JPH0984323A - Linear vibration actuator - Google Patents

Linear vibration actuator

Info

Publication number
JPH0984323A
JPH0984323A JP5116285A JP11628593A JPH0984323A JP H0984323 A JPH0984323 A JP H0984323A JP 5116285 A JP5116285 A JP 5116285A JP 11628593 A JP11628593 A JP 11628593A JP H0984323 A JPH0984323 A JP H0984323A
Authority
JP
Japan
Prior art keywords
mover
coil
stator
linear
control circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5116285A
Other languages
Japanese (ja)
Inventor
Yoshiaki Seshime
吉昭 瀬〆
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP5116285A priority Critical patent/JPH0984323A/en
Publication of JPH0984323A publication Critical patent/JPH0984323A/en
Pending legal-status Critical Current

Links

Landscapes

  • Reciprocating, Oscillating Or Vibrating Motors (AREA)

Abstract

PURPOSE: To make a linear vibration actuator to move strongly only in one direction of a linear reciprocating motion and to return lightly in the reverse direction by so controlling an exciting current as to become large in the half cycle of AC and small in the half cycle of the reverse direction. CONSTITUTION: Adjacent magnets 1, 2 or 3, 4 have opposite polarities, and counter magnets 1, 3 or 2, 4 have attracting polarities. When an exciting coil 6 is wound on a core 5, and so excited that the upper part becomes an S-pole, a movable element receives a force for moving to the right side by the attractive forces from the magnet pair 2, 4 of the right side and repelling forces from the magnet pair 1, 3 of the left side, and the upper N-pole of the reverse polarity receives the force of the opposite direction. At this time, when the waveform of the exciting voltage is the upper side waveform, it is energized, while when it is the lower side waveform, it is deenergized to operate the actuator. The operating shaft 16 for transmitting the operation is mounted at the movable element. As a result, it is applied to an apparatus which may obtain the motion or force only in one direction on the straight line, and efficient output is obtained as compared with dissipation power.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】直線上一方向に強い推力によって
運動し、逆方向にはあまり強い力が加わらないような運
動が好ましい機器に関する。例えば往復動ポンプ等の駆
動、振動フィーダー、心臓マッサージに用いられる。さ
らに重い物体に振動を与えてゆっくりと前進させるパレ
ット、倉庫における多段棚パレットにも用いられる。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a device which preferably moves in a straight line in one direction by a strong thrust and in which a strong motion is not applied in the opposite direction. For example, it is used for driving a reciprocating pump, a vibration feeder, and a heart massage. It is also used for pallets that give vibration to heavier objects and slowly move forward, and for multi-tiered shelves in warehouses.

【0002】[0002]

【従来の技術】従来のリニア振動アクチュエータは大き
く分けると可動線輪型、可動永久磁石型可動鉄心型図1
3が代表的である。E型のヨーク35に励磁コイル3
6,37をもって可動鉄心38を揺動させロット39に
より推力を取り出している。
2. Description of the Related Art A conventional linear vibration actuator is roughly divided into a movable wire ring type, a movable permanent magnet type and a movable iron core type.
3 is typical. Excitation coil 3 on E-shaped yoke 35
The movable iron core 38 is swung with 6, 37 and the thrust is taken out by the lot 39.

【0003】リニアモータにおいて多極磁極性の配列と
2個のコイルをもつもの、また特公平1−27667、
リニアモータにおいて特殊コイルをもつもの、特公昭6
4−8537も可動線輪型にて、高速な応答性と高い制
御性の励起される振動が少ないことが特徴である。
A linear motor having a multi-pole magnetic pole array and two coils, and Japanese Patent Publication No. 27667 / 1-267.
Linear motor with special coil, Japanese Patent Publication 6
The 4-8537 is also a movable wheel type, and is characterized by high-speed response and high controllability with little excited vibration.

【0004】電気的に振動を発生させその振動の推力を
工業的に利用する目的においては、特公平1−2627
1、特公平1−27668、特公平1−25306、特
公平1−40595等によって電磁力による振動機シス
テムは広範に使用されている。一般的に用いられる電源
は50Hz、60Hzと考えられ振幅巾を大きくするの
に磁路のカットや、長いコイルによって振幅巾の大きさ
を求めている。
For the purpose of electrically generating vibration and industrially utilizing the thrust of the vibration, Japanese Patent Publication No. 1-26271
1, Japanese Patent Publication No. 1-27668, Japanese Patent Publication No. 1-25306, Japanese Patent Publication No. 1-40595, etc., use the vibrator system by electromagnetic force widely. It is considered that the power supply generally used is 50 Hz or 60 Hz, and in order to increase the amplitude width, a magnetic path is cut or a long coil is used to obtain the amplitude width.

【0005】しかしながら、商用周波数(50,60H
z)の波長が短いためにさまざなな振動機の新規な発展
が妨げられているものと考えられる。また一般的に揺動
する周波数は比較的に低い範囲が求められ、各種モータ
によって減速回転をしカムまたはラック、ピニオン、ま
たは流体圧によって推力を得ている。
However, the commercial frequency (50, 60H
It is considered that the short wavelength of z) hinders the new development of various vibrators. Generally, the frequency of oscillation is required to be in a relatively low range, and various motors perform deceleration rotation to obtain thrust by a cam, a rack, a pinion, or fluid pressure.

【0006】[0006]

【発明が解決しようとする課題】直線上の往復運動にお
いて、一方向にのみ強い力が得られて運動し、逆方向に
は弱い力で戻ること、あるいは、直線上の往復運動の両
方向において等しい力が得られて運動すること。
In a linear reciprocating motion, a strong force is obtained only in one direction to move and a weak force returns in the opposite direction, or the same is true in both directions of the linear reciprocating motion. Exercise with strength.

【0007】[0007]

【課題を解決するための手段】間隔をあけてN−S,S
−Nと逆方向の平行磁束が生じている空間の両磁束の間
に配置されるコイルに、前記両磁束に平行に、N−Sな
る磁束を生ぜしめるときは、コイルは空間から反撥力と
吸引力を同時に受けて、S−Nなる磁束がある方の空間
に引き寄せられ、逆極性の磁束となるときには、逆方向
に引き寄せられる。このとき、コイルの励磁電流として
交流の半サイクルでは大電流となり、続く逆方向の半サ
イクルでは小電流となるように励磁電流を制御する回路
を用いた。
[Means for Solving the Problem] NS, S at intervals
When a magnetic flux N-S is produced in parallel with both magnetic fluxes in a space where parallel magnetic fluxes in the opposite direction to -N are generated, the coil is repulsive and attracts from the space. When a magnetic flux S-N is simultaneously received by the force and is attracted to the space having the magnetic flux, and when the magnetic flux has the opposite polarity, the magnetic flux is attracted in the opposite direction. At this time, a circuit for controlling the exciting current is used so that the exciting current of the coil becomes large in a half cycle of alternating current and becomes small in a subsequent half cycle in the opposite direction.

【0008】[0008]

【実施例】以下図面に基づいて本発明を説明する。図1
は本発明のアクチュエータの側面図で、固定子の永久磁
石1〜4、可動子の鉄心5及びコイル6を断面図状に示
した。図2は、図1のf2−f2に沿って矢視の方向で
一部を断面図とした図面である。図1において、相隣れ
る磁石(1,2若しくは3,4)は反対極性の磁石で、
相対する磁石(1,3若しくは2,4)は相吸引する極
性の磁石である。鉄心5に、励磁コイル6が巻かれ、上
部がS極になるように励磁されると、右側の対向磁石対
2,4から引力を、左側の対向磁石対1,3から付力を
受け、可動子は右側へ動く力を受け、逆極性の上側N極
の場合は反対方向の力を受ける。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below with reference to the drawings. FIG.
Is a side view of the actuator of the present invention, showing the permanent magnets 1 to 4 of the stator, the iron core 5 and the coil 6 of the mover in a sectional view. FIG. 2 is a partial cross-sectional view taken along the line f2-f2 in FIG. In FIG. 1, adjacent magnets (1, 2, or 3, 4) are magnets of opposite polarities,
Opposing magnets (1, 3, or 2, 4) are polar magnets that attract each other. When the exciting coil 6 is wound around the iron core 5 and is excited so that the upper part becomes the S pole, the attractive force is received from the right opposing magnet pair 2 and 4, and the attractive force is received from the left opposing magnet pair 1 and 3. The mover receives a force that moves to the right, and in the case of the upper N pole having the opposite polarity, receives the force in the opposite direction.

【0009】このとき励磁電圧の波形を図3のようにし
て、上側波形のとき付勢時とし、下側波形のとき、消勢
時としてアクチュエータを動作せしめる。この作用を伝
達せしめる作用軸16が、可動子にネジ込みによって取
付けられている。
At this time, the waveform of the excitation voltage is set as shown in FIG. 3, and the actuator is operated when the upper waveform is energized and when the lower waveform is energized. An action shaft 16 for transmitting this action is attached to the mover by screwing.

【0010】次に図1,2において、固定子には必要に
応じてゴム脚24が付され、閉磁路を形成するヨーク1
2,13上に上記平板状永久磁石1〜4が貼付され、そ
してこれらを保持する外箱(正面板31,上カバー3
2,側カバー33,底板34)に更に可動子の車輪8
が、この上を移動するレール基台11が、外箱の四隅に
配置されている。かくして、励磁コイルが作動せしめら
れたとき、レール上を車輪が動き作用軸を介して、外部
に仕事をする。
Next, referring to FIGS. 1 and 2, the stator 1 is provided with a rubber leg 24 as required to form a closed magnetic circuit.
The plate-shaped permanent magnets 1 to 4 are attached on the outer surfaces 2 and 13, and an outer box (front plate 31, upper cover 3) for holding them.
2, the side cover 33, the bottom plate 34) and the movable wheel 8
However, rail bases 11 that move above this are arranged at the four corners of the outer box. Thus, when the excitation coil is actuated, the wheels move on the rails and work outside via the working shaft.

【0011】次に、図4,5は別の実施例を示す。図
4,5において、前述の固定子、可動子5a,5b,5
c,5dの組が4組配置されているが、固定子の永久磁
石の端面に現れる極性が左よりN−S,S−N,N−
S,S−Nと交互に変えられている。この時、励磁コイ
ルの巻回方向が全部同じであれば、各組の作用軸には交
互に逆方向の推力が現れる。また図示されていないが永
久磁石の極性に関する配列を4組全部同じとし励磁コイ
ルの巻回方向を、1つおきに逆にしても同様に交互に逆
方向の推力が得られる。
Next, FIGS. 4 and 5 show another embodiment. 4 and 5, the above-mentioned stator and mover 5a, 5b, 5
Four sets of c and 5d are arranged, but the polarities appearing on the end faces of the permanent magnets of the stator are NS, SN, N- from the left.
Alternating with S and SN. At this time, if the winding directions of the exciting coils are all the same, thrust in the opposite direction appears alternately on the working axes of each set. Although not shown, even if all four pairs of permanent magnets are arranged to have the same polarity and the winding directions of the exciting coils are reversed every other direction, the thrust in the opposite direction can be obtained alternately.

【0012】ここで図4図示のように、作用軸27の方
向を交互に逆方向に取付け、これらの軸に、軸と共に動
き、連設されて固定子を囲んでいる側カバーを貫通し、
移動可能に設けられている。可動枠のリンク枠25が取
付けられ、更に軸29で旋回可能に接続されているリン
ク枠26を介して、図示の六角形の枠が伸縮し、90゜
異なる方向に推力の方向を変換することができる。
Here, as shown in FIG. 4, the working shafts 27 are alternately mounted in opposite directions, and these shafts are moved together with the shafts and penetrate a side cover that is continuously provided and surrounds the stator.
It is provided movably. A hexagonal frame shown in the drawing expands and contracts via a link frame 26 to which a movable frame link frame 25 is attached and which is pivotally connected by a shaft 29, and changes the direction of thrust in directions different by 90 °. You can

【0013】更に図6,図6aは別の実施例を示す。図
において、固定子枠に車輪46を付けて、移動可能と
し、可動子作用軸にL型金具43を経て床面に接する摩
擦シュー45を穿いた駆動軸44が取付けられている。
この構造によって、固定部分と移動部分とが逆になる。
Further, FIGS. 6 and 6a show another embodiment. In the figure, a wheel 46 is attached to a stator frame so as to be movable, and a drive shaft 44 having a friction shoe 45 which is in contact with the floor surface through an L-shaped metal fitting 43 is attached to a mover action shaft.
This structure reverses the fixed and moving parts.

【0014】図6,図6aでは請求項4の発明に記載さ
れている駆動金具43,駆動軸44,摩擦ゴム板45な
どを推力軸16に連結し、4個以上の車輪46をリニア
振動アクチュエータ底板34に付ける。
In FIGS. 6 and 6a, the drive fitting 43, the drive shaft 44, the friction rubber plate 45, etc. described in the invention of claim 4 are connected to the thrust shaft 16, and four or more wheels 46 are connected to the linear vibration actuator. Attach to the bottom plate 34.

