JPH0984812A - Artificial blood vessel - Google Patents

Artificial blood vessel

Info

Publication number
JPH0984812A
JPH0984812A JP7269288A JP26928895A JPH0984812A JP H0984812 A JPH0984812 A JP H0984812A JP 7269288 A JP7269288 A JP 7269288A JP 26928895 A JP26928895 A JP 26928895A JP H0984812 A JPH0984812 A JP H0984812A
Authority
JP
Japan
Prior art keywords
tube
blood vessel
artificial blood
long member
porous ptfe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7269288A
Other languages
Japanese (ja)
Inventor
Fumihiro Hayashi
文弘 林
Yasuhiro Okuda
泰弘 奥田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP7269288A priority Critical patent/JPH0984812A/en
Publication of JPH0984812A publication Critical patent/JPH0984812A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To obtain an artificial blood vessel excellent in suturing operability, tissue affinity and patency by forming protruding parts having a specific angle to the longitudinal direction o-f a tube to the outer surface of the tube and winding a long member having an outer diameter equal to or less than the height of the protruding parts around the gaps between the protruding parts. SOLUTION: A porous PTFE (polytetrafluoroethylene) tube 1 is heated to the thermal decomposition temp. of PTFE or higher to form cut, shrunk and/or decomposed removed parts to the outer surface of the tube 1 to form protruding parts 3 having apparently high density as compared with the tube main body part. A long member 6 such as a fluoroplastic monofilament is spirally wound around the outer peripheral surface of the porous PTFE tube 1 so as to be embedded in recessed parts. The protruding parts 3 form an angle of 45 deg. or more with respect to the longitudinal direction of the tube 1 and the long member 6 has an outer diameter having a size equal to or less than the height of the protruding parts 3 and is wound around the gaps between the protruding parts 3 adjacent at least in the longitudinal direction.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明が属する技術分野】本発明は、多孔質ポリテトラ
フルオロエチレン(PTFE)チューブからなる人工血
管に関し、さらに詳しくは、縫合操作性、組織適合性、
開存性等に優れた人工血管に関する。
TECHNICAL FIELD The present invention relates to an artificial blood vessel composed of a porous polytetrafluoroethylene (PTFE) tube, and more specifically, sutureability, tissue compatibility,
The present invention relates to an artificial blood vessel having excellent patency.

【0002】[0002]

【従来の技術】人工血管は、生体血管の病変部位の欠損
部を補填する置換移植、病変部位を迂回して血行を維持
するためのバイパス移植、動脈と静脈との短絡などの血
液導管などとして使用されている。人工血管の材料とし
ては、延伸法によって製造された多孔質PTFEチュー
ブが賞用されている。一般に、延伸法によって製造され
た多孔質PTFEは、非常に細い繊維と該繊維により互
いに連結された結節とからなる微細繊維状組織を有して
おり、該微細繊維状組織が多孔質構造を形成している。
そして、繊維径、孔径、気孔率等の多孔質構造は、延伸
倍率によって任意に設定することが可能である。多孔質
PTFEチューブは、微細繊維状組織からなる多孔質構
造が生体適合性に優れており、しかもPTFEの素材自
体が抗血栓性に優れているため、生体組織との親和性及
び抗血栓性に優れた人工血管として使用されている。
2. Description of the Related Art Artificial blood vessels are used as replacement transplants for filling a defective part of a lesion site of a living blood vessel, bypass transplants for bypassing the lesion site to maintain blood circulation, and blood conduits such as short circuits between arteries and veins. in use. As a material for the artificial blood vessel, a porous PTFE tube produced by a stretching method is used as a prize. Generally, a porous PTFE produced by a stretching method has a fine fibrous structure composed of very thin fibers and nodules connected to each other by the fibers, and the fine fibrous structure forms a porous structure. are doing.
The porous structure such as fiber diameter, pore diameter, and porosity can be arbitrarily set according to the draw ratio. The porous PTFE tube has excellent biocompatibility in the porous structure made of fine fibrous tissue, and since the PTFE material itself has excellent antithrombotic properties, it has compatibility with living tissues and antithrombotic properties. Used as an excellent artificial blood vessel.

【0003】ところで、多孔質PTFEチューブは、管
軸方向の延伸倍率が大きいため、微細繊維状組織におけ
る微細繊維が管軸方向に強く配向した構造となってい
る。したがって、多孔質PTFEチューブは、管軸方向
への強度は高いものの、円周方向への強度が低く、圧迫
や屈曲によって容易に座屈したり、あるいは内圧により
管軸方向の裂けが生じるなどの問題点を有している。人
工血管が座屈し易いと、移植後に曲げ負荷のかかる部位
や血圧が低い静脈などの部位では、内腔を正常な状態に
維持することが困難である。人工血管の圧力に対する強
度が低いと、移植後に動脈瘤を形成したり、最悪の場合
には破裂する等の問題がある。これらの問題は、移植後
の生体組織侵入性を高めるために、延伸倍率を高めて孔
径を大きくしたり、壁厚を薄くした場合に、特に顕著と
なり、人工血管として実用に供せなくなる。
By the way, since the porous PTFE tube has a large draw ratio in the tube axis direction, it has a structure in which the fine fibers in the fine fibrous structure are strongly oriented in the tube axis direction. Therefore, although the porous PTFE tube has a high strength in the tube axial direction, it has a low strength in the circumferential direction and easily buckles due to compression or bending, or has a problem in that a tear occurs in the tube axial direction due to internal pressure. Have a point. If the artificial blood vessel is easily buckled, it is difficult to maintain the lumen in a normal state at a site where a bending load is applied after transplantation or a site where blood pressure is low. When the strength of the artificial blood vessel against pressure is low, there are problems such as the formation of an aneurysm after transplantation and, in the worst case, rupture. These problems become particularly noticeable when the draw ratio is increased to increase the pore size or the wall thickness is reduced in order to enhance the invasion property of the living tissue after transplantation, and it cannot be put to practical use as an artificial blood vessel.

【0004】従来、このような問題を解決するために、
多孔質PTFEチューブの外表面に補強繊維を螺旋状や
リング状に巻き付けたものが提案されている(特公昭6
0−37734号、特公昭60−56619号など)。
ところが、このような補強多孔質PTFEチューブは、
単にその外表面に繊維を巻き付けて接着するという方法
で製造されているため、これを人工血管として使用する
場合、次のような問題を生じる。 (1)人工血管を血圧が低い部位に適用する場合には、
その内腔を維持するのに高い強度を必要としないため、
補強繊維を密に巻き付ける必要はなく、多孔質PTFE
チューブ本来のしなやかさをある程度維持することがで
きる。しかし、補強繊維の巻き付け間隔を大きくする
と、繊維で補強されている部分とされていない部分とで
硬さに大きな差があるため、人工血管は、屈曲によって
補強繊維を支点に折れ曲がるようにして屈曲するか、座
屈するものとなってしまい、屈曲するような部位に移植
することができなくなる。
Conventionally, in order to solve such a problem,
It has been proposed that a reinforcing fiber is wound around the outer surface of a porous PTFE tube in a spiral or ring shape (Japanese Patent Publication No. Sho 6).
0-37734, Japanese Patent Publication No. 60-56619, etc.).
However, such a reinforced porous PTFE tube is
Since it is manufactured by simply winding and adhering fibers on the outer surface, the following problems occur when this is used as an artificial blood vessel. (1) When applying an artificial blood vessel to a site with low blood pressure,
It does not require high strength to maintain its lumen,
It is not necessary to tightly wind the reinforcing fiber, and porous PTFE
The original flexibility of the tube can be maintained to some extent. However, if the winding interval of the reinforcing fiber is increased, there is a large difference in hardness between the part that is not reinforced with the fiber and the part that is not reinforced by the fiber. Otherwise, it will buckle, and it will not be possible to implant it in a region that bends.

