a combination of bipolar electrodialysis and a gas transfer membrane
DE10217885A1 (en) Electrochemical seawater desalination process and assembly for remote location creates hydrochloric acid directly in sea water
DE3338194C2 (en) Process to prevent precipitation during deionization of raw water
Adhikary et al. Desalination of brackish water of higher salinity by electrodialysis
JPH0985060A (en) Desalting of salt-water containing scale forming component
JPH10323673A (en) Deionized water-producing method
CN108341527B (en) High-recovery removal bitter and fishiness
JP3271744B2 (en) Desalting method using electrodialysis equipment
JPH10128075A (en) Reverse osmosis membrane device and treatment using the same
Turek et al. Boron removal from dual-staged seawater nanofiltration permeate by electrodialysis
JPH0780254A (en) Removal of ammoniacal nitrogen in condensate desalted regenerated water
JP3202887B2 (en) Wastewater recovery method