【0015】仮に1サイクルの周期に行なわれる運動の
作用を見ると、固定子と可動子の反発作用とみなした直
線往復運動の可動子側の推力を直接床に摩擦させると、
固定子の底についた車輪は摩擦が少なく固定子側の基台
が反作用方向に動き出す。
Assuming that the action of the motion performed in one cycle is as follows, when the thrust force on the mover side of the linear reciprocating motion, which is regarded as the repulsive action of the stator and the mover, is directly rubbed on the floor,
The wheels on the bottom of the stator have less friction and the base of the stator moves in the reaction direction.

【0016】次に吸引作用に変化したとき固定子側が途
中まで可動子側に引き寄せられ、そのとき可動子に直結
している摩擦ゴムと床との接触している力が急に弱ま
り、可動子が固定子側の吸引力に引き付けられ、初期の
位置と引き付けられた位置との位置づれが起こる。
Next, when the suction action is changed, the stator side is pulled partway toward the mover side, at which time the contact force between the friction rubber directly connected to the mover and the floor suddenly weakens, and the mover moves. Is attracted to the suction force on the stator side, and the initial position and the attracted position are misaligned.

【0017】その位置づれは、一サイクルごとの歩進と
なる。図12駆動軸詳細図に命令信号によって前進、後
進を選択できる電磁コイル47、電磁ヨーク48等を持
ち静かに歩く機能を持っている。
The position shift is a step for each cycle. FIG. 12 has a function of quietly walking in the detailed view of the drive shaft, which has an electromagnetic coil 47, an electromagnetic yoke 48, etc. capable of selecting forward or backward according to a command signal.

【0018】図7は又更に別の実施例を示す。図におい
て、ヨーク12,13上に貼付された永久磁石1,3の
間に鉄心5上に巻回されたコイル6を備えた可動子が設
けられた構造は図1,2乃至6における実施例と同様で
あるが、本図は、モータが、電源側に対して発電機とし
て作用する原理と同様、励磁コイルに電源でなく、整流
回路を接続することにより、外部から加わる振動を電気
エネルギーに変換利用できることを示す。
FIG. 7 shows still another embodiment. In the figure, the structure in which the mover having the coil 6 wound around the iron core 5 is provided between the permanent magnets 1 and 3 attached on the yokes 12 and 13 is the same as the embodiment shown in FIGS. However, this figure is similar to the principle that the motor acts as a generator on the power supply side, but by connecting a rectifier circuit to the excitation coil instead of a power supply, the vibration applied from the outside is converted into electrical energy. Indicates that conversion is available.

【0019】図8は請求項5記載のリニア振動アクチュ
エータにおいて架台64を設置し、請求項1および2の
リニア振動アクチュエータを取り付け直線往復運動作用
の推力を回転に変換する機能を説明するための側面図で
ある。
FIG. 8 is a side view for explaining the function of converting the thrust of linear reciprocating motion into rotation by installing the pedestal 64 in the linear vibration actuator of claim 5 and mounting the linear vibration actuator of claims 1 and 2. It is a figure.

【0020】図9は回転機構の平面図である。図10は
回転機構部の拡大姿図である。拡大姿図のなかで推力軸
16に連結ピン55のついた伝導リング54を固定ナッ
ト53で取り付ける。
FIG. 9 is a plan view of the rotating mechanism. FIG. 10 is an enlarged view of the rotation mechanism section. In the enlarged view, the thrust ring 16 is attached with a fixing nut 53 to a transmission ring 54 with a connecting pin 55.

【0021】ロットエンド56にロットを組つけし連結
軸57をつくる。一方の端末を連結ピン55に、一方を
クランクピン58に組み立てる。クランクピン58のつ
いたクランクアーム59は回転軸60に組み付けする。
A lot is assembled to the lot end 56 to form a connecting shaft 57. One end is assembled to the connecting pin 55 and one end is assembled to the crank pin 58. The crank arm 59 with the crank pin 58 is attached to the rotary shaft 60.

【0022】図11に図示する推力Fa1を左矢印の方
向とすれば連結ピン55とクランクピン58間の距離は
推力軸16によって急激に狭められる。ロットエンド5
6の特徴は内側リングを摩擦の少ない状態で動く継ぎ手
であり距離変位を自在に対応するものである。
When the thrust Fa1 shown in FIG. 11 is set in the direction of the left arrow, the distance between the connecting pin 55 and the crank pin 58 is sharply narrowed by the thrust shaft 16. Lot end 5
Characteristic 6 is a joint that moves the inner ring in a state with little friction, and is capable of freely adjusting distance displacement.

【0023】連結ピン55は回転の効かない固定ピンで
あるがそのピンの外側を包み込むロットエンド内輪は回
転自在な滑りの良い構造であり回転角速度ω=回転角θ
/時間t(rad/sec)をもつ慣性エネルギーE=
1/2jωk(kgf・cm)・・・・・・jは慣性
モーメント(kgf.cm.sec)kは摩擦係数と
変化し、狭められた連結軸57はクランクピン58を通
してクランクアーム59に伝える。
The connecting pin 55 is a fixed pin that does not rotate, but the lot end inner ring that wraps the outside of the pin has a structure that is rotatable and has good slippage, and the rotational angular velocity ω is equal to the rotational angle θ.
/ Inertia energy E with time t (rad / sec) =
1 / 2jω 2 k (kgf · cm) ····· j is the moment of inertia (kgf · cm · sec 2 ) k changes with the friction coefficient, and the narrowed connecting shaft 57 passes through the crank pin 58 and the crank arm 59. Tell.

【0024】このとき連結軸57は回転力に変化し回転
角速度を持つFa2に変化する。回転角を持つ変位した
Fa2推力はクランクピン58をとおしてクランクアー
ム59を回転し始める。
At this time, the connecting shaft 57 changes into a rotational force and changes to Fa2 having a rotational angular velocity. The displaced Fa2 thrust having a rotation angle begins to rotate the crank arm 59 through the crank pin 58.

【0025】回転展開D−D線は回転軸60の軸中心
を表し、中心D−Dに沿う初期位置0゜から90°
の方向に180゜までFa3の回転力に変化する様子を
あらわす。
The rotational expansion line D-D 1 represents the axial center of the rotary shaft 60, and the initial position 0 ° to 90 ° along the center D 2 -D 3 .
It shows how the Fa3 torque changes to 180 ° in the direction of.

【0026】回転軸60のD側の回転ドラム61をま
わす。図示に示す直線推力Fa1の瞬時におけるエネル
ギーは時間に関係した角速度をもつ力で、左右振れる中
心を初期点とし図10に示すクランクアーム59の初期
位置(回転角0°)にすれば約90°進んだ位置で推力
軸16の最大に振れた位置点と一致する。
Rotate the rotary drum 61 on the D 1 side of the rotary shaft 60. The instantaneous energy of the linear thrust Fa1 shown in the figure is a force having an angular velocity related to time, and when the center of the lateral swing is set as the initial point and the initial position of the crank arm 59 shown in FIG. At the advanced position, it coincides with the position point of the thrust shaft 16 which is maximally swung.

【0027】この位置はエネルギーが0になって死点と
なってくるが従来より重い回転体を利用し慣性運動を生
む回転ドラム61を使用して死点を通過させれば回転が
できる。
At this position, the energy becomes 0 and becomes a dead point, but it can be rotated by passing through the dead point by using the rotating drum 61 that produces inertial motion by using a rotating body that is heavier than before.

【0028】次に直線推力軸16が逆方向Fb1に働く
場合、最大振幅点(死点)を回転ドラム61の等速運動
の回転力で連続的に通過し瞬時にFb1が時間と共に変
化増大する力で連結軸57を引く方向に働き回転軸60
の中心D−Dに沿う中心軸の支点を持つクランクアー
ム59を回転角180°から270°を通過し360゜
の方向にFb3が働き回転する。
Next, when the linear thrust shaft 16 acts in the reverse direction Fb1, the maximum amplitude point (dead point) is continuously passed by the rotational force of the uniform velocity motion of the rotary drum 61, and Fb1 changes instantaneously with time. Rotating shaft 60 works by pulling connecting shaft 57 with force
The crank arm 59 having the fulcrum of the central axis along the center D-D 1 of the arrow passes through the rotation angle of 180 ° to 270 °, and Fb3 works and rotates in the direction of 360 °.

【0029】初期位置クランクアーム59の傾きと推力
Fa1またはFb1の力の強さに左右されるがクランク
アーム59に半回転または一回転近く、選択した周波数
と振動する加速度によって共振する振幅距離(+20m
m〜−20mm程度)とが、クランクアーム長さ(クラ
ンクピン58と回転軸60の中心距離間)と整合された
時一方向の連続回転動作をする。回転ドラム61に被駆
動体を取り付けて半回転動作、および回転動作を行う目
的としている。
Initial position: Depending on the inclination of the crank arm 59 and the strength of the thrust Fa1 or Fb1, the crank arm 59 has a half rotation or a full rotation, and an amplitude distance (+20 m) that resonates with the selected frequency and the oscillating acceleration.
m to about -20 mm) is aligned with the length of the crank arm (between the center distances of the crank pin 58 and the rotating shaft 60) to perform continuous rotation operation in one direction. A driven body is attached to the rotary drum 61 for the purpose of performing a half-rotation operation and a rotation operation.

【0030】図11は請求項6の発明のリニア振動アク
チュエータにおける平面図で、下部に回転輪114を持
つ架台70を設置し、請求項1および2の発明のリニア
振動アクチュエータを複列にし、回転変換機構を取り付
けて互いに連結する。
FIG. 11 is a plan view of the linear vibration actuator according to the sixth aspect of the present invention, in which a pedestal 70 having a rotating ring 114 is installed in the lower portion, and the linear vibration actuators according to the first and second aspects are arranged in a double row to rotate. A conversion mechanism is attached and connected to each other.

【0031】図12に直線往復運動の推力を回転変換す
る部分図を示し前記請求項5の実施例に基づく回転変換
機構の回転軸107に180°のづれをもつ二つの相反
する直線往復運動推力を、半回転および一回転以上の慣
性モーメントに変換し回転軸70に与える。
FIG. 12 shows a partial view of rotationally converting the linear reciprocating thrust. Two opposite reciprocating linear reciprocating thrusts having a rotation shaft 107 of 180 ° on the rotation converting mechanism according to the embodiment of claim 5 are provided. Is converted into a moment of inertia of half rotation and one rotation or more, and applied to the rotating shaft 70.

【0032】二つの相反する推力を回転軸107の回転
に変換する慣性モーメント入力位置点の優偏を持たせる
ことのできる二つのクランクピン104,104a、ク
ランクアーム105,105aを設置して回転軸107
を回す。
Two crank pins 104, 104a and crank arms 105, 105a capable of giving a dominant bias to the moment of inertia input position for converting two opposing thrusts into rotation of the rotary shaft 107 are installed. 107
Turning the.

【0033】二つのリニア振動アクチュエータの推力矢
印方向をFa1→およびFa1←とし、その力を初期位
置点をa点として連結ピン101,101aにロットエ
ンド102,102aのついた連結軸103,103a
を継いで180°位相の異なる入力信号に応じた力で推
力をもう一つの先端ロットエンド102,102aでク
ランクピン104,104aに伝え、クランクアーム1
05,105aに伝導する。
The thrust arrow directions of the two linear vibration actuators are Fa1 → and Fa1 ←, and the forces thereof are the initial position point a and the connecting shafts 103, 103a with the lot ends 102, 102a attached to the connecting pins 101, 101a.
Then, the thrust is transmitted to the crank pins 104 and 104a by the other tip lot ends 102 and 102a by the forces corresponding to the input signals having different phases by 180 °.
Conducted to 05, 105a.

【0034】連結ピン101,101aとクランクピン
104,104aに接続しているロットエンド102,
102aは摩擦の少ない自在性継ぎ手であり、距離変位
を容易に対応し回転としてクランクアーム105,10
5aを瞬時にFa2,Fa2の回転力に変換することが
できる。
The lot end 102 connected to the connecting pins 101 and 101a and the crank pins 104 and 104a,
102a is a flexible joint with little friction, which easily responds to displacement of distance and rotates as crank arms 105, 10
5a can be instantaneously converted into the rotational force of Fa2 and Fa2.

【0035】次に推力方向矢印←Fa3→Fa3にして
変化する時はクランクアーム105,105aが回転角
180°進んだ位置に入るので最大振幅点の力の死点に
なるが、互いに等速運動に助けられ一定方向の回転が行
われる。
Next, when the thrust direction arrow ← Fa3 → Fa3 changes, the crank arms 105, 105a enter the position advanced by the rotation angle of 180 °, so that they become the dead points of the force of the maximum amplitude point, but they move at the same speed. Rotation in a certain direction is performed with the help of.