【0005】(2)内圧に対する強度を高めたり、屈曲
に対して座屈しないようにしたり、あるいは均質な補強
効果を得たい場合などには、補強繊維を密に巻き付ける
が、それによって、多孔質PTFEチューブ本来のしな
やかさを失ってしまう。そして、人工血管は、剛直にな
り、屈曲に対する反力が生じるようになってしまうた
め、吻合操作が困難になる。 (3)従来の繊維補強人工血管は、多孔質PTFEチュ
ーブの外表面から補強繊維が突出した構造であるため、
その突出した補強繊維が手術器具や周囲組織に引っ掛か
って、手術による縫合操作に悪影響を及ぼし、さらには
補強繊維が剥離することがある。多孔質PTFEチュー
ブの外表面から補強繊維が剥離しないようにするために
は、補強繊維を該チューブ表面に強固に接着する必要が
ある。ところが、人工血管を生体血管と吻合する際に
は、補強繊維が縫合の邪魔になるため、予め縫合部位の
補強繊維を除去しなければならないが、強固に接着され
ていると、除去するのが困難な上に、無理に剥すとチュ
ーブに損傷を与え吻合部位の強度を著しく低下させてし
まう。
(2) In order to increase the strength against internal pressure, prevent buckling from bending, or obtain a uniform reinforcing effect, the reinforcing fibers are wound tightly, which results in a porous structure. You lose the original flexibility of the PTFE tube. Then, since the artificial blood vessel becomes rigid and a reaction force against bending is generated, an anastomosis operation becomes difficult. (3) Since the conventional fiber-reinforced artificial blood vessel has a structure in which the reinforcing fiber projects from the outer surface of the porous PTFE tube,
The protruding reinforcing fibers may be caught on the surgical instrument or surrounding tissues, which may adversely affect the surgical suturing operation, and the reinforcing fibers may be peeled off. In order to prevent the reinforcing fiber from peeling from the outer surface of the porous PTFE tube, it is necessary to firmly bond the reinforcing fiber to the surface of the tube. However, when the artificial blood vessel is anastomosed with the living blood vessel, the reinforcing fiber interferes with the suturing, and therefore the reinforcing fiber at the sutured portion must be removed in advance. In addition to being difficult, if it is forcibly removed, the tube will be damaged and the strength of the anastomosis site will be significantly reduced.

【0006】一方、多孔質PTFEチューブの外表面
に、網状や突状のPTFE層を一体化して形成した構造
の人工血管が提案されている(特公昭60−37736
号、特公昭61−1143号、特公昭63−44382
号)。しかし、これらの人工血管は、補強効果が十分で
はなく、特に、移植後の生体組織の侵入性を高めるため
に延伸倍率を高めて孔径を大きくしたり、壁厚を薄くし
たりした場合には、実用上十分な補強効果を得ることが
できない。
On the other hand, an artificial blood vessel having a structure in which a mesh-like or protruding PTFE layer is integrally formed on the outer surface of a porous PTFE tube has been proposed (Japanese Patent Publication No. 60-37736).
No. 61-143, Sho 63-44382
issue). However, these artificial blood vessels do not have a sufficient reinforcing effect, and particularly when the stretch ratio is increased to increase the pore diameter or the wall thickness is reduced in order to enhance the invasion of living tissue after transplantation. However, practically sufficient reinforcement effect cannot be obtained.

【0007】[0007]

【発明が解決しようとする課題】本発明の目的は、縫合
操作性、組織適合性、開存性等に優れた多孔質PTFE
チューブからなる人工血管を提供することにある。本発
明者らは、前記従来技術の有する問題点を克服するため
に鋭意研究した結果、多孔質PTFEチューブの外表面
に凸状を形成し、フッ素樹脂モノフィラメントなどの長
尺部材を長手方向に隣接する凸状部間に巻つけることに
より、前記目的を達成できることを見出した。本発明の
人工血管は、外表面に凸状を形成することにより、強度
と屈曲に対する耐座屈性がある程度改善されているた
め、長尺部材を密に巻きつけなくても、十分な強度を得
ることができる。しかも、本発明の人工血管では、多孔
質PTFEチューブの外表面に、長尺部材を適度な接着
力で、かつ、表面に突出させないように、固定すること
ができるため、前記従来技術の問題点を大幅に改良する
ことができる。本発明は、これらの知見に基づいて完成
するに至ったものである。
DISCLOSURE OF THE INVENTION An object of the present invention is to provide a porous PTFE excellent in sutureability, tissue compatibility and patency.
It is to provide an artificial blood vessel composed of a tube. The inventors of the present invention have conducted extensive studies to overcome the problems of the prior art, and as a result, formed a convex shape on the outer surface of the porous PTFE tube and adjoined a long member such as a fluororesin monofilament in the longitudinal direction. It was found that the above-mentioned object can be achieved by wrapping between the convex portions. The artificial blood vessel of the present invention has improved strength and buckling resistance to bending to some extent by forming a convex shape on the outer surface, so that sufficient strength can be obtained without tightly winding the long member. Obtainable. Moreover, in the artificial blood vessel of the present invention, since the long member can be fixed to the outer surface of the porous PTFE tube with an appropriate adhesive force and without protruding to the surface, the above-mentioned problems of the prior art. Can be greatly improved. The present invention has been completed based on these findings.

【0008】[0008]

【課題を解決するための手段】かくして、本発明によれ
ば、繊維と該繊維によって互いに連結された結節とから
なる微細繊維状組織を有する多孔質ポリテトラフルオロ
エチレンチューブからなる人工血管において、該チュー
ブの外表面に、チューブ本体部分よりも見かけ上高い密
度を有しかつ該チューブの長手方向に対して45度以上
の角度をなす凸状部が形成され、該凸状部の高さ以下の
大きさの外径を有する長尺部材が少なくとも長手方向に
隣接する凸状部間に巻かれていることを特徴とする人工
血管が提供される。
Thus, according to the present invention, there is provided an artificial blood vessel comprising a porous polytetrafluoroethylene tube having a fine fibrous tissue comprising fibers and nodules connected to each other by the fibers. On the outer surface of the tube, a convex portion having an apparently higher density than the tube main body portion and forming an angle of 45 degrees or more with respect to the longitudinal direction of the tube is formed. There is provided an artificial blood vessel in which a long member having an outer diameter of a size is wound at least between adjacent convex portions in the longitudinal direction.