【0036】初期スタート位置は電気信号の波形の位置
によって回転方向が決定されるが初期ゆれのタイミング
で回りだす。回転に変換した回転速度をもつ伝導プーリ
108〜111にベルト113を伝導して減速し下部回
転輪114を半回転、または一回転以上回す。本機の回
転に合致する周波数の選択は発振回路と増幅器をもつ制
御器で容易にできる。以上の実施例は推力の方向により
デューテ比の異なる場合について説明したが、往復運動
の両方向においてデューテ比の等しい場合についても本
発明は適用できるものである。
The rotation direction of the initial start position is determined by the position of the waveform of the electric signal, but the initial start position starts at the timing of the initial shake. The belt 113 is conducted to the transmission pulleys 108 to 111 having the rotational speed converted into the rotation to reduce the speed, and the lower rotary wheel 114 is rotated half a turn or one or more turns. The frequency matching the rotation of this machine can be easily selected by the controller having the oscillation circuit and the amplifier. Although the above embodiments have described the case where the duty ratio differs depending on the thrust direction, the present invention can be applied to the case where the duty ratio is the same in both directions of the reciprocating motion.

【0037】図14は請求項3に述べた直線往復運動の
推力が異なる力を摩擦シュー45によって回転円盤12
3を回す平面図で、図14aはf14a−f14aに沿
う断面図である。堅牢な一体型の箱120の内に請求項
1に示すリニア振動アクチュエータの推力軸16に駆動
軸44摩擦シュー45を取り付け固定する。回転機構の
回転円盤123とアイドラー124はベルト122によ
って連結駆動される。回転円盤123とアイドラー12
4の中間に位置したベルト122の内輪側に平板固定レ
ール121を設置し、その固定レール121のベルト1
22の上にあたる外輪側に直線往復運動の駆動摩擦シュ
ー45を置く。前記強い力の方向Fa5と弱い力の方向
Fb5との位置づれの原理でベルト122を駆動し回転
円盤123に直結された回転軸128を回す。直線往復
運動の異なる強い力の推力Fa5で、ある距離間進めて
小さな回転角に変位伝導させる。戻りの弱い力の推力F
b5は回転するベルト122を引き戻す距離が極小です
み摩擦シュー45がベルト122上の位置ずれの起す前
の原位置に戻る。1サイクルごとの位置づれは歩進角と
なって行われ一定方向の回転ができる。
FIG. 14 shows that the friction shoe 45 causes the rotating disk 12 to apply different thrust forces of the linear reciprocating motion described in claim 3.
14 is a plan view of turning 3 and FIG. 14a is a sectional view taken along line f14a-f14a. The drive shaft 44 and the friction shoe 45 are attached and fixed to the thrust shaft 16 of the linear vibration actuator according to the first aspect of the present invention, in the robust one-piece box 120. The rotating disk 123 and the idler 124 of the rotating mechanism are connected and driven by the belt 122. Rotating disk 123 and idler 12
The flat plate fixed rail 121 is installed on the inner ring side of the belt 122 located in the middle of the position 4 and the belt 1 of the fixed rail 121 is installed.
A drive friction shoe 45 of linear reciprocating motion is placed on the outer ring side which is above 22. The belt 122 is driven based on the principle of misalignment between the strong force direction Fa5 and the weak force direction Fb5 to rotate the rotating shaft 128 directly connected to the rotating disk 123. The thrust Fa5, which is a strong force having different linear reciprocating motions, advances for a certain distance to displace and transmit the displacement to a small rotation angle. Thrust F of weak return force
In b5, the distance for pulling back the rotating belt 122 is extremely small, and the friction shoe 45 returns to the original position before the displacement on the belt 122 occurs. Positioning for each cycle is performed as a step angle, and rotation in a fixed direction is possible.

【0038】図15は請求項3に述べた直線往復運動の
推力が異なる力を摩擦シュー45によって駆動角軸12
7を一定の直線運動をする側断面図をあらわす。堅牢な
箱125の内に請求項1に示すリニア振動アクチュエー
タの推力軸16に駆動軸44摩擦シュー45を取り付け
固定する。
In FIG. 15, the driving force of the friction shoe 45 is applied to the driving angular shaft 12 to apply different forces of the linear reciprocating motion described in claim 3.
7 is a side sectional view showing a constant linear motion of 7. The drive shaft 44 and the friction shoe 45 are attached and fixed to the thrust shaft 16 of the linear vibration actuator according to the first aspect of the present invention in the robust box 125.

【0039】摩擦シュー45と接触する駆動角軸127
の反対側の下部に適当に摩擦をもたせる平面帯の固定レ
ール126を敷き、直線往復運動の強い方向の推力Fa
6である距離間を進め伝導させる。戻りの弱い方向の推
力Fb6は駆動角軸127を引き戻す距離が極小ですみ
摩擦シュー45が位置づれの起す前の原位置の駆動角軸
127の上に戻る。1サイクルごとの位置づれは直進と
なって行われる。
Driving angular shaft 127 that contacts the friction shoe 45
A fixed rail 126, which is a flat belt that gives appropriate friction, is laid on the lower part on the opposite side of the rail, and the thrust Fa in the direction of strong linear reciprocating motion is
Propagate for a distance of 6 to conduct. The thrust Fb6 in the direction of weak return has a minimal distance to pull back the drive angle shaft 127, and returns to the original drive angle shaft 127 before the friction shoe 45 is displaced. Positioning for each cycle is performed straight ahead.

【0040】図16は平板上永久磁石2個をもつリニア
振動アクチュエータの側面図、図17は図16f17−
f17断面図である。平板ヨーク136に平板状永久磁
石133,134をスペース紙135を挟んで磁極性
N,Sと相互に吸引するように貼付し、平板ヨークを永
久磁石振れ防止ビス137のついた振動ベース146に
ネジどめ固定する。振動ベース146は、車輪139付
き可動子の鉄心130のレール兼用とし固定子永久磁石
面133,134と空隙を置いて設置する。可動子の鉄
心130に励磁コイル131が巻かれ、強い力を発生す
る励磁電流を与えると、仮に鉄心130の上にS極性の
有機磁束が働けば下はN極性となり永久磁石の磁束と反
発吸引作用が働いて永久磁石のS極性の方向に動く、そ
のときの推力Fa7=W/G×aKg(W=可動子の重
さKg、G=9.8m/sec重力単位、a=加速度
m/sec)を推力スクリュウ軸141、消音押さえ
ナット142、消音プッシュ143を通して振動受14
4に伝える。励磁コイル131に弱い励磁電流の向きが
反対に働くと鉄心130の下はS極性となり上はN極性
となって推力Fb7になって元の原位置に戻る。サイク
ルを繰り返す強い推力Fa7を消音プッシュ143を通
して振動受144に押圧し振動として振動受け固定スク
リュウ147によって止めた振動ベース146に伝え
る。振動ベース146を、振動を伝導することができる
堅い固体物の上に乗せ振動を与えると平板状な床の上を
滑りながら進んで行く。実効出力1.5Wで最大約1K
gの重さをゆっくりと前進させることができる。
FIG. 16 is a side view of a linear vibration actuator having two permanent magnets on a flat plate, and FIG. 17 is FIG.
It is f17 sectional drawing. The flat plate-shaped permanent magnets 133 and 134 are attached to the flat plate yoke 136 so that the magnetic poles N and S are attracted to each other with the space paper 135 interposed therebetween, and the flat plate yoke is screwed to the vibration base 146 with the permanent magnet shake prevention screw 137. Fix it. The vibration base 146 is also used as a rail of the iron core 130 of the mover with wheels 139 and is installed with a gap from the stator permanent magnet surfaces 133 and 134. When the exciting coil 131 is wound around the iron core 130 of the mover and an exciting current for generating a strong force is applied, if an organic magnetic flux of S polarity acts on the iron core 130, the lower magnetic pole becomes N polarity and repulsive attraction with the magnetic flux of the permanent magnet. Thrust Fa7 = W / G × aKg (W = mover weight Kg, G = 9.8 m / sec 2 gravity unit, a = acceleration m) / Sec 2 ) through the thrust screw shaft 141, the sound deadening holding nut 142, and the sound deadening push 143.
Tell 4. When the direction of the weak exciting current acts on the exciting coil 131 in the opposite direction, the lower part of the iron core 130 has the S polarity and the upper part has the N polarity, and the thrust Fb7 is returned to the original position. A strong thrust Fa7 that repeats the cycle is pressed against the vibration receiver 144 through the sound deadening push 143 and transmitted as vibration to the vibration base 146 stopped by the vibration receiver fixing screw 147. When the vibration base 146 is placed on a solid solid material capable of conducting vibration and is given vibration, the vibration base 146 slides on a flat floor. Up to approximately 1K with an effective output of 1.5W
The weight of g can be slowly advanced.

【0041】つぎに図18〜23について説明する。図
18〜23は外部往復振動力で発電する方法を示し、図
7の方法を改良したものである。
18 to 23 will be described below. 18 to 23 show a method of generating power by an external reciprocating vibration force, which is an improvement of the method of FIG. 7.

【0042】外部往復振動力で発電する方法は磁界が固
定で導体を直角に運動させるか、導体を固定にし磁界を
直角に運動させるか二つの方法があると考えられる。ま
た実際に回転によって磁界を直角に切る具体的実施例は
多数見られるが、歩く振動力、自動車の機械的振動力な
どによる往復運動発電作用は見られない。
It is considered that there are two methods for generating electric power by the external reciprocating vibration force, that is, the magnetic field is fixed and the conductor is moved at a right angle, or the conductor is fixed and the magnetic field is moved at a right angle. Although many concrete examples of actually cutting the magnetic field at right angles by rotation are found, no reciprocating motion power generation action by walking vibration force, mechanical vibration force of automobile, etc. is seen.

【0043】図18は可動子の鉄心の一部を開いて発電
するリニア振動アクチュエータ断面図、図19は側面図
である。図20はさらに別な磁路構造をもつ断面図、図
21は側面図。永久磁石153,154のもつ総磁束の
磁力を効率よく働かせる方法として、励磁コイル151
に直角に交差する磁界の通る鉄心150の一部分を切り
開き、鉄心150を開路した断面と永久磁石153,1
54面とに空隙を施工し、外力による振動で永久磁石磁
界の揺れ、または励磁コイル151の揺れで永久磁石1
53,154の総磁束を効率よく捕捉し交番発電の電位
を高めるリニア振動アクチュエータである。
FIG. 18 is a sectional view of a linear vibration actuator for generating electric power by opening a part of the iron core of the mover, and FIG. 19 is a side view. 20 is a sectional view having another magnetic path structure, and FIG. 21 is a side view. As a method of efficiently operating the magnetic force of the total magnetic flux of the permanent magnets 153 and 154, the exciting coil 151
A part of the iron core 150 through which a magnetic field crossing at right angles to the
A gap is formed on the 54th surface, and the permanent magnet magnetic field shakes due to the vibration due to the external force, or the exciting coil 151 shakes to cause the permanent magnet 1 to move.
This is a linear vibration actuator that efficiently captures the total magnetic flux of 53, 154 and raises the potential of alternating power generation.

【0044】図20は更に別な構造をもつ断面図で、発
電する電位は鉄心160と永久磁石163の極性と向き
合うN,Sのどちらにおいても相当する脈流電圧が発生
する。また可動子160、励磁コイル161、が固定
で、永久磁石163側が可動子になる別な実施例の図で
ある。図18においても永久磁石153,154が可動
子に施工され鉄心150が固定でも同じことになる。
FIG. 20 is a cross-sectional view having still another structure, in which the generated electric potential generates a corresponding pulsating voltage in both N and S facing the polarities of the iron core 160 and the permanent magnet 163. FIG. 16 is a diagram of another embodiment in which the mover 160 and the exciting coil 161 are fixed, and the permanent magnet 163 side is the mover. Also in FIG. 18, the same applies when the permanent magnets 153 and 154 are installed on the mover and the iron core 150 is fixed.

【0045】図22は更に別な構造をもつ断面図で、中
心に空孔をもつ励磁コイル170は永久磁石173と空
隙をおいて直角に絶縁ボビン172に巻かれ、間に磁性
パイプ177を置く。その中心に永久磁石173の左右
N,Sに磁化された磁束をもつ永久磁石173を揺動軸
176に取り付け外部の力で振動し交番発電をする。図
23は図22の側面図である。
FIG. 22 is a sectional view showing another structure. An exciting coil 170 having a hole at the center is wound around an insulating bobbin 172 at a right angle with a permanent magnet 173 and a magnetic pipe 177 is placed therebetween. . A permanent magnet 173 having magnetic fluxes magnetized to the left and right N and S of the permanent magnet 173 is attached to the center of the permanent magnet 173, and the permanent magnet 173 is attached to the swing shaft 176 to vibrate by an external force to generate alternating power generation. FIG. 23 is a side view of FIG.

【0046】何れも外部の力によって磁界が振動し発電
する仕組みは同じである。と同時に外部より励磁コイル
151,161,170に発振回路と増幅器を持ち波形
デューテ比が等しいか、あるいは波形デューテ比の違う
交番電圧と正負の電位が違い、左右直線往復運動の推力
が異なる制御回路を有することによって小型のリニア振
動アクチュエータにすることができる。
The mechanism for generating electric power by vibrating the magnetic field by an external force is the same in both cases. At the same time, a control circuit having an oscillation circuit and an amplifier in the exciting coils 151, 161, 170 from the outside and having the same waveform duty ratio, or different alternating voltage and positive and negative potentials having different waveform duty ratios and different thrusts of right and left linear reciprocating motions By having, the small linear vibration actuator can be obtained.

【0047】 次に図24は直線往復電動鋸応用平断面
図で図25は正面図について説明する。図22で説明し
た中心に空孔をもつ磁性パイプ181に直角に固定子A
コイル180、固定子Bコイル203を絶縁ボビン18
4に巻回し、磁性パイプ内にさらに樹脂スリーブ182
をもち可動子の鉄心軸187の滑りを滑らかにし、2本
の長軸固定タイロット191,192の中央に固定子
A,Bコイルユニット180,203を置き衝撃緩衝材
202のついたタイロット固定板193、スクリューナ
ット194で組立て固定子を構成する。可動子の鉄製作
用軸187の両端に永久磁石188,189の同極性
S,SまたはN,Nの面を合わせて磁石固定鉄板19
0,195でとめ作用軸に永久磁石の磁界をもたせる。
Next, FIG. 24 is a plan view of a linear reciprocating electric saw application, and FIG. 25 is a front view. The stator A perpendicular to the magnetic pipe 181 having a hole in the center described in FIG.
Insulating bobbin 18 with coil 180 and stator B coil 203
4 and the resin sleeve 182 inside the magnetic pipe.
The movable body has an iron core shaft 187 that slides smoothly, the stator A and B coil units 180 and 203 are placed at the center of the two long-axis fixed tie lots 191 and 192, and the tie lot fixing plate 193 with the shock absorbing material 202 is provided. The screw nut 194 is assembled to form a stator. The magnet fixed iron plate 19 is prepared by aligning the surfaces of the permanent magnets 188, 189 having the same polarity S, S or N, N with both ends of the iron manufacturing shaft 187 of the mover.
At 0,195, the magnetic field of the permanent magnet is given to the closing shaft.

【0048】 固定子Aコイル180に極低周波の励磁
電流をあたえ、仮に正電位をあたえると符号Aの方向に
N極性の磁界が発生するとし可動子の鉄製作用軸187
はコイルの有機磁界との吸引、反発作用が働き、同様に
先端に貼付した永久磁石188,189との吸引および
反発作用によって推力Fa8は矢印←の方向に発生し可
動子が左の空間を移動する。移動する距離は正電位また
は負電位の位相角180°の時間tsecに関係し長い
時間であれば衝撃緩衝材202にあたり止る。固定子A
コイル180の励磁電流が負電位に位相が進むと符号B
位置の磁界はN極性の磁界となり推力Fb8は矢印→の
方向に可動子が右の空間を移動する。
When an extremely low frequency exciting current is applied to the stator A coil 180 and a positive potential is applied, a magnetic field of N polarity is generated in the direction of the symbol A, and the iron manufacturing shaft 187 of the mover.
Attracts and repels the organic magnetic field of the coil, and similarly thrusts and repels the permanent magnets 188 and 189 attached to the tip to generate thrust Fa8 in the direction of arrow ←, and the mover moves in the left space. To do. The moving distance is related to the time tsec of the phase angle of 180 ° of the positive potential or the negative potential, and if it is a long time, it hits the shock absorbing material 202 and stops. Stator A
When the exciting current of the coil 180 advances in phase to a negative potential, the sign B
The magnetic field at the position becomes an N-polar magnetic field, and the thrust Fb8 causes the mover to move in the right space in the direction of arrow →.

【0049】 固定子Bコイル203は制動用とし可動
子が走り移動する時に伴う慣性作用による行き過ぎによ
る位置ずれをおさえるブレーキ作用とし適時固定子Aコ
イル180に励磁する電流と逆極性の励磁電流として固
定子Bコイル203に与え位置制御の精度を高め信頼性
をもたせ、繰り返し運動の制御回路は前記請求項1記載
の制御手段を用いる。
The stator B coil 203 is for braking, and has a braking action that suppresses positional deviation due to overshoot due to inertial action that occurs when the mover runs and moves, and is fixed as an exciting current having a polarity opposite to that of the current exciting the stator A coil 180 at appropriate times. The control circuit according to claim 1 is used as the control circuit for the repetitive movement, which is applied to the secondary B coil 203 to enhance the accuracy of the position control and provide reliability.

【0050】 また作用軸187を固定レールとし、可
動子をAコイル180、Bコイル203にし、前記と逆
な使用方法もできる。移動距離の長い場合は作用軸18
7の自重が重くなり駆動するエネルギーが大となりコイ
ル励磁電流が大となって不都合が多くなる。固定レール
との摩擦抵抗の少ない車輪を用いて比較的軽いA,Bコ
イルを可動子に選択することによって用途の広がりがあ
る。左右移動の距離と駆動トルクは永久磁石の選択と制
御回路の位相が進む時間tと供給電力を選定し設計すれ
ば負荷の大きいアクチュエーターを作ることが可能であ
る。
Further, the action shaft 187 may be a fixed rail and the mover may be the A coil 180 and the B coil 203. Action axis 18 when the travel distance is long
The self-weight of 7 becomes heavy, the driving energy becomes large, and the coil exciting current becomes large, which causes many inconveniences. The use of wheels having a small frictional resistance with the fixed rails and the selection of relatively light A and B coils for the mover can broaden the application. It is possible to make an actuator with a large load by designing the distance of left and right movement and the driving torque by selecting the permanent magnet, the time t during which the phase of the control circuit advances and the supply power.

【0051】制動機能を持つ直線運動往復可動子は計測
表示としての電位偏差信号値に信頼度の高い動きをする
ことができる。図28−図29は簡易木工具として可動
子の片面に糸鋸刃200、受け金198、テンションね
じ197、螺ナット199を取り付け、直線往復運動作
用の電動鋸にした応用例である。
The linear motion reciprocating mover having a braking function can make a reliable movement for the potential deviation signal value as a measurement display. 28 to 29 show an application example in which a wire saw blade 200, a backing plate 198, a tension screw 197, and a screw nut 199 are attached to one surface of a mover as a simple wood tool to form a linear reciprocating electric saw.

【0052】次に図26は足マッサージ応用平面図で、
図27は正面図である。基台219に請求項2のリニア
振動アクチュエーターを基台中央に置き、二つの細孔を
もつ手動エアーポンプ211,213を置いてシリンダ
ー軸212,214をリニア振動アクチュエーター器の
後部推力軸210bに掛け金215で連結し、前部には
木製圧球218、帯びバンド220をもつ組板217を
推力軸210aに取り付けた構造とし、電源の無い時
は、永く寝たきりでいる人の衰弱していく下半身のトレ
ーニング機構とし、エアーポンプの直線往復運動はシリ
ンダーの細孔より空気の吸気、排気の作用を伴い同時に
人の足に適切な荷重を足の伸縮作用に従い与え、寝たき
りでいる人の体力維持運動をおこなえる付属機能をも
ち、また病人自身の不安は心身のストレスとなり、その
ストレスを和らげるマッサージ機能をも持つことで介護
の助けになる。
Next, FIG. 26 is a plan view of a foot massage application.
FIG. 27 is a front view. The linear vibration actuator of claim 2 is placed on the base 219 at the center of the base, manual air pumps 211 and 213 having two pores are placed, and the cylinder shafts 212 and 214 are latched to the rear thrust shaft 210b of the linear vibration actuator unit. The structure is such that a thrust plate 210a is attached to the thrust shaft 210a with a wooden pressure ball 218 and a band 220 attached to the front part of the lower body of a person who is bedridden for a long time. As a training mechanism, the linear reciprocating motion of the air pump accompanies the intake and exhaust of air from the pores of the cylinder, and at the same time, applies an appropriate load to the human foot according to the expansion and contraction of the foot to maintain the physical strength of the bedridden person. It has ancillary functions that can be performed, and the anxiety of the sick person becomes stress of the body and mind, and also has a massage function to relieve the stress. In to help the long-term care.

【0053】マッサージ機能の場合は掛け金215をエ
アーシリンダー軸より掛け金の連結をはずし、リニア振
動アクチュエーター210の可動子に励磁する制御電源
は商用周波数以下の低周波発振回路をもつ増幅器で、容
易に直線往復運動の推力が発生し、足裏に微振動から適
切な荷重をもつ振動の範囲まで得られ、適度なマッサー
ジ効果をバンド220をはずした足裏の圧球より伝導で
感触し病人のストレスが和らぐ介護の助けになる。
In the case of the massage function, the latch 215 is disengaged from the air cylinder shaft, and the control power source for exciting the mover of the linear vibration actuator 210 is an amplifier having a low frequency oscillating circuit of a commercial frequency or less, so that it can be easily linearized. The thrust of reciprocating motion is generated, and it is possible to obtain from the slight vibration on the sole of the foot to the range of the vibration with an appropriate load, and the appropriate massage effect is felt by conduction from the pressure ball on the sole of the foot without the band 220, and the stress of the sick person Helps to ease care.

【0054】次に図28は簡易小型リニア振動アクチュ
エーター断面図、図29は正面図である。前記記載した
図22、図23の改良型で、中空状の磁性パイプ223
の外径より外側に絶縁ボビン222を置き固定子コイル
221を巻く、磁性パイプ223と直角に巻回するコイ
ル長は磁性パイプ223より長尺に巻かれ、その内側に
可動子とする振動ハンマー228を貼付した可動子棒状
永久磁石227を自在に動くように包含し直線運動作用
の空間をもつ非磁性材のホルダー224を組み、先端に
可動子直線運動作用の空間を保持して非磁性材スペース
片226、磁性鉄栓225を付けて構成したものであ
る。
Next, FIG. 28 is a sectional view of a simple small linear vibration actuator, and FIG. 29 is a front view. 22 and 23 described above, a hollow magnetic pipe 223 of the improved type.
An insulating bobbin 222 is placed on the outer side of the outer diameter of the stator coil 221, and a coil length of the stator coil 221 wound at a right angle to the magnetic pipe 223 is longer than that of the magnetic pipe 223. A holder 224 made of a non-magnetic material that includes a mover rod-shaped permanent magnet 227 to which is attached so as to move freely and has a space for a linear motion action is attached, and a space for a linear motion action of a mover is held at a tip end of the non-magnetic material space. It is configured by attaching a piece 226 and a magnetic iron plug 225.

【0055】固定子コイル221が励磁されるコイル内
径に発生する有機磁界と永久磁石磁界との吸引および反
発作用が直接的に作用し直線往復運動の移動の距離が大
きくなり可動子のハンマー推力も大なるものになる。励
磁電流の大なる傾向をおさえるために固定子コイル22
1内径の先端に磁性鉄栓225を置いて可動子の吸引力
をつけ励磁電流を比較的小さくおさえることができる。
励磁する制御回路は商用周波数以下の低周波電流で低周
波発振回路と増幅器をもち波形デューテ比が等しいか、
または波形デューテ比の違う交番電圧をあたえ正負の電
位も違えて励磁すると推力Fa9,Fb9の違いが発生
し狭い空間を前記記載した振動による位置のづれによっ
て一方向に進みだすこともできる。
The attraction and repulsion of the organic magnetic field and the permanent magnet magnetic field generated in the inner diameter of the stator coil 221 that is excited by the stator coil 221 directly act to increase the distance of the linear reciprocating motion, and also the hammer thrust of the mover. It will be great. In order to suppress the large tendency of the exciting current, the stator coil 22
A magnetic iron plug 225 can be placed at the tip of the inner diameter of 1 to apply an attracting force to the mover to keep the exciting current relatively small.
The excitation control circuit has a low-frequency current below the commercial frequency and has a low-frequency oscillation circuit and an amplifier, and the waveform duty ratio is the same,
Alternatively, when an alternating voltage having a different waveform duty ratio is applied and the positive and negative potentials are also different to excite, a difference in thrust Fa9 and Fb9 occurs, and the narrow space can be advanced in one direction by the positional deviation due to the vibration described above.

【0056】つぎに図30多列小型リニア振動アクチュ
エーター断面図、図31は平面図である。前記簡易小型
リニア振動アクチュエーターの一組233にスプリング
234、座金235を加え、線対称の関係に一直線に偶
数組配置して収納箱231に組、配線基盤232よりそ
れぞれの固定子コイルに配線される。本機の特徴は固定
子コイルに独立したプログラムコンピュータのソフト電
気制御信号によって一直線上の任意な位置に直線往復ハ
ンマー作用を行なうことができる。例えば印字作業等の
機器要素として押す引くことによる作業は数多くみるこ
とができる。また点作業要素から面作用要素に展開がで
きその効果は多く持ち、部品要素が比較的単純で安価に
構成される。
Next, FIG. 30 is a sectional view of a multi-row small linear vibration actuator, and FIG. 31 is a plan view. A spring 234 and a washer 235 are added to a set 233 of the simple small linear vibration actuators, an even number of sets are arranged in a straight line in a linearly symmetrical relationship, and the sets are assembled in a storage box 231 and wired to respective stator coils from a wiring board 232. . The feature of this machine is that the linear reciprocating hammer action can be performed at an arbitrary position on a straight line by the soft electric control signal of the program computer independent of the stator coil. For example, a lot of work such as printing work by pushing and pulling as a device element can be seen. Further, the point work element can be expanded to the surface action element, and its effect is large, and the component elements are relatively simple and inexpensive.