【0009】[0009]

【発明の実施の形態】本発明の人工血管の構造につい
て、図面を参照しながら説明する。図1は、本発明の人
工血管の1実施例を示す概略図である。多孔質PTFE
チューブ1の外表面には、PTFEの熱分解温度以上に
加熱して表面の微細繊維状組織に切断収縮及び/または
分解除去された部分を作ることにより、チューブ本体部
分よりも見かけ上高い密度をする凸状が形成される。こ
の態様では、凹部2と凸状部3とが網状構造を形成して
いる。フッ素樹脂モノフィラメント等の長尺部材6は、
凹部6に埋め込まれるように、多孔質PTFEチューブ
の外周面に螺旋状に巻き付けられている。長尺部材が凸
状部をクロスする場合は、凸状部のその部分は圧縮され
る(潰れる)ので、長尺部材がチューブ表面より突出す
ることはない。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The structure of the artificial blood vessel of the present invention will be described with reference to the drawings. FIG. 1 is a schematic view showing one embodiment of the artificial blood vessel of the present invention. Porous PTFE
The outer surface of the tube 1 is heated to a temperature higher than the thermal decomposition temperature of PTFE to form a portion in which the fine fibrous structure of the surface is cut and shrunk and / or decomposed and removed, so that the density is apparently higher than that of the tube body. A convex shape is formed. In this aspect, the concave portions 2 and the convex portions 3 form a net-like structure. The long member 6 such as a fluororesin monofilament is
It is spirally wound around the outer peripheral surface of the porous PTFE tube so as to be embedded in the recess 6. When the long member crosses the convex portion, that portion of the convex portion is compressed (crushed), so that the long member does not protrude from the tube surface.

【0010】図2は、本発明の人工血管の他の実施例を
示す概略図である。多孔質PTFEチューブ1の外表面
には、螺旋状に凹状部4と凸状部5とが設けられてい
る。長尺部材6は、隣接する凸状部間の凹状部に埋め込
まれるように、多孔質PTFEチューブの外周面に螺旋
状に巻き付けられている。図2中の符号7は、一部の断
面を示す。図3は、長尺部材が隣接する凸状部間の凹状
部に埋め込まれた状態を示す断面図である。図4は、従
来技術における補強繊維が該表面に突出している状態を
示す断面図である。
FIG. 2 is a schematic view showing another embodiment of the artificial blood vessel of the present invention. On the outer surface of the porous PTFE tube 1, a concave portion 4 and a convex portion 5 are spirally provided. The long member 6 is spirally wound around the outer peripheral surface of the porous PTFE tube so as to be embedded in the concave portion between the adjacent convex portions. Reference numeral 7 in FIG. 2 shows a part of the cross section. FIG. 3 is a cross-sectional view showing a state in which a long member is embedded in a concave portion between adjacent convex portions. FIG. 4 is a cross-sectional view showing a state in which the reinforcing fiber in the prior art projects on the surface.

【0011】本発明の人工血管では、多孔質PTFEチ
ューブの外表面に凸状部を形成することにより、ある程
度の強度と屈曲に対する耐座屈性を付与し、長尺部材を
この隣接する凸状部間の凹状部に沿って埋め込むように
巻き付けることにより、該チューブに長尺部材を密に巻
きつけなくても、ほぼ均質で十分な強度と耐座屈性が付
与される。本発明の人工血管は、長尺部材を密に巻き付
ける必要がないため、多孔質PTFEチューブ本来のし
なやかさを維持することができる。本発明の人工血管
は、ほぼ均質で十分な強度と耐座屈性が付与されている
ため、屈曲させても一様なアールを描いて座屈すること
がない上、反力が生じることもなく、反力による負荷が
原因で生体側の血管に動脈硬化などの変性を引き起こす
心配もない。したがって、本発明の人工血管は、吻合操
作が容易で、かつ、血圧の低い静脈などの部位、強度が
必要な部位、曲げ負荷が生じる部位などにも、オールラ
ウンドに用いることができる。
In the artificial blood vessel of the present invention, by forming a convex portion on the outer surface of the porous PTFE tube, a certain amount of strength and buckling resistance against bending are imparted, and the long member is provided with the adjacent convex shape. By winding the tube so as to be embedded along the concave portion between the sections, a substantially uniform and sufficient strength and buckling resistance are imparted without tightly winding the long member around the tube. In the artificial blood vessel of the present invention, it is not necessary to tightly wind the long member, so that the original flexibility of the porous PTFE tube can be maintained. Since the artificial blood vessel of the present invention is substantially homogeneous and has sufficient strength and buckling resistance, it does not buckle with a uniform radius even when bent, and no reaction force occurs. , There is no fear of causing degeneration such as arteriosclerosis in the blood vessels on the living body side due to the load due to the reaction force. Therefore, the artificial blood vessel of the present invention can be used all-round for a site such as a vein where an anastomosis operation is easy and has low blood pressure, a site where strength is required, and a site where bending load occurs.

【0012】本発明の人工血管では、長尺部材が隣接す
る凸状部間で機械的に把持されると共に接着面積が大き
くなるため、特別な接着剤や強固な熱融着を施さなくて
も実用上十分な接着力が得られ、しかも、隣接する凸状
部間を該凸状部の高さ以下の大きさの外径を有する長尺
部材で埋めることにより、外表面を実質的に平滑な状態
にすることができる。本発明の人工血管は、長尺部材が
外表面から突出していないので、長尺部材に手術器具や
周囲組織が引っ掛かることがなく、手術中に長尺部材が
チューブから剥離してしまうこともない。また、本発明
の人工血管は、長尺部材を強固に接着させる必要がない
ため、生体血管との吻合の際には、縫合部位の長尺部材
をチューブに損傷を与えることなく容易に除去すること
ができる上、チューブ表面に残存する凸部によって、縫
合に対する十分な強度が保たれる。本発明の人工血管で
は、長尺部材に瘢痕組織が強固に絡まることがないの
で、例えば透析内シャントのように、頻繁に人工血管を
取り替えなければならない場合でも、人工血管を容易に
摘出することができる。また、本発明の人工血管は、長
尺部材が外表面から突出していないために、皮下のよう
な浅い部位に移植した場合でも、機械的な異物感がな
く、患者にストレスを与えることがない。
In the artificial blood vessel of the present invention, since the long member is mechanically gripped between the adjacent convex portions and the adhesion area becomes large, no special adhesive or strong heat fusion is applied. Adhesion strength sufficient for practical use is obtained, and the outer surface is substantially smoothed by filling the space between adjacent convex portions with a long member having an outer diameter equal to or smaller than the height of the convex portions. It can be in a different state. In the artificial blood vessel of the present invention, since the long member does not protrude from the outer surface, the long member does not get caught by the surgical instrument or the surrounding tissue, and the long member does not come off from the tube during the operation. . Further, since the artificial blood vessel of the present invention does not require the long member to be firmly adhered, the long member at the suture site can be easily removed without damaging the tube during anastomosis with the living blood vessel. In addition, the convex portion remaining on the surface of the tube maintains sufficient strength for suturing. In the artificial blood vessel of the present invention, since the scar tissue is not tightly entangled with the long member, it is possible to easily remove the artificial blood vessel even when the artificial blood vessel needs to be frequently replaced, such as a dialysis shunt. You can Further, since the long member does not protrude from the outer surface of the artificial blood vessel of the present invention, even when transplanted to a shallow site such as subcutaneously, there is no feeling of mechanical foreign matter and no stress is given to the patient. .