【0057】次に図32は前記請求項14に述べた水平
用電動簡易鋸の左右直線往復運動の推力が異なる力を使
用した構造を斜面または垂直の上下運動作用にした改良
で、可動子全体の自重と負荷過重を加えた重さを制動用
小型永久磁石264を貼付したバランスウエイト251
で吊りあいをとり、ガイド軸252に沿う上下運動を容
易にするエレベーター機構を持ち人間の指で名手がピア
ノを演奏するのに相当する動く速度、あるいはバイオリ
ンを演奏する腕の動きに相当する限定内での不連続な振
幅巾と不連続に動く速度を再生する高速リニア振動アク
チュエータ竪断面図で、図33は図32のf9−f10
に沿う断面図である。
Next, FIG. 32 shows an improvement of the structure in which the horizontal electric reciprocating saw has different thrust forces in the right and left linear reciprocating motions as described in claim 14 into a slanting or vertical up and down motion. Balance weight 251 to which a small permanent magnet 264 for braking is attached
With an elevator mechanism that facilitates vertical movement along the guide shaft 252, the movement speed is equivalent to that of a virtuoso playing a piano with a human finger, or a limit equivalent to the movement of an arm playing a violin. 33 is a vertical cross-sectional view of a high-speed linear vibration actuator for reproducing a discontinuous amplitude width and a discontinuous moving speed in the inside, and FIG. 33 shows f9-f10 in FIG.
FIG.

【0058】従来の上下駆動は空気圧、油圧、モーター
スクリュー、ワイヤー回転ドラム、ギヤーとラック等で
一定の低速度で行なうことが一般的である。負荷を下に
さげる場合は重力が下向きにかかっているので比較的ぎ
が小さくてする場合が多いと考えられる。負荷を上に
あげる場合エネルギーが大となる。
Conventional vertical drive is generally carried out at a constant low speed using air pressure, hydraulic pressure, a motor screw, a wire rotating drum, a gear and a rack and the like. When lowering the load, gravity is applied downward, so it is often considered that the grip is relatively small. When the load is increased, the energy becomes large.

【0059】本器の特徴は低負荷荷重の上下移動も行な
えるが不連続に変化する電気信号の振幅巾とその速度を
再生することを重点にした機器で、人間の感性と同じ速
度変化を高速で応答することができ、バランス機構と使
用目的によってはバランスウエイト251に貼付した制
動用小型永久磁石264と対面する鉄製ブレーキ板26
5と接触または負荷目的により非接触で使用し、適切な
制動機構を持つことによって完全駆動も行なえ、前記請
求項14に述べたと同様固定子永久磁石240,242
に追加して、磁性固定子作用軸250の端末に直角に巻
回した固定子直流励磁コイル241,243を設置し、
固定子作用軸250断面積の磁束密度B(wb/m
を高め、固定子永久磁石240,242と吸引する作用
方向に励磁する。
The feature of this device is that it can move up and down under a low load, but it focuses on reproducing the amplitude range and the speed of the electric signal that changes discontinuously. The iron brake plate 26 that can respond at high speed and faces the small braking permanent magnet 264 attached to the balance weight 251 depending on the balance mechanism and purpose of use.
5 can be used in contact or non-contact depending on the purpose of loading, and can also be fully driven by having an appropriate braking mechanism, and the stator permanent magnets 240 and 242 are similar to those described in claim 14.
In addition to the above, the stator DC exciting coils 241 and 243 wound at right angles to the end of the magnetic stator working shaft 250 are installed,
Magnetic flux density B (wb / m 2 ) of the stator working axis 250 cross-sectional area
Is increased and the stator permanent magnets 240 and 242 are excited in the direction of attraction.

【0060】固定子直流励磁コイル241,243の磁
極性は、固定子作用軸250両端に極性記号S,Sある
いはN,Nに向きあわせる方向の直流電流にて励磁す
る。
The magnetic poles of the stator DC excitation coils 241 and 243 are excited by a DC current in the direction facing the polarity symbols S, S or N, N at both ends of the stator working shaft 250.

【0061】可動子コイル246に正電位電圧を与える
と仮に矢印↑推力Fa10となって上に動くとすれば、
ワイヤー253で接続された制動用小型永久磁石264
を貼付したバランスウエイト251は矢印↓推力Fa1
1となって下向きに動き、負電圧に位相が進むと矢印↓
Fb10の推力となって可動子コイル246が下向きに
動き、同じくバランスウエイト251は矢印↑Fb11
となって動く。
If a positive potential voltage is applied to the mover coil 246, it becomes an arrow ↑ thrust Fa10 and moves upward.
Small braking permanent magnet 264 connected by wire 253
The balance weight 251 attached with the arrow indicates the arrow ↓ Thrust Fa1
It becomes 1 and moves downward, and when the phase advances to negative voltage, an arrow ↓
As a result of the thrust of Fb10, the mover coil 246 moves downward, and the balance weight 251 also shows an arrow ↑ Fb11.
Moves.

【0062】推力の等しい交番電圧波形か、あるいは推
力の異なる波形デューテ比の違う交番電圧を可動子コイ
ル246a、制動コイル246b(逆極性に負荷変動適
時印加)に与えると誘導発生する加速度が等しいか、あ
るいは加速度の異なる違いが生まれ、仮に推力Fa10
>Fb10とすれば前記記載した位置づれが一サイクル
ごとに発生して一方向に可動子全体が動く。可動子全体
の自重によって振動しながら一方向に動く最大エネルギ
ーの共震周波数は異なるが直流電圧、波形の等しい低周
波交番電圧、波形デューテの違う低周波交番電圧、パル
ス電圧等いずれにおいても振幅駆動ができ、交番電圧に
近い程省電力で稼働する。用途に応じて経済性の良い制
御電源の選択も考えることができる。上下往復運動の力
の作用を高速リニア振動アクチュエータとして応用でき
る。
If alternating voltage waveforms with the same thrust force or waveforms with different thrust forces and alternating voltages with different duty ratios are applied to the mover coil 246a and the braking coil 246b (the load polarity is applied to the opposite polarity in a timely manner), the accelerations induced are the same. , Or a difference in acceleration is created, and the thrust Fa10
If> Fb10, the positional deviation described above occurs every cycle and the entire mover moves in one direction. The co-seismic frequency of the maximum energy that moves in one direction while vibrating due to the weight of the entire mover is different, but the amplitude is driven by DC voltage, low frequency alternating voltage with the same waveform, low frequency alternating voltage with different waveform duty, pulse voltage, etc. Can be achieved, and the closer to the alternating voltage, the more power-saving it operates. It is also possible to consider the selection of a control power supply with good economy according to the application. The action of vertical reciprocating force can be applied as a high-speed linear vibration actuator.

【0063】[0063]

【発明の効果】直線上一方向だけに運動乃至力を得れば
よい機器に適用して、消費電力に比し、効率よい出力が
得られる。
EFFECTS OF THE INVENTION The present invention can be applied to a device that requires movement or force only in one direction on a straight line, and an efficient output can be obtained in comparison with power consumption.

【0064】構造上振動共振が可能であり、外部の振動
を吸収して、容易に整流電力を蓄え、直流電力源として
利用することが可能である。
Structurally, vibration resonance is possible, external vibration is absorbed, rectified power can be easily stored, and it can be used as a DC power source.

【図面の簡単な説明】[Brief description of drawings]

【図1】a.本発明に係わるリニア振動アクチュエータ
と一部断面図とした側面図、 b.可動子の斜視図、
FIG. 1 a. A linear vibration actuator according to the present invention and a side view, partly in section, b. Perspective view of mover,

【図2】図1aのf2−f2に沿い一部断面図とした立
面図、
FIG. 2 is an elevational view, partly in section, taken along f2-f2 of FIG. 1a,

【図3】a.本発明に係かる制御回路の出力電圧波形の
一例、 b.本発明に係かる制御回路の出力電圧波形の他の例、
FIG. 3 a. An example of an output voltage waveform of the control circuit according to the present invention, b. Another example of the output voltage waveform of the control circuit according to the present invention,

【図4】本発明に係わる別の実施例の動作概要を示す平
面図、
FIG. 4 is a plan view showing an operation outline of another embodiment according to the present invention,

【図5】図4の補足的図面である側面図、5 is a side view, which is a supplementary drawing of FIG. 4;

【図6】a.本発明の更に別の実施例で、摩擦シューを
穿いた駆動軸を有する場合の説明図、 b.摩擦シュー部分の拡大断面図、
FIG. 6: a. Explanatory drawing in the case of having a drive shaft with a friction shoe drilled in another embodiment of the present invention, b. Enlarged sectional view of the friction shoe part,

【図7】本発明の更に別の実施例で、電源として利用さ
れる場合の説明図、
FIG. 7 is an explanatory view of the case of being used as a power source in still another embodiment of the present invention,

【図8】請求項5記載のリニア振動アクチュエータの側
面図、
FIG. 8 is a side view of the linear vibration actuator according to claim 5;

【図9】同じく回転機構の平面図、FIG. 9 is a plan view of the rotation mechanism,

【図10】同じく回転機構部の拡大姿図、FIG. 10 is an enlarged view of the rotation mechanism section,

【図11】請求項6記載のリニア振動アクチュエータの
平面図、
FIG. 11 is a plan view of the linear vibration actuator according to claim 6;

【図12】同じく直線往復運動の推力を回転力に変換す
る説明図、
FIG. 12 is an explanatory view of converting thrust of linear reciprocating motion into rotational force,

【図13】従来例の説明図、FIG. 13 is an explanatory view of a conventional example,

【図14】a.本発明の摩擦シューを取り付けた更に別
の実施例で、摩擦シューで回転円盤を回す請求項7の平
面図、 b.同じく図14のf14b−f14bに沿う回転円盤
の断面図、
FIG. 14 a. In yet another embodiment equipped with the friction shoe of the present invention, a plan view of claim 7 in which the rotating disk is rotated by the friction shoe, b. Similarly, a cross-sectional view of the rotating disk along f14b-f14b in FIG.

【図15】本発明の摩擦シューを取り付けた更に別の実
施例で、摩擦シューで駆動角軸を直線運動する側断面
図、
FIG. 15 is a side sectional view of a friction shoe according to still another embodiment of the present invention, in which the drive angular axis is linearly moved by the friction shoe.

【図16】本発明の可動子振動を直接固定子に伝導する
側面図、
FIG. 16 is a side view in which the mover vibration of the present invention is directly transmitted to the stator;

【図17】同じく図16のf5−f6に沿う断面図、17 is a sectional view taken along line f5-f6 of FIG.

【図18】外部の振動力によって発電する別なリニア振
動アクチュエータ断面図、
FIG. 18 is a sectional view of another linear vibration actuator that generates electric power by an external vibration force,

【図19】図18の側面図、FIG. 19 is a side view of FIG.

【図20】外部の振動力によって発電する更に別なリニ
ア振動アクチュエータ断面図、
FIG. 20 is a sectional view of yet another linear vibration actuator that generates electric power by an external vibration force.

【図21】図20の側面図、21 is a side view of FIG. 20,

【図22】外部の振動力によって発電する更に別なリニ
ア振動アクチュエータ断面図、
FIG. 22 is a sectional view of yet another linear vibration actuator that generates electric power by an external vibration force;

【図23】図22の側面図、23 is a side view of FIG. 22,

【図24】プランジャー型リニア振動アクチュエーター
平断面図、
FIG. 24 is a plane sectional view of a plunger type linear vibration actuator,

【図25】図24の正面図、FIG. 25 is a front view of FIG.