【0013】本発明における多孔質PTFEチューブ
は、以下のようにして製造することができる。例えば、
特公昭42−13560号に記載の方法により、先ず、
PTFE未焼結粉末に液体潤滑剤を混合し、混合物をラ
ム押し出しによってチューブ状に押し出した後、管軸方
向に任意の倍率に延伸する。このチューブを、収縮が起
こらないように固定しながら、焼結温度の327℃以上
に加熱して延伸した構造を焼結固定する。このようにし
て得られる多孔質PTFEの孔径や気孔率は、延伸倍率
によって任意に設定が可能であるが、人工血管として用
いるためには、平均孔径1〜200μm、気孔率50〜
85%、壁厚200〜1000μmのものが望ましい。
The porous PTFE tube of the present invention can be manufactured as follows. For example,
According to the method described in Japanese Examined Patent Publication No. 42-13560, first,
A liquid lubricant is mixed with the PTFE unsintered powder, and the mixture is extruded into a tube shape by ram extrusion, and then stretched to an arbitrary ratio in the tube axis direction. While fixing this tube so as not to cause shrinkage, the structure stretched by heating to a sintering temperature of 327 ° C. or higher is fixed by sintering. The pore diameter and porosity of the porous PTFE thus obtained can be arbitrarily set depending on the draw ratio, but for use as an artificial blood vessel, the average pore diameter is 1 to 200 μm, and the porosity is 50 to
It is preferable that the wall thickness is 85% and the wall thickness is 200 to 1000 μm.

【0014】多孔質PTFEチューブの外表面に凸状部
を形成するには、各種の方法が採用できる。例えば、多
孔質PTFEチューブの外表面に、加熱によって微小凹
凸を形成することができる。この方法としては、例え
ば、熱風、火炎、レーザー光等により、延伸PTFEチ
ューブ外表面を400〜500℃に加熱して、該チュー
ブ外表面に微小な凹凸構造を形成する方法がある(特公
昭63−23215号)。この方法によれば、表面部分
の微細繊維状組織において、微細繊維の切断や融着合
体、結節間の収縮による結節の融着合体、表面の部分的
な分解除去などが生じ、凹凸構造が形成される。この方
法により形成された凸状部は、チューブ本体部分よりも
見かけ上高い密度を有している。
Various methods can be used to form the convex portion on the outer surface of the porous PTFE tube. For example, minute irregularities can be formed on the outer surface of the porous PTFE tube by heating. As this method, for example, there is a method in which the outer surface of the expanded PTFE tube is heated to 400 to 500 ° C. by hot air, flame, laser light or the like to form a fine uneven structure on the outer surface of the tube (Japanese Patent Publication No. 63-63). -23215). According to this method, in the fine fibrous structure of the surface portion, fine fiber cutting or fusion fusion, fusion fusion of nodules due to shrinkage between nodules, partial decomposition and removal of the surface, etc. occur, and an uneven structure is formed. To be done. The convex portion formed by this method has an apparently higher density than the tube main body portion.

【0015】また、多孔質PTFEチューブの外表面に
一定の間隔をあけて断熱材を螺旋状に巻き付けた状態で
外表面から加熱し、断熱材が被覆されていない部分のP
TFEのみがPTFEの分解温度以上になるまで加熱し
分解させた後、断熱材を除去することによって、螺旋状
の凸状部を形成することができる。この方法により形成
された凸状部もチューブ本体部分よりも見かけ上高い密
度を有している。他の方法としては、延伸工程の前処理
として、押し出したチューブの外表面に螺旋状の溝を刻
んだ後に延伸を行えば、表面に螺旋状の凸状部が形成さ
れた多孔質PTFEチューブが得られる。この場合も、
凸状部の見かけ密度はチューブ本体よりも高くなる。
Further, the heat insulation material is spirally wound around the outer surface of the porous PTFE tube at a constant interval and heated from the outer surface, and the P of the portion not covered with the heat insulation material is heated.
A spiral convex portion can be formed by removing the heat insulating material after heating and decomposing only TFE to the decomposition temperature of PTFE or higher. The convex portion formed by this method also has an apparently higher density than the tube main body portion. As another method, as a pretreatment of the stretching step, when a spiral groove is formed on the outer surface of the extruded tube and then stretching is performed, a porous PTFE tube having a spiral convex portion formed on the surface is obtained. can get. Again,
The apparent density of the convex portion is higher than that of the tube body.

【0016】本発明では、PTFEチューブの外表面
に、チューブ本体部分よりも見かけ上高い密度を有しか
つ該チューブの長手方向に対して45度以上の角度をな
す凸状部を形成し、該凸状部の高さ以下の大きさの外径
を有する長尺部材を少なくとも長手方向に隣接する凸状
部間に巻つけることにより人工血管を製造する。長尺部
材の巻きつけは、補強効果や耐座屈性、作業性などの観
点から、一般には、螺旋状に巻きつける。凸状部をチュ
ーブ長手方向に対して45度以上(90度が限度)とし
たのは、人工血管の(曲げ)柔軟性を保持したまま圧縮
力を高めるためである。
According to the present invention, a convex portion having an apparently higher density than the tube body portion and forming an angle of 45 degrees or more with the longitudinal direction of the tube is formed on the outer surface of the PTFE tube, An artificial blood vessel is manufactured by winding a long member having an outer diameter smaller than or equal to the height of the convex portion at least between adjacent convex portions in the longitudinal direction. The long member is generally wound in a spiral shape from the viewpoint of reinforcing effect, buckling resistance, workability and the like. The reason why the convex portion is 45 degrees or more (90 degrees is the limit) with respect to the longitudinal direction of the tube is to increase the compression force while maintaining the (bending) flexibility of the artificial blood vessel.

【0017】長尺部材を巻き付けた後、長尺部材を構成
する材料の融点以上に加熱して、該長尺部材を多孔質P
TFEチューブ表面に融着させることが好ましい。長尺
部材の材料を溶解ないしは膨潤させる溶媒に含浸させ、
長尺部材を一部溶解させて接着させてもよいし、あるい
は接着剤を用いて接着させてもよい。しかし、一般に
は、長尺部材を巻きつけた後、長尺部材の材料の融点以
上の温度に短時間加熱して、軽く融着させることで十分
である。
After winding the long member, the long member is heated to a temperature equal to or higher than the melting point of the material forming the long member to make the long member porous P.
It is preferable to fuse it to the surface of the TFE tube. Impregnating with a solvent that dissolves or swells the material of the long member,
The long member may be partially dissolved and adhered, or an adhesive may be used for adhesion. However, in general, after winding the long member, it is sufficient to heat it for a short time at a temperature equal to or higher than the melting point of the material of the long member and lightly fuse it.

【0018】長尺部材としては、十分な強度を有し巻き
付け加工が可能で、生体内で炎症や分解を起こさず無害
な材料であれば特に限定されないが、延伸または未延伸
のPTFE繊維やテトラフルオロエチレン/ヘキサフル
オロプロピレン共重合体(FEP)繊維等が優れてい
る。長尺部材の形状としては、隣接する凸状部間(凹状
部)との密着面積を大きくするために、断面が円形のモ
ノフィラメントが好ましいが、マルチフィラメントでも
よい。
The long member is not particularly limited as long as it is a material which has sufficient strength, can be wound, and is harmless in vivo without causing inflammation or decomposition. Fluoroethylene / hexafluoropropylene copolymer (FEP) fibers are excellent. As the shape of the long member, a monofilament having a circular cross section is preferable in order to increase the contact area between adjacent convex portions (concave portions), but a multifilament may be used.

【0019】多孔質PTFEチューブの外表面に形成さ
れた凸状部構造における凸状部の高さ(凹状部の深さ)
は、通常、壁厚の20〜80%、好ましくは30〜70
%程度である。また、長尺部材の外径は、凸状部の高さ
以下の大きさとする。長尺部材の外径は、凸状部の高さ
の75〜100%程度とすることが好ましい。凸状部の
高さと長尺部材の外径とをほぼ同じ程度にすれば、実質
的に表面が平滑な人工血管を得ることができる。
Height of convex portion (depth of concave portion) in the convex portion structure formed on the outer surface of the porous PTFE tube
Is usually 20 to 80% of the wall thickness, preferably 30 to 70
%. Further, the outer diameter of the long member is set to be equal to or smaller than the height of the convex portion. The outer diameter of the long member is preferably about 75 to 100% of the height of the convex portion. By setting the height of the convex portion and the outer diameter of the long member to be substantially the same, an artificial blood vessel having a substantially smooth surface can be obtained.

【0020】多孔質PTFEチューブの外表面に螺旋状
に凸状構造を形成する場合には、螺旋の形状は特に限定
されないが、螺旋のピッチは1〜5mm、隣接する凸状
部間の幅は0.1〜2mm、凹状部の深さは0.1〜
0.5mm程度とすることが望ましい。長尺部材を巻つ
ける間隔は、特に限定されないが、通常、長尺部材が前
記チューブ周長の1/10〜1倍、より好ましくは1/
5〜1倍の周期で該チューブの外表面に巻かれているこ
とが望ましい。長尺部材は、必ずしもすべての凸状部の
間に巻つける必要はなく、その一部であってもよい。
When a spiral convex structure is formed on the outer surface of the porous PTFE tube, the spiral shape is not particularly limited, but the spiral pitch is 1 to 5 mm, and the width between adjacent convex parts is 0.1-2 mm, the depth of the concave part is 0.1
It is desirable to set it to about 0.5 mm. The interval at which the long member is wound is not particularly limited, but the long member is usually 1/10 to 1 times the circumference of the tube, more preferably 1 / l.
It is desirable that the outer surface of the tube is wound in a cycle of 5 to 1 times. The long member does not necessarily need to be wound between all the convex portions, and may be a part thereof.

【0021】[0021]

【実施例】以下に、実施例及び比較例を挙げて、本発明
についてさらに具体的に説明するが、本発明は、これら
の実施例のみに限定されるものではない。
EXAMPLES The present invention will be described in more detail below with reference to Examples and Comparative Examples, but the present invention is not limited to these Examples.

【0022】[実施例1]内径3mm、外径4mm、平
均孔径200μm、気孔率80%の多孔質PTFEチュ
ーブの外表面をガスバーナーによる火炎処理によって加
熱し、深さ200μmの凹凸を外表面に形成した。この
チューブの外表面に、外径200μmのFEPモノフィ
ラメントを凹部に埋め込まれるように4mm間隔で螺旋
状に巻きつけた後、300℃で5分間加熱した。得られ
たチューブの破裂圧は3kg/cm2以上で、屈曲径4
mmに曲げても座屈しなかった。また、屈曲径5mmで
1000回の繰り返し曲げ試験を行った後も、モノフィ
ラメントがチューブから剥離していることはなかった。
[Example 1] The outer surface of a porous PTFE tube having an inner diameter of 3 mm, an outer diameter of 4 mm, an average pore diameter of 200 µm, and a porosity of 80% was heated by a flame treatment with a gas burner, and unevenness having a depth of 200 µm was formed on the outer surface. Formed. An FEP monofilament having an outer diameter of 200 μm was spirally wound around the outer surface of this tube at intervals of 4 mm so as to be embedded in the recess, and then heated at 300 ° C. for 5 minutes. The burst pressure of the obtained tube was 3 kg / cm 2 or more, and the bending diameter was 4
Even when bent to mm, it did not buckle. Moreover, the monofilament was not peeled from the tube even after the repeated bending test was repeated 1000 times with the bending diameter of 5 mm.

【0023】[実施例2]内径3mm、外径4mmのP
TFEチューブを押し出し、助剤を除去後に深さ250
μm、0.3mmピッチの螺旋状の溝を刻んだ。このチ
ューブを300℃で10倍に延伸し、平均孔径90μ
m、気孔率75%で、外表面に凹部の幅200μm、深
さ180μm、ピッチ3mmの螺旋状の凸状部を形成し
た。このチューブの外表面に外径180μmのFEPモ
ノフィラメントを凹部に埋め込まれるように螺旋状に巻
きつけた後、350℃で5分間加熱した。得られたチュ
ーブの破裂圧は10kg/cm2以上で、屈曲径4mm
に曲げても座屈しなかった。また、屈曲径4mmで10
00回の繰り返し曲げ試験を行った後も、モノフィラメ
ントがチューブから剥離していることはなかった。
[Example 2] P having an inner diameter of 3 mm and an outer diameter of 4 mm
Extrude the TFE tube and remove the auxiliary agent, then depth 250
A spiral groove having a pitch of μm and a pitch of 0.3 mm was carved. This tube was stretched 10 times at 300 ° C to obtain an average pore size of 90μ.
m, the porosity was 75%, and a spiral convex portion having a width of 200 μm, a depth of 180 μm, and a pitch of 3 mm was formed on the outer surface. An FEP monofilament having an outer diameter of 180 μm was spirally wound around the outer surface of this tube so as to be embedded in the recess, and then heated at 350 ° C. for 5 minutes. The burst pressure of the obtained tube is 10 kg / cm 2 or more, and the bending diameter is 4 mm.
It didn't buckle when bent. Also, with a bending diameter of 4 mm, 10
The monofilament was not separated from the tube even after the repeated bending test of 00 times.