【図26】足運動トレイニング機能付属足マッサージ応
用器平面図、
FIG. 26 is a plan view of a foot massager applied with a foot exercise training function,

【図27】図26の正面図、27 is a front view of FIG. 26,

【図28】簡易小型リニア振動アクチュエーター断面
図、
FIG. 28 is a sectional view of a simple small linear vibration actuator,

【図29】図28の正面図、29 is a front view of FIG. 28,

【図30】多列小型リニア振動アクチュエーター断面
図、
FIG. 30 is a cross-sectional view of a multi-row small linear vibration actuator,

【図31】図30の平面図、31 is a plan view of FIG. 30,

【図32】簡易リフター縦断面図、FIG. 32 is a vertical cross-sectional view of a simple lifter,

【図33】同じく図32のf9−f10に沿う断面図、FIG. 33 is a sectional view taken along line f9-f10 of FIG. 32,

【符号の説明】[Explanation of symbols]

(図1−7)1,2,3,4,SMg1,1a,SMg
2,2a、SMg3,3a,SMg4,4a:永久磁
石、5:鉄心、6:励磁コイル、7:固定枠、8:車
輪、9,46:車幅、10:スペースカラー、11,2
1:レール基台、12,13,22:ヨーク、14:ネ
ジ、15:スペースカラー、16,27:作用軸、1
7,23:外部端子、24:ゴム脚、25,26:リン
ク枠、28,31:正面板、29:軸、32:上カバ
ー、30,33:側カバー、34:底板、36,37:
コイル(図13)、38:振動鉄心(図13)、39:
推力ロット(図13)、40:絶縁コイルボビン、4
1:整流器、42:コンデンサ、43:L型金具、4
4:駆動軸、45:摩擦シュー、46:車輪、 (図8〜12)47:電磁コイル、48:電磁ヨーク、
49:軸受け、50:スプリング、51:軸受け金具、
52:調整ナット、53:締め付けナット、54:伝導
リング、55:連結軸、56:ロットエンド軸受け、5
7:連結軸、58:クランクピン、59:クランクアー
ム、60:回転軸、61:回転ドラム、62:軸受け
台、63:ベアリング、64:架台、101,101
a:連結ピン、102,102a:ロットエンド、10
3,103a:連結軸、104,104a:クランクピ
ン、105,105a:クランクアーム、106:軸受
台、17:回転軸、108,109,110,111:
伝導プーリ、112,113:ベルト、114:回転
輪、 (図14,15)120:堅牢な箱、121:固定レー
ル、122:ベルト、123:回転円盤、124:アイ
ドラー、125:堅牢な箱、126:固定レール、12
7:駆動角軸、128:回転軸、129:ベアリング、 (図16−17a)130:可動子鉄心、 131:励
磁コイル、132:絶縁ボビン、133,134:永久
磁石、135:スペース紙、136:平板ヨーク、13
7:永久磁石固定ビス、138:可動子架台、139:
車輪、140:鉄心連結バー、141:推力スクリュウ
軸、142:消音押さえナット、143:消音プッシ
ュ、144:振動受け、145:プリント基盤、14
6:固定子振動ベース、147:振動受け固定スクリュ
ウ、148:固体物、149:車輪軸。 (図18−23)150:可動鉄心、151:励磁コイ
ル、152:絶縁ボビン、153,154:永久磁石、
155:ヨーク、156:非磁性材可動子軸、157:
回転リング、158:回転リング固定枠(非磁性材)、
160:可動鉄心、161:励磁コイル、162:絶縁
ボビン、163:永久磁石、164:レール、165:
ヨーク、166:車輪、167:車輪固定台(非磁性
材))、170:励磁コイル、171:コイル端子、1
72:絶縁ボビン、173:永久磁石、174:固定枠
(非磁性材)、175:軸、176:磁石固定軸、17
7:磁性パイプ。 (図24−31)180:固定子Aコイル、203:固
定子B制動コイル、185,186:Aコイル端子、2
04,205:B制動コイル、181,223:磁性パ
イプ、183:絶縁材、184,222:絶縁ボビン、
182:非磁性スリーブ、185,230:端子、18
7:鉄製作用軸、188,189,227:可動子永久
磁石、190,195:磁石固定鉄板、196:ビス、
197,198:鋸刃取り付け金具、199:蝶ナッ
ト、200:鋸刃、191,192:固定タイロット、
193:タイロット固定板、194:ナット、201:
コイル固体板、202:衝撃緩衝材、210:リニア振
動アクチュエーター、210a,210b:推力軸、2
11,213:エアーシリンダー、215:掛け金、2
16:ナット、217:取り付け金具、212,21
4:エアーシリンダー軸、218:木製圧球、219:
基台、220:バンド、225:鉄栓、226:スペー
ス片、230:簡易小型リニア振動アクチュエーター、
231:多列ホルダー、232:多列配線基盤、23
4:スプリング、235:座板。 (図32−33)240,242:固定子永久磁石、2
41,243:固定子直流励磁コイル、244:磁性パ
イプ、245:絶縁ボビン、246a,246b:可動
子コイル、247:可動子フレーム、248:車輪、2
49:隔壁、250:固定子作用軸、251:バランス
ウエイト、252:ガイド軸、253:接続ワイヤー、
254:プーリ、255:ヨーク板、256:レール、
257:カバー、258:車軸、259:プーリ軸、2
60:負荷接続子、261:プーリ軸固定板、262:
ガイド軸固定板、263:コイルリード、264:制動
用小型永久磁石、265:鉄性ブレーキ板。
(Fig. 1-7) 1,2,3,4, SMg1,1a, SMg
2, 2a, SMg3, 3a, SMg4, 4a: Permanent magnet, 5: Iron core, 6: Excitation coil, 7: Fixed frame, 8: Wheel, 9,46: Vehicle width, 10: Space collar, 11,2
1: Rail base, 12, 13, 22: Yoke, 14: Screw, 15: Space collar, 16, 27: Working axis, 1
7, 23: External terminal, 24: Rubber leg, 25, 26: Link frame, 28, 31: Front plate, 29: Shaft, 32: Top cover, 30, 33: Side cover, 34: Bottom plate, 36, 37:
Coil (Fig. 13), 38: Vibrating iron core (Fig. 13), 39:
Thrust lot (Fig. 13), 40: Insulated coil bobbin, 4
1: rectifier, 42: capacitor, 43: L-shaped metal fitting, 4
4: drive shaft, 45: friction shoe, 46: wheel, (FIGS. 8 to 12) 47: electromagnetic coil, 48: electromagnetic yoke,
49: Bearing, 50: Spring, 51: Bearing bracket,
52: adjusting nut, 53: tightening nut, 54: conductive ring, 55: connecting shaft, 56: lot end bearing, 5
7: connecting shaft, 58: crank pin, 59: crank arm, 60: rotating shaft, 61: rotating drum, 62: bearing base, 63: bearing, 64: frame, 101, 101
a: connecting pin, 102, 102a: lot end, 10
3, 103a: connecting shaft, 104, 104a: crank pin, 105, 105a: crank arm, 106: bearing stand, 17: rotating shaft, 108, 109, 110, 111:
Transmission pulleys 112, 113: belts, 114: rotating wheels, (FIGS. 14 and 15) 120: solid box, 121: fixed rails, 122: belt, 123: rotating disk, 124: idler, 125: solid box, 126: fixed rail, 12
7: drive angle axis, 128: rotation axis, 129: bearing, (FIGS. 16-17a) 130: mover iron core, 131: exciting coil, 132: insulating bobbin, 133, 134: permanent magnet, 135: space paper, 136 : Flat plate yoke, 13
7: Permanent magnet fixing screw, 138: Movable stand, 139:
Wheels, 140: iron core connecting bar, 141: thrust screw shaft, 142: sound deadening holding nut, 143: sound deadening push, 144: vibration receiver, 145: printed board, 14
6: Stator vibration base, 147: Vibration receiving fixed screw, 148: Solid material, 149: Wheel shaft. (Fig. 18-23) 150: movable iron core, 151: exciting coil, 152: insulating bobbin, 153, 154: permanent magnet,
155: Yoke, 156: Non-magnetic material mover shaft, 157:
Rotating ring, 158: rotating ring fixed frame (non-magnetic material),
160: movable iron core, 161: exciting coil, 162: insulating bobbin, 163: permanent magnet, 164: rail, 165:
Yoke, 166: Wheel, 167: Wheel fixing base (non-magnetic material), 170: Excitation coil, 171: Coil terminal, 1
72: insulating bobbin, 173: permanent magnet, 174: fixed frame (non-magnetic material), 175: shaft, 176: magnet fixed shaft, 17
7: Magnetic pipe. (Fig. 24-31) 180: Stator A coil, 203: Stator B braking coil, 185, 186: A coil terminal, 2
04,205: B braking coil, 181,223: magnetic pipe, 183: insulating material, 184, 222: insulating bobbin,
182: non-magnetic sleeve, 185, 230: terminal, 18
7: Iron manufacturing shaft, 188, 189, 227: Mover permanent magnet, 190, 195: Magnet fixed iron plate, 196: Screw,
197, 198: Saw blade mounting bracket, 199: Wing nut, 200: Saw blade, 191, 192: Fixed tie lot,
193: Tylot fixing plate, 194: Nut, 201:
Coil solid plate, 202: shock absorbing material, 210: linear vibration actuator, 210a, 210b: thrust shaft, 2
11, 213: Air cylinder, 215: Hasp, 2
16: Nut, 217: Mounting bracket, 212, 21
4: Air cylinder shaft, 218: Wooden pressure ball, 219:
Base, 220: Band, 225: Iron stopper, 226: Space piece, 230: Simple small linear vibration actuator,
231: Multi-row holder, 232: Multi-row wiring board, 23
4: Spring, 235: Seat plate. (Fig. 32-33) 240, 242: stator permanent magnets, 2
41, 243: stator direct-current excitation coil, 244: magnetic pipe, 245: insulating bobbin, 246a, 246b: mover coil, 247: mover frame, 248: wheels, 2
49: partition wall, 250: stator working shaft, 251: balance weight, 252: guide shaft, 253: connecting wire,
254: pulley, 255: yoke plate, 256: rail,
257: cover, 258: axle, 259: pulley shaft, 2
60: load connector, 261: pulley shaft fixing plate, 262:
Guide shaft fixing plate, 263: coil lead, 264: small permanent magnet for braking, 265: iron brake plate.

【手続補正書】[Procedure amendment]

【提出日】平成5年6月11日[Submission date] June 11, 1993

【手続補正1】[Procedure amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0058[Correction target item name] 0058

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【0058】従来の上下駆動は空気圧、油圧、モーター
スクリュー、ワイヤー回転ドラム、ギヤーとラック等で
一定の低速度で行なうことが一般的である。負荷を下に
さげる場合は重力が下向きにかかっているので比較的エ
ネルギーが小さくすむ場合が多いと考えられる。負荷を
上にあげる場合エネルギーが大となる。 ─────────────────────────────────────────────────────
Conventional vertical drive is generally carried out at a constant low speed using air pressure, hydraulic pressure, a motor screw, a wire rotating drum, a gear and a rack and the like. When lowering the load, it is considered that gravity is applied downward, so that the energy can often be relatively small. When the load is increased, the energy becomes large. ─────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成5年7月20日[Submission date] July 20, 1993

【手続補正1】[Procedure amendment 1]

【補正対象書類名】図面[Document name to be amended] Drawing

【補正対象項目名】図18[Correction target item name] FIG.

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【図18】 FIG.

Claims (18)