【0024】[実施例3]内径4mm、外径5mm、平
均孔径60μm、気孔率70%の多孔質PTFEチュー
ブの外表面をガスバーナーによる火炎処理によって加熱
し、深さ300μmの凹凸を外表面に形成した。このチ
ューブの外表面に、外径300μmのFEPモノフィラ
メントを凹部に埋め込まれるように2mm間隔で螺旋状
に巻きつけた後、300℃で5分間加熱した。得られた
チューブの破裂圧は10kg/cm2以上で、屈曲径5
mmに曲げても座屈しなかった。また、屈曲径5mmで
1000回の繰り返し曲げ試験を行った後も、モノフィ
ラメントがチューブから剥離していることはなかった。
[Embodiment 3] The outer surface of a porous PTFE tube having an inner diameter of 4 mm, an outer diameter of 5 mm, an average pore diameter of 60 μm and a porosity of 70% was heated by flame treatment with a gas burner to form irregularities having a depth of 300 μm on the outer surface. Formed. An FEP monofilament having an outer diameter of 300 μm was spirally wound around the outer surface of this tube at intervals of 2 mm so as to be embedded in the recess, and then heated at 300 ° C. for 5 minutes. The burst pressure of the obtained tube was 10 kg / cm 2 or more, and the bending diameter was 5
Even when bent to mm, it did not buckle. Moreover, the monofilament was not peeled from the tube even after the repeated bending test was repeated 1000 times with the bending diameter of 5 mm.

【0025】[実施例4]内径3mm、外径4mm、平
均孔径200μm、気孔率80%の多孔質PTFEチュ
ーブの外表面をガスバーナーによる火炎処理によって加
熱し、深さ200μmの凹凸を外表面に形成した。この
チューブの外表面に、外径200μmのFEPモノフィ
ラメントを凹部に埋め込まれるように1.5mm間隔で
螺旋状に巻き付けた後、300℃で5分間加熱した。得
られたチューブの破裂圧は10kg/cm2以上で、屈
曲径4mmに曲げても座屈しなかった。また、屈曲径5
mmで1000回の繰り返し曲げ試験を行った後も、モ
ノフィラメントがチューブから剥離していることはなか
った。
[Example 4] The outer surface of a porous PTFE tube having an inner diameter of 3 mm, an outer diameter of 4 mm, an average pore diameter of 200 µm, and a porosity of 80% was heated by a flame treatment with a gas burner, and unevenness having a depth of 200 µm was formed on the outer surface. Formed. An FEP monofilament having an outer diameter of 200 μm was spirally wound around the outer surface of this tube at intervals of 1.5 mm so as to be embedded in the recess, and then heated at 300 ° C. for 5 minutes. The burst pressure of the obtained tube was 10 kg / cm 2 or more, and it did not buckle even when bent to a bending diameter of 4 mm. Also, the bending diameter is 5
The monofilament was not peeled from the tube even after a repeated bending test of 1,000 times in mm.

【0026】[実施例5]内径4mm、外径5mmのP
TFEチューブを押し出し、300℃で6倍に延伸後、
350℃で10分間加熱した。このチューブの外表面に
幅2.8mmのガラス繊維を0.2mm間隔で巻きつ
け、外表面を400℃に3分間加熱して、凹部の幅0.
2mm、深さ0.2mm、凸部の幅2.8mmの螺旋状
の凸状部を形成した。チューブの平均孔径は60μm、
気孔率70%であった。このチューブの外表面に外径1
80μmのFEPモノフィラメントを凹部に埋め込まれ
るように螺旋状に巻き付けた後、350℃で5分間加熱
した。得られたチューブの破裂圧は10kg/cm2
上で、屈曲径5mmに曲げても座屈しなかった。また、
屈曲径5mmで1000回の繰り返し曲げ試験を行った
後も、モノフィラメントがチューブから剥離しているこ
とはなかった。
[Embodiment 5] P having an inner diameter of 4 mm and an outer diameter of 5 mm
Extrude the TFE tube and stretch it 6 times at 300 ℃,
Heated at 350 ° C. for 10 minutes. Glass fibers having a width of 2.8 mm were wound around the outer surface of this tube at intervals of 0.2 mm, the outer surface was heated to 400 ° C. for 3 minutes, and the recess width of 0.
A spiral convex portion having a diameter of 2 mm, a depth of 0.2 mm and a convex portion width of 2.8 mm was formed. The average pore size of the tube is 60 μm,
The porosity was 70%. Outside diameter 1 on the outer surface of this tube
An 80 μm FEP monofilament was spirally wound so as to be embedded in the recess, and then heated at 350 ° C. for 5 minutes. The burst pressure of the obtained tube was 10 kg / cm 2 or more, and it did not buckle even when bent to a bending diameter of 5 mm. Also,
The monofilament was not peeled from the tube even after the repeated bending test was repeated 1000 times with the bending diameter of 5 mm.

【0027】[比較例1]押し出し、延伸により内径3
mm、外径4mm、平均孔径200μm、気孔率80%
の多孔質PTFEチューブを製造した。このチューブの
破裂圧は0.8kg/cm2以下で、屈曲径4mmに曲
げると座屈した。 [比較例2]押し出し、延伸により内径4mm、外径5
mm、平均孔径60μm、気孔率70%の多孔質PTF
Eチューブを製造した。このチューブの破裂圧は2kg
/cm2で、屈曲径5mmに曲げるとで座屈した。
[Comparative Example 1] An inner diameter of 3 by extrusion and stretching.
mm, outer diameter 4 mm, average pore diameter 200 μm, porosity 80%
The porous PTFE tube of was manufactured. The burst pressure of this tube was 0.8 kg / cm 2 or less, and it buckled when bent to a bending diameter of 4 mm. [Comparative Example 2] Inner diameter 4 mm, outer diameter 5 by extrusion and stretching
mm, average pore diameter 60 μm, porosity 70% porous PTF
E-tubes were manufactured. Burst pressure of this tube is 2kg
It buckled when bent to a bending diameter of 5 mm at / cm 2 .

【0028】[比較例3]内径3mm、外径4mm、平
均孔径200μm、気孔率80%の多孔質PTFEチュ
ーブの外表面をガスバーナーによる火炎処理によって加
熱し、深さ200μmの凹凸を外表面に形成した。この
補強チューブは、屈曲径4mmに曲げても座屈しない
が、破裂圧は1.5kg/cm2以下であった。
[Comparative Example 3] The outer surface of a porous PTFE tube having an inner diameter of 3 mm, an outer diameter of 4 mm, an average pore diameter of 200 μm, and a porosity of 80% was heated by a flame treatment with a gas burner to form irregularities having a depth of 200 μm on the outer surface. Formed. The reinforcing tube did not buckle even when bent to a bending diameter of 4 mm, but the burst pressure was 1.5 kg / cm 2 or less.

【0029】[比較例4]内径3mm、外径4mm、平
均孔径200μm、気孔率80%の多孔質PTFEチュ
ーブの外表面に、外径200μmのFEPモノフィラメ
ントを4mm間隔で巻き付けた後、300℃で5分間加
熱した。この補強チューブの破裂圧は、3kg/cm2
以上だが、屈曲径4mmに曲げると座屈しないが補強繊
維を支点に折れ曲がるように屈曲した。また、屈曲径4
mmで1000回の繰り返し曲げ試験を行った結果、モ
ノフィラメントが部分的にチューブ外表面から剥離し
た。
[Comparative Example 4] An FEP monofilament having an outer diameter of 200 µm was wound at an interval of 4 mm on the outer surface of a porous PTFE tube having an inner diameter of 3 mm, an outer diameter of 4 mm, an average pore diameter of 200 µm, and a porosity of 80%. Heated for 5 minutes. The burst pressure of this reinforcement tube is 3 kg / cm 2.
As described above, when it was bent to a bending diameter of 4 mm, it did not buckle, but it bent so as to bend with the reinforcing fiber as a fulcrum. Also, the bending diameter is 4
As a result of repeating the bending test 1000 times in mm, the monofilament partially peeled from the outer surface of the tube.

【0030】[比較例5]内径3mm、外径4mmのP
TFEチューブを押し出し、助剤を除去後に、深さ25
0μm、0.3mmピッチの螺旋状の溝を刻んだ。この
チューブを300℃で10倍に延伸し、平均孔径90μ
m、気孔率75%で、外表面に幅200μm、深さ18
0μm、ピッチ3mmの螺旋状の凸状部を形成した。こ
の補強チューブは、屈曲径4mmで座屈しなかったが、
破裂圧は1.5kg/cm2以下であった。
[Comparative Example 5] P having an inner diameter of 3 mm and an outer diameter of 4 mm
After pushing the TFE tube and removing the auxiliary agent, the depth of 25
A spiral groove having a pitch of 0 μm and a pitch of 0.3 mm was carved. This tube was stretched 10 times at 300 ° C to obtain an average pore size of 90μ.
m, porosity 75%, width 200 μm, depth 18 on outer surface
A spiral convex portion having a pitch of 0 μm and a pitch of 3 mm was formed. This reinforcing tube did not buckle with a bending diameter of 4 mm,
The burst pressure was 1.5 kg / cm 2 or less.

【0031】[0031]

【発明の効果】本発明によれば、多孔質PTFEチュー
ブの外表面に凸状部を形成することである程度の強度と
屈曲に対する耐座屈性を付与し、さらに、長尺部材を隣
接する凸状部間に沿って埋め込むように巻きつけること
により、チューブに長尺部材を密に巻き付けなくても、
ほぼ均質で十分な強度と耐座屈性を有する人工血管が提
供される。本発明の人工血管は、多孔質PTFEチュー
ブ本来のしなやかさを維持することが可能で、屈曲させ
ても一様なアールを描いて座屈することがない上に、反
力が生じることもなく、反力による負荷が原因で生体側
の血管に動脈硬化などの変性を引き起こす心配もない。
本発明の人工血管は、吻合操作が容易で、かつ、血圧の
低い静脈などの部位、強度が必要な部位や曲げ負荷が生
じる部位で、オールランドに用いることができる。ま
た、長尺部材が凸状部間で機械的に把持されると共に接
着面積が大きくなり、特別な接着剤や強固な熱融着を施
さなくても実用上十分な接着力が得られ、しかも外表面
を実質的に平滑な状態にすることができる。本発明の人
工血管は、長尺部材が外表面から突出していないので、
長尺部材が手術器具や周囲組織が引っ掛かることがな
く、手術中に長尺部材がチューブから剥離してしまうこ
ともない。本発明の人工血管は、生体血管との吻合の際
には、チューブに損傷を与えることなく容易に長尺部材
を除去することができる上に、チューブ表面に残存する
凸状部によって、縫合に対しては十分な強度が保たれ
る。また、長尺部材に瘢痕組織が強固に絡まることがな
いので、例えば、透析内シャントのように、頻繁に人工
血管を取り替えなければならない場合でも、人工血管を
容易に摘出することができる。さらに、本発明の人工血
管は、長尺部材が外表面から突出していないために、皮
下のような浅い部位に移植した場合でも、機械的な異物
感がなく、患者にストレスを与えることがない。このよ
うに、本発明によれば、圧迫や屈曲に対して十分な強度
を有し、かつ、縫合性に優れた人工血管が提供される。
According to the present invention, by forming a convex portion on the outer surface of a porous PTFE tube, a certain degree of strength and buckling resistance against bending are imparted, and further, a long member is provided with an adjacent convex portion. By winding so that it is embedded along the space between the shaped parts, you do not have to tightly wind the long member around the tube,
An artificial blood vessel that is substantially homogeneous and has sufficient strength and buckling resistance is provided. INDUSTRIAL APPLICABILITY The artificial blood vessel of the present invention can maintain the original suppleness of the porous PTFE tube, does not buckle in a uniform radius even when bent, and does not cause reaction force. There is also no risk of causing degeneration such as arteriosclerosis in blood vessels on the living body side due to the load due to the reaction force.
INDUSTRIAL APPLICABILITY The artificial blood vessel of the present invention can be used for all lands at a site such as a vein where an anastomosis operation is easy and has low blood pressure, a site where strength is required, and a site where bending load is generated. In addition, the long member is mechanically gripped between the convex portions and the adhesion area is increased, so that a practically sufficient adhesive force can be obtained without applying a special adhesive or strong heat fusion. The outer surface can be substantially smooth. The artificial blood vessel of the present invention, since the long member does not protrude from the outer surface,
The long member does not get caught on the surgical instrument or the surrounding tissue, and the long member does not peel off from the tube during the operation. The artificial blood vessel of the present invention, when anastomosing with a living blood vessel, can easily remove the long member without damaging the tube, and the convex portion remaining on the tube surface enables sutures to be sutured. On the other hand, sufficient strength is maintained. Further, since the scar tissue is not tightly entangled with the long member, the artificial blood vessel can be easily extracted even when the artificial blood vessel needs to be replaced frequently, such as in a dialysis shunt. Further, the artificial blood vessel of the present invention does not have a mechanical foreign body sensation and does not cause stress to the patient even when it is transplanted to a shallow site such as a subcutaneous site because the long member does not protrude from the outer surface. . As described above, according to the present invention, an artificial blood vessel having sufficient strength against pressure and bending and excellent in sutureability is provided.