【特許請求の範囲】[Claims] 【請求項1】 間隔をあけて平行に配置された磁路をな
す平板ヨーク上にそれぞれ2枚の平板状磁石を隣同志逆
極性に並べて貼付し、また相対する磁石は相互に吸引す
る極性とした固定子と、前記間隔内で移動する中心に作
用軸を有する可動子で、該可動子の有機磁束が、前記固
定子による磁束と平行となるように、鉄心に巻回された
コイルと前記間隔内で移動し得る手段とを有する可動子
と、該可動子のコイルを商用周波数以下の低周波電流で
励磁する制御回路で、該制御回路が、励磁回路の励磁方
向の両方向に等しい電流を流さしめ、あるいは一方向に
のみ大なる電流を流さしめるような回路である制御回路
とからなり、励磁回路に電流が流れるとき、前記励磁方
向の両方向に等しい推力を得て可動コイルを移動し、一
方向に生ずる大なる電流時には大なる推力を得て可動コ
イルが移動し、逆電流時には可動コイルが原位置に戻る
動作を繰返すことを特徴とするリニア振動アクチュエー
タ。
1. Two flat plate-shaped magnets are attached side by side with adjacent polarities opposite to each other on a flat plate yoke which forms a magnetic path and is arranged in parallel at a distance. The stator and a mover having an action axis at the center that moves within the interval, and the organic magnetic flux of the mover is parallel to the magnetic flux of the stator, and the coil wound around the iron core and the A mover having means capable of moving within an interval, and a control circuit for exciting a coil of the mover with a low-frequency current equal to or lower than a commercial frequency, the control circuit providing an equal current in both directions of the excitation circuit. It consists of a control circuit that is a circuit that allows a large current to flow in only one direction, and when a current flows in the excitation circuit, the movable coil is moved by obtaining equal thrust in both directions of the excitation direction, Great in one direction A linear vibration actuator characterized in that when a current is applied, a large thrust force is applied to the movable coil to move, and when a reverse current is applied, the movable coil is repeatedly returned to its original position.
【請求項2】前記一組の固定子、可動子の組を、線対称
の関係に一直線に偶数組配置して、励磁回路に前記大な
る電流が流れる時、大なる推力を得る方向を逆方向とな
し、前記2つの可動子の作用軸に前後運動をそれに直角
方向の運動に変換せしむる枠組を接続した前記請求項1
記載のリニア振動アクチュエータ。
2. A set of the stator and the mover is arranged in a straight line in an even number in a straight line relationship, and the direction in which a large thrust is obtained is reversed when the large current flows through the exciting circuit. The direction is defined as the direction of movement, and a framework for converting a longitudinal motion into a motion perpendicular to the action axes of the two movers is connected.
The linear vibration actuator described.
【請求項3】 前記可動子の作用軸に、床面と接触する
部分に、大なる摩擦係数の物質の摩擦シューを備えた手
段を連結し、前記固定子に車輪を連結した前記請求項1
記載のリニア振動アクチュエータ。
3. The mechanism according to claim 1, wherein a means provided with a friction shoe made of a material having a large friction coefficient is connected to a portion of the movable element which comes into contact with the floor surface, and a wheel is connected to the stator.
The linear vibration actuator described.
【請求項4】 外部振動を可動子に捕捉せしめ、励磁コ
イルより発生した電流を整流する手段を備えた前記請求
項3記載のリニア振動アクチュエータ。
4. The linear vibration actuator according to claim 3, further comprising means for causing the mover to capture the external vibration and rectifying the current generated by the exciting coil.
【請求項5】 架台64の上にアクチュエータ本体と回
転変換機構部を取り付け、互いに連結し、一つの直線往
復運動推力を回転変換の機能を持つ一つの回転負荷クラ
ンクアーム59、クランクピン58へ回転変換させ、回
転に変えた回転軸60の慣性エネルギーを回転ドラム6
1に伝導し被駆動体に回転作用を与える発振回路と増幅
器を持ち波形デューテ比が等しいか、あるいは波形デュ
ーテ比の違う交番電圧と正負の電位が異なり、左右直線
往復運動の推力が異なる制御回路を有する請求項1ある
いは2記載のリニア振動アクチュエータ。
5. An actuator main body and a rotation conversion mechanism section are mounted on a pedestal 64 and connected to each other, and one linear reciprocating motion thrust is rotated to one rotation load crank arm 59 and crank pin 58 having a function of rotation conversion. The inertia energy of the rotary shaft 60 that has been converted and converted into rotation is converted into rotation.
Control circuit that has an oscillation circuit and an amplifier that conducts to 1 to rotate the driven body and has the same waveform duty ratio, or different alternating voltage and positive and negative potentials with different waveform duty ratios, and different thrust forces for left and right linear reciprocating motion The linear vibration actuator according to claim 1 or 2, further comprising:
【請求項6】 2つのリニア振動アクチュエータ本体を
並列に置き回転変換機構部を架台70に取り付けて互い
に連結し、二つの相反する方向の直線往復運動推力を回
転変換の機能をもつ二つのクランクアーム105,10
5a、クランクピン104,104aを1本の慣性負荷
である回転軸107に慣性エネルギーを与える軸支点1
80°変位した位置にクランク軸支点をおいて回転に変
換し、減速した軸速を架台下部回転輪114に伝導する
発振回路と増幅器を持ち波形デューテ比が等しいか、あ
るいは波形デューテ比の違う交番電圧と正負の電位が違
い左右直線往復運動の推力が異なる制御回路を有する請
求項1,2,5のいづれか1つに記載のリニア振動アク
チュエータ。
6. Two crank arms having two linear vibration actuator main bodies arranged in parallel, a rotation conversion mechanism section attached to a gantry 70 and connected to each other, and a function of converting linear reciprocating motion thrust in two opposite directions into rotation. 105,10
5a, crank pin 104, 104a is a shaft fulcrum 1 which gives inertia energy to the rotating shaft 107 which is one inertia load.
An alternating circuit with an equivalent waveform duty ratio or different waveform duty ratio, having an oscillation circuit and an amplifier that convert the crankshaft fulcrum at a position displaced by 80 ° into rotation and transmit the reduced shaft speed to the pedestal lower rotating wheel 114. 6. The linear vibration actuator according to claim 1, further comprising a control circuit having different positive and negative electric potentials and different right and left linear reciprocating thrust forces.
【請求項7】 一体になる堅牢な箱120の内にアクチ
ュエータ本体と駆動摩擦シュー45と、回転円盤123
とアイドラー124をベルト122で駆動連結される回
転機構をもち、回転円盤123とアイドラー124の中
間に位置したベルト122の下部に平板の固定レール1
21を設置する。固定レール121に位置したベルト1
22の上に直線往復運動の駆動摩擦シュー45の推力で
回転円盤123に直結された回転軸128を一定方向の
微速度円回転を行い被駆動体に回転力を与える請求項1
記載のリニア振動アクチュエータ。
7. An actuator body, a drive friction shoe 45, and a rotary disk 123 are provided in a solid box 120 which is integrated.
And the idler 124 are connected to each other by a belt 122, and a flat rail 1 is provided below the belt 122 located between the rotating disk 123 and the idler 124.
21 is installed. Belt 1 located on fixed rail 121
The rotary shaft 128 directly connected to the rotary disk 123 is rotated at a slight speed in a fixed direction by a thrust force of a driving friction shoe 45 of a linear reciprocating motion on 22 to apply a rotary force to a driven body.
The linear vibration actuator described.
【請求項8】 一体になる堅牢な箱125の内にアクチ
ュエータ本体と駆動摩擦シュー45と、直線運動機構の
平板固定レール126と接触する直線運動を行う駆動角
軸127を設置する。駆動摩擦シュー45の直線往復運
動の推力で駆動角軸127を微速度で直線進行し被駆動
体に直線運動を与える請求項1記載のリニア振動アクチ
ュエータ。
8. An actuator body, a drive friction shoe 45, and a drive angular shaft 127 that makes a linear motion in contact with a flat plate fixing rail 126 of a linear motion mechanism are installed in a solid box 125 that is integrated. The linear vibration actuator according to claim 1, wherein the thrust of the linear reciprocating motion of the driving friction shoe 45 linearly advances the driving angular axis 127 at a minute speed to give a linear motion to the driven body.
【請求項9】 前記特許請求項1,2の範囲で発生した
推力を、固定子ヨークに接続された振動受144へ左右
力の違う低周波振動の可動子等加速度エネルギーを消音
プッシュ143を通して振動ベース146に伝導し、振
動を伝えることのできる固体物148の上に乗せると静
に力の強い方向に進む。低周波発振回路と増幅器を持ち
波形デューテ比の違う交番電圧と正負の電位が異なり、
左右往復運動の推力が異なる制御回路を有するリニア振
動アクチュエータ。
9. The thrust generated in the scope of claims 1 and 2 is oscillated to a vibration receiver 144 connected to a stator yoke through a muffling push 143 of acceleration energy of a low frequency vibrating movable element having different lateral forces. When it is placed on a solid material 148 that is conductive to the base 146 and can transmit vibration, it quietly advances in the direction of strong force. It has a low frequency oscillation circuit and an amplifier, and the alternating voltage and positive and negative potentials with different waveform duty ratios are different.
A linear vibration actuator having a control circuit in which the thrust forces of left and right reciprocating motions are different.
【請求項10】 平板ヨーク155上にそれぞれ2枚の
平板状永久磁石153,154を隣り同志逆極性に並べ
て貼付し、また相対する磁石は相互に吸引する極性とし
た固定子と、前記間隔内で移動する中心に作用軸を有す
る可動子の磁路150の一部分を、固定子永久磁石15
3,154面と向き合う可動子鉄心の一部を切断し、永
久磁石の総磁束を可動子磁路150に有効に捕捉させ、
外部直線運動推力で可動子が共振し、可動子鉄心内に巻
回されたコイル151に起電力の発生を促し、該外枠1
58に車輪157を4個持ち可動子が外力によって動き
易くした請求項4記載のリニア振動アクチュエーター。
10. A pair of flat magnets 153 and 154, which are adjacent to each other, are attached on a flat yoke 155 so that they are adjacent to each other and have opposite polarities. A part of the magnetic path 150 of the mover having an action axis at the center of movement of the stator permanent magnet 15
3, a part of the mover core facing the 3,154 surface is cut, and the total magnetic flux of the permanent magnets is effectively captured in the mover magnetic path 150.
The external linear motion thrust causes the mover to resonate, which promotes the generation of electromotive force in the coil 151 wound in the mover iron core.
The linear vibration actuator according to claim 4, wherein the movable element has four wheels 157 at 58 and is easily moved by an external force.
【請求項11】 可動子のコイル151に商用周波数以
下の低周波電流で励磁する制御回路で、該制御回路が、
励磁回路の励磁方向の両方向に等しい電流を流さしめ、
あるいは一方向にのみ大なる電流を流さしめるような回
路である制御回路とからなり、励磁回路に電流が流れる
とき、前記励磁方向の両方向に等しい推力を得て可動コ
イルを移動し、一方向に生ずる大なる電流時には大なる
推力を得て可動コイルが移動し、逆電流時には可動コイ
ルが原位置にもどる動作を繰り返す請求項10記載のリ
ニア振動アクチュエーター。
11. A control circuit for exciting a coil 151 of a mover with a low frequency current equal to or lower than a commercial frequency, the control circuit comprising:
An equal current is applied in both directions of the excitation circuit.
Alternatively, it consists of a control circuit that is a circuit that allows a large current to flow in only one direction, and when a current flows in the excitation circuit, the moving coil is moved in one direction by obtaining the same thrust in both directions of the excitation direction. 11. The linear vibration actuator according to claim 10, wherein when a large current is generated, a large thrust is obtained to move the movable coil, and when a reverse current is applied, the movable coil is repeatedly returned to its original position.
【請求項12】 中空状の磁性パイプ177の外側に絶
縁ボビン172を施し、その外側にコイル170を巻回
して固定子コイルとし、さらに磁性パイプ内に間隙を設
け、可動子の棒状永久磁石173を外部直線運動推力で
共振ができる長溝穴を左右にもち、該外枠174の側面
よりピン175で移動距離を制限し、外力による磁石の
揺れで起電力が発生する請求項4記載のリニア振動アク
チュエーター。
12. An insulating bobbin 172 is provided on the outside of a hollow magnetic pipe 177, a coil 170 is wound on the outside thereof to form a stator coil, and a gap is provided in the magnetic pipe to form a rod-shaped permanent magnet 173 of the mover. 5. The linear vibration according to claim 4, wherein the slotted holes that can be resonated by the external linear motion thrust are provided on the left and right sides, the movement distance is limited by the pin 175 from the side surface of the outer frame 174, and the electromotive force is generated by the vibration of the magnet due to the external force. Actuator.
【請求項13】 固定子コイル170に商用周波数以下
の低周波電流で励磁し、可動子棒磁石173、磁石固定
軸176の長穴の範囲で左右直線運動の推力を取り出
し、制御回路に、請求項1,11に記載する制御回路手
段をもつ請求項12記載のリニア振動アクチュエータ
ー。
13. A stator coil 170 is excited with a low-frequency current of a commercial frequency or less, and a thrust force of left and right linear motions is extracted within a slotted hole of a mover bar magnet 173 and a magnet fixing shaft 176, and a control circuit is informed. 13. The linear vibration actuator according to claim 12, comprising the control circuit means according to any one of claims 1 and 11.
【請求項14】 中空状の磁性パイプ181の外側に絶
縁ボビン184を施し、固定Aコイル180、固定子B
コイル203を直角に巻回し、Aコイル巻初端子18
5、巻終わり端子186、Bコイル巻初端子204、巻
終わり端子205をもち、可動子作用の移動範囲を規定
する長軸固定タイロット191、192の2本の左右中
央に組み、タイロット固定板193にて左右平行な構造
にスクリューナット194で絞めて固定子とし、該可動
子の作用軸187を中空状の磁性パイプ181の内側中
心へ非磁性材スリーブ182を置き間隙を設けて水平に
置き、作用軸187左右先端に平板状永久磁石188,
189を同極性S,Sに向けて貼付し、鉄材の作用軸1
87に永久磁石による磁界を持たし、その磁石の固定に
固定鉄片190,195にて取り組む構造とし、可動子
側面の一方、または両端、または下面にワーク部品等を
組む構造で、可動子制御は商用周波数以下の低周波電流
で固定子Aコイル180を励磁し、制動作用Bコイル2
03に励磁する制御回路で、該制御回路は請求項1ある
いは11に記載する制御回路手段をもつリニア振動アク
チュエーター。
14. A hollow magnetic pipe 181 is provided with an insulating bobbin 184 on the outside thereof, and a fixed A coil 180 and a stator B are provided.
The coil 203 is wound at a right angle, and the A coil winding first terminal 18
5, a winding end terminal 186, a B coil winding start terminal 204, and a winding end terminal 205, which are assembled in the left and right center of two long axis fixed tie lots 191 and 192 which define the movement range of the mover action, and a tie lot fixing plate 193. Then, it is tightened with a screw nut 194 into a parallel structure to form a stator, and the action shaft 187 of the mover is placed horizontally on the inner center of the hollow magnetic pipe 181 with the non-magnetic material sleeve 182 provided with a gap, Flat permanent magnets 188 are attached to the left and right ends of the action shaft 187.
189 is attached to the same polarity S, S, and the working axis 1 of the iron material
87 has a magnetic field from a permanent magnet, and the structure is such that the fixed iron pieces 190 and 195 are used to fix the magnet, and work pieces are assembled on one side or both ends of the mover or on the lower surface. The stator A coil 180 is excited by a low frequency current equal to or lower than the commercial frequency, and the braking action B coil 2
A control circuit for exciting to 03, the control circuit is a linear vibration actuator having the control circuit means according to claim 1 or 11.
【請求項15】 リニア振動アクチュエーターの基台2
19上へ並列に2個の後尾に細孔を設けたエアーシリン
ダー手押しポンプ211,213を置き、手押し軸21
2,214をリニアアクチュエーター後部作用軸210
bに掛金215で連結できる構造とし、電源の無い状態
では前部の作用軸210aに連結された組片217に木
製圧球218を2個組し、人の足裏を木製圧球にあてバ
ンド220で両足を締める構造とし、足を前後に伸縮す
ると、手動エアーシリンダーの引き、押しの直線往復運
動による空気の吸引および排気の作用による負荷が足に
て与えられ、永く寝たきりの人の運動機構を持ち、別に
エアーシリンダー連結の掛け金215をはずし足のバン
ド220をはずせば、マッサージ効果を持つ振動器にな
り、可動子コイルに励磁する制御回路は商用周波数以下
の低周波発振器と増幅器の制御回路で、該制御回路は請
求項1,2,10,11のいずれか1つに記載する制御
手段を持つリニア振動アクチュエーター。
15. The base 2 of the linear vibration actuator
The air cylinder hand pumps 211 and 213 having two tail holes are placed in parallel on 19 and the hand shaft 21
2,214 is a linear actuator rear working shaft 210
b has a structure that can be connected with a latch 215, and when there is no power source, two wooden pressure balls 218 are set to a set piece 217 connected to the front working shaft 210a, and a person's sole is applied to the wooden pressure ball to apply a band. 220 has a structure to fasten both feet, and when the feet are expanded and contracted back and forth, a load is exerted on the feet by the pulling of a manual air cylinder, the suction and exhaust of air by the linear reciprocating motion of the push, and the motion mechanism of a bedridden person for a long time. If you remove the latch 215 connected to the air cylinder and remove the band 220 of the foot, it becomes a vibrator with a massage effect, and the control circuit that excites the mover coil is a control circuit of a low frequency oscillator and an amplifier below the commercial frequency. The control circuit is a linear vibration actuator having the control means according to any one of claims 1, 2, 10, and 11.
【請求項16】 リニア振動アクチュエーターの可動子
運動が大きくなる改造で磁性パイプ223外径に直角に
巻回された固定子コイル221の軸方向の長さをより長
尺にくくしたもので、磁性パイプ223内径の中心に可
動子の直線運動作用空間をもつ非磁性材ホルダー224
を置き、内部に振動ハンマー228を貼付した可動子棒
磁石227を自在性をもって動くように包含し、適切な
作用空間を保持し設けて非磁性スペース片226、磁性
鉄栓225をおさめ組し、非磁性材ホルダー224内の
空間で可動子の左右運動または上下運動の作用をする固
定コイル221に励磁する制御回路とからなり、該制御
回路が商用周波数以下の低周波電流で励磁する制御回路
で、請求項1,12,13のいずれか1つに記載のリニ
ア振動アクチュエーター。
16. A linear vibration actuator is modified so that the movement of the mover becomes large, whereby the axial length of the stator coil 221 wound at a right angle to the outer diameter of the magnetic pipe 223 is made smaller and the magnetic pipe is made smaller. 223 Non-magnetic material holder 224 having a space for linear motion of the mover at the center of the inner diameter
, A mover bar magnet 227 having a vibrating hammer 228 attached therein is included so as to move freely, an appropriate working space is held and provided, and a non-magnetic space piece 226 and a magnetic iron plug 225 are assembled. And a control circuit for exciting a fixed coil 221 that performs a horizontal movement or a vertical movement of the mover in a space inside the non-magnetic material holder 224. The control circuit is a control circuit for exciting a low-frequency current below a commercial frequency. The linear vibration actuator according to any one of claims 1, 12, and 13.
【請求項17】 一組の固定子、可動子の組を線対称の
関係に一直線に偶数組配置して、リニア振動アクチュエ
ーターを多列に並べ、各固定子コイルに独立したプログ
ラムに沿う制御電気信号をもつ低周波電流で励磁し、可
動子の上下運動作用を任意に制御し得る機構に組み入れ
た請求項1あるいは13記載のリニア振動アクチュエー
ター。
17. A set of stator and mover groups arranged in an even number in a straight line in a line-symmetrical relationship, linear vibration actuators arranged in multiple rows, and a control electric line according to an independent program for each stator coil. 14. The linear vibration actuator according to claim 1 or 13, wherein the linear vibration actuator is excited by a low-frequency current having a signal and is incorporated in a mechanism capable of arbitrarily controlling the vertical motion action of the mover.
【請求項18】 間隔をあけて平行で垂直に立つ四隅の
レール256の中央に垂直に立つ固定子作用軸250を
置き、その先端に平板状の固定子永久磁石240,24
2を極性S,SまたはN,Nにあわせ貼付し更に重負荷
用固定子直流励磁コイル241,243を置いて固定子
永久磁石と吸引する極性と同じ極性配列S,Sまたは
N,Nにあわせて固定子作用軸250両端に電気信号の
固定子直流励磁を施しヨーク板255に組、該可動子は
中心の磁性固定作用軸250と放射状の四隅のレール2
56との上下空間を運動作用の空間とさせ、該可動子は
中空状の磁性パイプ244の外側に絶縁ボビン245を
おき、可動コイル246a,制動コイル246bを固定
子作用軸250と直角に巻回して組、車輪248を付属
する可動フレーム247の中央におく、中空状の磁性パ
イプ244の内径に固定子作用軸250を貫通させ、四
隅のレール256外側に上下自在に動く制動用小型永久
磁石264を貼付したバランスウエイト251をプーリ
ー254を通して接続ワイヤー253にて可動子フレー
ム247と接続し、鉄製の磁力吸着作用長手板のブレー
キ板265に接触または非接触にて上下エレベータ作用
をもつ機構とし、斜面または垂直に置いて限定された振
幅内で不連続な速度変化電気信号を再生し外部に伝導す
る負荷接続子260を可動子フレーム247に持つ、該
可動子の直流往復運動推力を与える制御回路は発振回路
と増幅器、直流電源を持ち波形デューテ比が等しいか、
あるいは波形デューテ比の違う交番電圧が正負の電位も
異なり、上下直線往復運動の推力が不連続に異なる制御
回路を有し、該制御回路は請求項1あるいは14に記載
する制御回路手段をもつリニア振動アクチュエータ。
18. A stator working shaft 250 standing vertically is placed at the center of rails 256 at four corners which are parallel and stand vertically with a space therebetween, and flat plate-shaped stator permanent magnets 240, 24 are provided at the tips thereof.
2 is attached according to the polarities S, S or N, N, and the stator DC exciting coils 241 and 243 for heavy load are further placed to align with the same polar arrangement S, S or N, N as the polarities attracted by the stator permanent magnets. A stator DC excitation of an electric signal is applied to both ends of the stator working shaft 250 to form a yoke plate 255, and the mover is composed of a magnetic stationary working shaft 250 at the center and radial rails 2 at four corners.
An upper and lower space with respect to 56 is a space for motion action, the mover is provided with an insulating bobbin 245 on the outside of a hollow magnetic pipe 244, and a movable coil 246a and a braking coil 246b are wound at a right angle to the stator working shaft 250. A small permanent magnet 264 for braking which moves the stator working shaft 250 through the inner diameter of the hollow magnetic pipe 244, which is placed in the center of the movable frame 247 to which the wheel 248 is attached, and which vertically moves outside the rails 256 at the four corners. The balance weight 251 to which is attached is connected to the mover frame 247 by the connection wire 253 through the pulley 254, and a mechanism having a vertical elevator action by contact or non-contact with the brake plate 265 of the magnetic force adsorption longitudinal plate made of iron is provided. Alternatively, a load connector 26 which is placed vertically and reproduces a discontinuous speed change electric signal within a limited amplitude and conducts it to the outside The with the mover frame 247, or the control circuit is an oscillation circuit and an amplifier to provide a DC reciprocating thrust mover, waveform Deyute ratio has a DC power supply is equal,
Alternatively, the alternating voltage having different waveform duty ratios has different positive and negative potentials, and the control circuit has a control circuit that discontinuously changes the thrust force of the upper and lower linear reciprocating motions. The control circuit is a linear circuit having the control circuit means according to claim 1 or 14. Vibration actuator.
JP5116285A 1992-07-24 1993-04-08 Linear vibration actuator Pending JPH0984323A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5116285A JPH0984323A (en) 1992-07-24 1993-04-08 Linear vibration actuator