【図面の簡単な説明】[Brief description of drawings]

【図1】図1は、火炎処理で凹凸構造を形成させた多孔
質PTFEチューブに補強繊維を巻き付けた本発明の人
工血管の斜視図である。
FIG. 1 is a perspective view of an artificial blood vessel of the present invention in which reinforcing fibers are wound around a porous PTFE tube having a concavo-convex structure formed by flame treatment.

【図2】図2は、螺旋状に凸状構造を形成させた多孔質
PTFEチューブに補強繊維を巻きつけた本発明の人工
血管の全体と一部断面の斜視図である。
FIG. 2 is a perspective view of the whole and a part of a cross section of the artificial blood vessel of the present invention in which a reinforcing fiber is wound around a porous PTFE tube having a spirally convex structure formed therein.

【図3】図3は、多孔質PTFEチューブの隣接する凸
状部間に補強繊維が埋め込まれた本発明の人工血管を示
す断面図である。
FIG. 3 is a cross-sectional view showing an artificial blood vessel of the present invention in which reinforcing fibers are embedded between adjacent convex portions of a porous PTFE tube.

【図4】図4は、凸状構造のない多孔質PTFEチュー
ブに補強繊維を巻きつけた従来の人工血管の断面図であ
る。
FIG. 4 is a cross-sectional view of a conventional artificial blood vessel in which reinforcing fibers are wound around a porous PTFE tube having no convex structure.

【符号の説明】[Explanation of symbols]

1 多孔質PTFEチューブ 2 火炎処理で形成された凹部 3 火炎処理で形成された凸状部 4 螺旋状に形成された凹状部 5 螺旋状に形成された凸状部 6 長尺部材 7 一部断面 8 凹凸のない多孔質PTFEチューブ 1 Porous PTFE tube 2 Recess formed by flame treatment 3 Convex portion formed by flame treatment 4 Recessed portion formed in spiral shape 5 Convex portion formed in spiral shape 6 Long member 7 Partial cross section 8 Porous PTFE tube with no irregularities

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 繊維と該繊維によって互いに連結された
結節とからなる微細繊維状組織を有する多孔質ポリテト
ラフルオロエチレンチューブからなる人工血管におい
て、該チューブの外表面に、チューブ本体部分よりも見
かけ上高い密度を有しかつ該チューブの長手方向に対し
て45度以上の角度をなす凸状部が形成され、該凸状部
の高さ以下の大きさの外径を有する長尺部材が少なくと
も長手方向に隣接する凸状部間に巻かれていることを特
徴とする人工血管。
1. An artificial blood vessel made of a porous polytetrafluoroethylene tube having a fine fibrous tissue composed of fibers and nodules connected to each other by the fibers, the outer surface of the tube being more apparent than the tube body portion. At least a long member that has a high density and has a convex portion that forms an angle of 45 degrees or more with respect to the longitudinal direction of the tube and that has an outer diameter that is equal to or smaller than the height of the convex portion is formed. An artificial blood vessel characterized by being wound between convex portions adjacent to each other in the longitudinal direction.
【請求項2】 長尺部材が前記チューブ周長の1/10
〜1倍の周期で該チューブの外表面に巻かれている請求
項1記載の人工血管。
2. A long member is 1/10 of the circumference of the tube.
The artificial blood vessel according to claim 1, wherein the artificial blood vessel is wound around the outer surface of the tube at a cycle of ˜1 time.
JP7269288A 1995-09-22 1995-09-22 Artificial blood vessel Pending JPH0984812A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7269288A JPH0984812A (en) 1995-09-22 1995-09-22 Artificial blood vessel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7269288A JPH0984812A (en) 1995-09-22 1995-09-22 Artificial blood vessel

Publications (1)

Publication Number Publication Date
JPH0984812A true JPH0984812A (en) 1997-03-31

Family

ID=17470269

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7269288A Pending JPH0984812A (en) 1995-09-22 1995-09-22 Artificial blood vessel

Country Status (1)

Country Link
JP (1) JPH0984812A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4759575B2 (en) * 2004-12-31 2011-08-31 ボストン サイエンティフィック リミテッド Sintered ring-supported vascular graft
JP2016179192A (en) * 2010-05-20 2016-10-13 マッケ カーディオバスキュラー エルエルシー Composite prosthesis with external polymeric support structure and methods of manufacturing the same

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4759575B2 (en) * 2004-12-31 2011-08-31 ボストン サイエンティフィック リミテッド Sintered ring-supported vascular graft
JP2016179192A (en) * 2010-05-20 2016-10-13 マッケ カーディオバスキュラー エルエルシー Composite prosthesis with external polymeric support structure and methods of manufacturing the same
US9956069B2 (en) 2010-05-20 2018-05-01 Maquet Cardiovascular Llc Composite prosthesis with external polymeric support structure and methods of manufacturing the same
JP2018183602A (en) * 2010-05-20 2018-11-22 マッケ カーディオバスキュラー エルエルシー Composite prosthesis with external polymeric support structure and methods of manufacturing the same

Similar Documents

Publication Publication Date Title
US6001124A (en) Oblique-angle graft connectors
JP4444942B2 (en) Method for producing porous polytetrafluoroethylene tube
US6371982B2 (en) Graft structures with compliance gradients
EP3600150B1 (en) Subcutaneous vascular assemblies for improving blood flow
US4743251A (en) Vein prothesis and method for producing same
US9956069B2 (en) Composite prosthesis with external polymeric support structure and methods of manufacturing the same
USRE31618E (en) Tubular organic prosthesis
JP3660355B2 (en) Intraluminal stent graft
JPH0856969A (en) Method to introduce external surface coil supporting member in transplantable tubular prosthesis made of polytetrafluoroethylene
WO2008057936A1 (en) Multi-furcated eptfe grafts and stent-graft prostheses and methods of making the same
AU2001234948A1 (en) Surgical fastener
US7833263B2 (en) Hybrid vascular graft reinforcement
EP1229842A1 (en) Heat activated surgical fastener
JP2008073408A (en) Artificial blood vessel for small artery which uses fibroin thread
EP1345555B1 (en) Composite tubular prostheses
JPH0984812A (en) Artificial blood vessel
JPH06189984A (en) Artificial blood vessel and manufacture thereof
JP3686833B2 (en) Vascular anastomosis ring and artificial blood vessel equipped with vascular anastomosis ring
WO1995035072A2 (en) Protective surgical sheath for coronary artery bypass grafts
JPH0767894A (en) Artificial blood vessel
JPH1199163A (en) Blood vessel prosthetic material
JP2024510693A (en) Stent grafts and methods of manufacturing stent grafts
JPS62152467A (en) Production of tubular organ prosthetic material
JP2005152181A (en) Embedding-type tubular treating tool
WO2003103513A1 (en) Anastomotic device and method for open and endoscopic surgical anatomosis

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051006

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051019

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051214

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20060704