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP4-238763 1992-07-24
JP23876392 1992-07-24
JP5116285A JPH0984323A (en) 1992-07-24 1993-04-08 Linear vibration actuator

Publications (1)

Publication Number Publication Date
JPH0984323A true JPH0984323A (en) 1997-03-28

Family

ID=26454648

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5116285A Pending JPH0984323A (en) 1992-07-24 1993-04-08 Linear vibration actuator

Country Status (1)

Country Link
JP (1) JPH0984323A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101116372B1 (en) * 2010-09-27 2012-03-16 한국과학기술원 Horizontal vibration actuator using buckling effect amd hand held comprising thereof
EP3082237A4 (en) * 2013-12-31 2017-06-14 Bolymedia Holdings Co. Ltd. Driving apparatus and device fabrication method
CN107332425A (en) * 2017-08-18 2017-11-07 郑州润华智能设备有限公司 A kind of magneto reciprocating sliding direct driving device and the motor using the direct driving device
CN111396281A (en) * 2020-04-30 2020-07-10 厦门奇跃电子科技有限公司 Control structure of micro-fluidic chip
CN114827850A (en) * 2022-05-31 2022-07-29 歌尔股份有限公司 Drive actuator and electronic apparatus
CN115065915A (en) * 2022-05-31 2022-09-16 歌尔股份有限公司 Drive actuator and electronic apparatus

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6039357A (en) * 1983-07-21 1985-03-01 エヌ・ベー・フイリツプス・フルーイランペンフアブリケン Linear motor for reciprocating rotary slide with mass at high speed

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6039357A (en) * 1983-07-21 1985-03-01 エヌ・ベー・フイリツプス・フルーイランペンフアブリケン Linear motor for reciprocating rotary slide with mass at high speed

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101116372B1 (en) * 2010-09-27 2012-03-16 한국과학기술원 Horizontal vibration actuator using buckling effect amd hand held comprising thereof
EP3082237A4 (en) * 2013-12-31 2017-06-14 Bolymedia Holdings Co. Ltd. Driving apparatus and device fabrication method
US10447136B2 (en) 2013-12-31 2019-10-15 Bolymedia Holdings Co. Ltd. Driving apparatus and device fabrication method
CN107332425A (en) * 2017-08-18 2017-11-07 郑州润华智能设备有限公司 A kind of magneto reciprocating sliding direct driving device and the motor using the direct driving device
CN107332425B (en) * 2017-08-18 2023-08-22 郑州润华智能设备有限公司 Permanent magnet type reciprocating push-pull direct drive device and motor using same
CN111396281A (en) * 2020-04-30 2020-07-10 厦门奇跃电子科技有限公司 Control structure of micro-fluidic chip
CN114827850A (en) * 2022-05-31 2022-07-29 歌尔股份有限公司 Drive actuator and electronic apparatus
CN115065915A (en) * 2022-05-31 2022-09-16 歌尔股份有限公司 Drive actuator and electronic apparatus

Similar Documents

Publication Publication Date Title
JP3751273B2 (en) Piezoelectric linear ultrasonic motor
AU2012101649A4 (en) Method and Apparatus For Converting Between Electrical and Mechanical Energy
CN106175957B (en) Fixed structure for electric cleaning apparatus drive device
US4994698A (en) Vibratory linear motor system
JPH08331826A (en) Linear vibrating motor
JPH07107778A (en) Linearly vibrating actuator
JP2016519268A (en) Magnetic drive system and method
JPH0984323A (en) Linear vibration actuator
JPH06315294A (en) Linear oscillation actuator
JPH06113522A (en) Linear oscillation actuator
JPH10192785A (en) Vibration generating mechanism
JPH07255196A (en) Linear oscillating actuator
JP3101743B2 (en) Small traveling robot
CN100539385C (en) The drive unit that is used for ultrasound electric machine
JP5851800B2 (en) Auxiliary power unit
KR100194323B1 (en) Reciprocating device
JPS5811767Y2 (en) Drive circuit for elliptical vibrating feeder
JPH0677876B2 (en) Electromagnetic press machine
JP3708658B2 (en) Shaker
AU2013100795A4 (en) Method and Apparatus for Converting Between Electrical and Mechanical Energy
JP2836130B2 (en) Electronic sewing machine
CN205430027U (en) Miniature vibrating electromagnetism generator
JP3808605B2 (en) Excitation device
JP4382594B2 (en) Parts supply device
JPH05123982A (en) Compact traveling robot

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees