JPH0982491A - Surface treatment device - Google Patents

Surface treatment device

Info

Publication number
JPH0982491A
JPH0982491A JP7232287A JP23228795A JPH0982491A JP H0982491 A JPH0982491 A JP H0982491A JP 7232287 A JP7232287 A JP 7232287A JP 23228795 A JP23228795 A JP 23228795A JP H0982491 A JPH0982491 A JP H0982491A
Authority
JP
Japan
Prior art keywords
sample
plasma
antenna
frequency
surface treatment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7232287A
Other languages
Japanese (ja)
Inventor
Tetsuo Ono
哲郎 小野
Katanobu Yokogawa
賢悦 横川
Kazunori Tsujimoto
和典 辻本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP7232287A priority Critical patent/JPH0982491A/en
Publication of JPH0982491A publication Critical patent/JPH0982491A/en
Pending legal-status Critical Current

Links

Landscapes

  • Plasma Technology (AREA)
  • Chemical Vapour Deposition (AREA)
  • ing And Chemical Polishing (AREA)
  • Drying Of Semiconductors (AREA)

Abstract

PROBLEM TO BE SOLVED: To produce plasma efficiently by furnishing an electrode surface parallel with a sample, and inserting an antenna between the two so that high frequency waves to produce plasma flow. SOLUTION: Electrons and ions in a plasma produced in a vacuum vessel make spiral motions round a magnetic force generated by a magnet 9. When a high frequency voltage is impressed on a sample 3 by a bias power supply 13 and a matching circuit 12, the ions produced in the plasma are accelerated and put incident to the sample 3 so that etching propagates in the vertical direction. An antenna 5 is interposed between the conductors of a sample rest 2 and an oversurface electrode 1, and thereby a plasma small in reflection and high in efficiency is produced.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は半導体素子の表面処理装
置にかかわり、特にプラズマを用いて半導体表面のエッ
チングや成膜を行なう装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an apparatus for treating a surface of a semiconductor element, and more particularly to an apparatus for etching or forming a film on the surface of a semiconductor by using plasma.

【0002】[0002]

【従来の技術】半導体素子のエッチングや成膜に現在広
く用いられている装置は、プラズマを利用する装置であ
る。その1つに、ECR(電子サイクロトロン共鳴)方式と
呼ばれている装置がある。この方式では、外部より磁場
を印加した真空容器中でマイクロ波によりプラズマを発
生させる。磁場により電子はサイクロトロン運動をし、
この周波数とマイクロ波の周波数を共鳴させることで効
率良くプラズマを発生できる。また磁場によりプラズマ
の壁への拡散が抑えられ、高密度のプラズマが発生でき
る。試料に入射するイオンを加速するために、試料には
高周波電圧が印加される。プラズマとなるガスには例え
ばエッチングを行なう場合には塩素やフッ素などのハロ
ゲンガスが用いられる。エッチングのほかに膜の堆積な
どにもこの装置は使われている。
2. Description of the Related Art An apparatus currently widely used for etching and film forming of semiconductor elements is an apparatus utilizing plasma. One of them is an apparatus called an ECR (Electron Cyclotron Resonance) system. In this method, plasma is generated by microwaves in a vacuum vessel to which a magnetic field is externally applied. Electrons make cyclotron motion due to the magnetic field,
Plasma can be generated efficiently by resonating this frequency with the frequency of the microwave. Further, the diffusion of the plasma to the wall is suppressed by the magnetic field, and high-density plasma can be generated. A high frequency voltage is applied to the sample in order to accelerate the ions incident on the sample. For example, when etching is performed, a halogen gas such as chlorine or fluorine is used as the plasma gas. In addition to etching, this device is also used for film deposition.

【0003】この装置では従来から色々な型が提案され
ている。例えば特開平2-16731には電源周波数を2GHz以
下100MHz以上でECR放電を発生させる装置が知られてい
る。この装置では導波管あるいは同軸ケーブルにより電
磁波を真空容器の上側から導入する。この発明は従来知
られている2.45GHzのマイクロ波より電子のサイクロト
ロン半径を大きくすることで均一性を改善することを目
的としている。さらに、特開平3-238800には電源周波数
を0.7から1.2GHzでECR放電を発生させる装置が知られて
いる。この発明の目的も先の公知例と同じ大面積試料の
均一処理である。マイクロ波の導入方法としては容量結
合型(平行平板)や誘導結合型(ループ型、コイルな
ど)と記載されているがさらに具体的な記述はない。
Various types of this device have been proposed in the past. For example, Japanese Patent Laid-Open No. 2-16731 discloses a device that generates an ECR discharge at a power supply frequency of 2 GHz or less and 100 MHz or more. In this device, electromagnetic waves are introduced from the upper side of the vacuum container by a waveguide or coaxial cable. An object of the present invention is to improve the uniformity by increasing the electron cyclotron radius as compared with the conventionally known microwave of 2.45 GHz. Further, Japanese Patent Laid-Open No. 3-238800 discloses a device for generating ECR discharge at a power supply frequency of 0.7 to 1.2 GHz. The object of the present invention is also the uniform treatment of a large-area sample as in the previously known example. The microwave introduction method is described as capacitive coupling type (parallel plate) or inductive coupling type (loop type, coil, etc.), but there is no more specific description.

【0004】[0004]

【発明が解決しようとする課題】公知例で述べられてい
る高周波の導入方法ではプラズマ発生の効率がまだ十分
ではないことが試験の結果判明した。本発明の第一の目
的は効率の良い電力供給方法を提供することである。
As a result of the test, it was found that the method of introducing high frequency described in the known example is not yet sufficient in the efficiency of plasma generation. A first object of the present invention is to provide an efficient power supply method.

【0005】さらに、エッチング速度などの試料面内の
均一性は、公知例に述べられているようなプラズマ密度
の均一性だけでは達成されないことが分かった。本発明
の第2の目的は、エッチング特性均一化のさらなる改良
である。
Further, it has been found that the in-plane uniformity of the sample such as the etching rate cannot be achieved only by the uniformity of the plasma density as described in the known example. The second object of the present invention is to further improve the uniformity of etching characteristics.

【0006】[0006]

【課題を解決するための手段】プラズマ発生の効率を高
めさらにエッチング特性の均一性を向上するために、試
料と平行に電極面を設けてさらにその両者の間にプラズ
マを発生させる高周波を流すアンテナを挿入する構造と
した。
In order to increase the efficiency of plasma generation and further improve the uniformity of etching characteristics, an antenna is provided in parallel with the sample, and an antenna through which a high frequency for generating plasma is generated between them. It has a structure to insert.

【0007】[0007]

【作用】2枚の導体に挾まれたアンテナは、ちょうど同
軸ケーブルのように遮断周波数なく高周波電流が流れる
ので反射が少なく効率の良い電力供給ができプラズマも
効率良く発生する。
The antenna sandwiched between the two conductors allows high-frequency current to flow without a cutoff frequency, just like a coaxial cable, so that there is little reflection and efficient power supply is possible and plasma is also efficiently generated.

【0008】[0008]

【実施例】【Example】

(実施例1)以下実施例を図1により説明する。図1
(a)は本発明装置の上面図であり、図1(b) は本発明の
側面から見た断面図である。真空容器は上面と下面が平
行に配置された上面電極1と試料台2から成る。上面電極
1はAlなどの金属あるいはC,Si,SiC等の半導体である。
試料台2は側壁4とは絶縁されており、この上にエッチン
グなどの表面処理をされる試料3が置かれる。側壁には
真空排気管10と試料の出し入れのための搬送管11が接続
されている。試料搬送機は省略されている。試料台2と
上面電極1の間にループ状のアンテナ5が設置される。ア
ンテナの材質はAlなどの金属あるいはC,Si,Si
Cなどの半導体である。または、これらの材料を石英管
等の絶縁物で被い、イオンによるスパッタを防いだ構造
である。アンテナは2重以上のループでもよい。ここに
高周波電源8と整合回路7により高周波電力が供給され
る。電力線シール部6で真空が保たれる。真空容器の上
下にはリング状の永久磁石9が配置されている。真空容
器を0.1mTorrから数百Torrの圧力のガスで満たし、アン
テナ5に高周波電力を供給すると、プラズマが発生す
る。
(Embodiment 1) An embodiment will be described below with reference to FIG. FIG.
FIG. 1 (a) is a top view of the device of the present invention, and FIG. 1 (b) is a sectional view of the device of the present invention seen from the side. The vacuum container is composed of an upper electrode 1 and a sample table 2 whose upper and lower surfaces are arranged in parallel. Top electrode
1 is a metal such as Al or a semiconductor such as C, Si or SiC.
The sample table 2 is insulated from the side wall 4, and the sample 3 to be surface-treated by etching or the like is placed thereon. A vacuum exhaust pipe 10 and a transfer pipe 11 for loading and unloading the sample are connected to the side wall. The sample carrier is omitted. A loop-shaped antenna 5 is installed between the sample table 2 and the top electrode 1. The material of the antenna is metal such as Al or C, Si, Si
It is a semiconductor such as C. Alternatively, these materials are covered with an insulating material such as a quartz tube to prevent the sputtering by ions. The antenna may be a double or more loop. High frequency power is supplied here by the high frequency power supply 8 and the matching circuit 7. A vacuum is maintained at the power line seal section 6. Ring-shaped permanent magnets 9 are arranged above and below the vacuum container. When the vacuum container is filled with a gas having a pressure of 0.1 mTorr to several hundred Torr and high-frequency power is supplied to the antenna 5, plasma is generated.

【0009】この構造の特長は、アンテナ5が上面電極1
と試料台2の2枚の導体で挾まれているために、ちょう
ど同軸ケーブルのように、アンテナから上下の導体に電
気力線が発生する。このため電磁波が、プラズマを発生
すると同時に、真空容器内を伝播することが可能なの
で、反射が少なく高効率なプラズマ発生が可能になる。
かつ、伝播する周波数に遮断周波数がない。すなわち広
い周波数帯域にわたり使用することが可能である。
The advantage of this structure is that the antenna 5 is the top electrode 1
And because it is sandwiched between the two conductors of the sample table 2, electric force lines are generated from the antenna to the upper and lower conductors, just like a coaxial cable. For this reason, the electromagnetic wave can generate plasma at the same time as it propagates in the vacuum container, so that highly efficient plasma generation with less reflection becomes possible.
Moreover, there is no cutoff frequency in the propagating frequency. That is, it can be used over a wide frequency band.

【0010】次に磁場の役割を説明する。真空容器内に
発生したプラズマ中の電子とイオンは、磁石9で発生す
る磁力線の回りをら旋運動する。このために側壁4への
プラズマの拡散が抑えられて、高密度のプラズマが発生
する。さらに、電子のサイクロトロン運動(ら旋運動)
の周波数と電源8の周波数を一致するようにすればECRプ
ラズマが発生して、より高密度にできる。例えば周波数
が2.45GHzの場合は磁場強度を875Gaussにすればこの条
件になる。この強度の磁場を試料中心部で発生させると
試料直上で高密度のプラズマが形成できる。
Next, the role of the magnetic field will be described. The electrons and ions in the plasma generated in the vacuum vessel spiral around the lines of magnetic force generated by the magnet 9. Therefore, the diffusion of plasma to the side wall 4 is suppressed, and high-density plasma is generated. Furthermore, the cyclotron motion of electrons (helix motion)
If the frequency of the power source 8 and the frequency of the power source 8 are made to coincide with each other, ECR plasma is generated and the density can be made higher. For example, when the frequency is 2.45 GHz, this condition is satisfied by setting the magnetic field strength to 875 Gauss. When a magnetic field of this strength is generated at the center of the sample, high density plasma can be formed directly above the sample.

【0011】次に実際に表面処理例を述べる。例えばこ
の装置でシリコン酸化膜をエッチングする場合には、CF
4,C4F8,C2F6,C3F8,CHF3,CH2F2などのC,H,Fからなるガス
を数 mTorrの圧力で満たし、プラズマを発生する。さら
に、バイアス電源13と整合回路12により試料3に高周波
電圧を印加する。この周波数は干渉を避けるためにプラ
ズマ発生用の電源8とは異なる周波数とする。すると、
プラズマ中で発生したFあるいはCFxのイオンが加速され
て試料3に入射し、そのエネルギーと方向性により垂直
にエッチングが進行する。このとき、プラズマ中にバイ
アス電源13からの高周波電流が流れるが、試料と平行に
アース電位の上面電極1があるために、高周波電流に対
するプラズマの抵抗が試料3面内で均一になり、面内ほ
ぼ均一に電流が流れて、エッチング速度も面内で均一と
なる。
Next, an example of actual surface treatment will be described. For example, when etching a silicon oxide film with this equipment, CF
A gas composed of C, H, F such as 4, C4F8, C2F6, C3F8, CHF3, CH2F2 is filled with a pressure of several mTorr to generate plasma. Further, a high frequency voltage is applied to the sample 3 by the bias power source 13 and the matching circuit 12. This frequency is different from that of the power source 8 for plasma generation in order to avoid interference. Then
Ions of F or CFx generated in the plasma are accelerated and are incident on the sample 3, and etching proceeds vertically due to the energy and the directionality thereof. At this time, a high-frequency current from the bias power supply 13 flows in the plasma, but because the upper surface electrode 1 at the ground potential is parallel to the sample, the plasma resistance to the high-frequency current becomes uniform within the sample 3 surface, The current flows almost uniformly, and the etching rate becomes uniform in the plane.

【0012】この構成では先に述べたように広い周波数
帯域で使用可能である、具体的には電源8の周波数は100
MHzから2.45GHzが適当である。周波数に応じて伝送路14
は同軸線路にしたり導波管を用いたりする。現在半導体
プロセスでは、試料3の大型化が進んでいて、西暦2000
年頃のは試料直径が30cm以上になることが予想されてい
る。この課題には、電源8の周波数を低くすることで対
応できる。すなわち周波数を400から900MHz(真空中の
波長75から33cm)にすると、真空容器の大きさと波長が
ほぼ同程度になる。すると容器内に高次の定在波が立た
なくなり、プラズマ密度が均一になり従ってエッチング
速度も均一になる。さらに、電子がサイクロトロン共鳴
するに必要な磁場強度も小さくなるので、磁石9が小さ
くなり装置の大型化が抑えられる。
With this configuration, it is possible to use in a wide frequency band as described above. Specifically, the frequency of the power source 8 is 100
MHz to 2.45 GHz are suitable. Transmission line 14 depending on frequency
Is a coaxial line or uses a waveguide. At present, in semiconductor processes, the size of sample 3 is increasing, and the year 2000
It is expected that the sample diameter will be 30 cm or more around this time. This problem can be dealt with by lowering the frequency of the power supply 8. That is, when the frequency is set to 400 to 900 MHz (wavelength in vacuum 75 to 33 cm), the size and wavelength of the vacuum container are almost the same. Then, high-order standing waves do not stand in the container, the plasma density becomes uniform, and the etching rate becomes uniform. Further, the magnetic field strength required for the electrons to resonate with the cyclotron also becomes smaller, so that the magnet 9 becomes smaller and the enlargement of the device can be suppressed.

【0013】さらに、試料台2と上面電極1間の距離を高
周波波長の2分の1以下にすると真空容器の高さ方向に
定在波が生じなくなるので試料の高さ方向の電解強度の
強弱に起因する不安定がなくなる。さらにアンテナが試
料3に近いと処理速度が不均一になるので、アンテナと
平行電極間の距離を試料台と平行電極間の距離の2分の
1以下にすることで、アンテナの影響を低減するのが効
果的である。また。試料3に印加する高周波電圧に対し
ても、試料台2と上面電極1の間の距離は小さいほうが電
流の通過路の距離が短く、プラズマ抵抗の影響も小さく
なるため高周波電流は均一になる。この観点からは試料
台2と上面電極1の間の距離は10 cm以下が適当である。
さらに用途によっては3cm以下にするとよい。
Further, if the distance between the sample table 2 and the upper electrode 1 is set to be half the high frequency wavelength or less, no standing wave is generated in the height direction of the vacuum container, so that the strength of the electrolytic strength in the height direction of the sample is weakened. The instability caused by is eliminated. Further, since the processing speed becomes non-uniform when the antenna is close to the sample 3, the influence of the antenna is reduced by setting the distance between the antenna and the parallel electrode to be half the distance between the sample stage and the parallel electrode. Is effective. Also. With respect to the high-frequency voltage applied to the sample 3, the shorter the distance between the sample stage 2 and the upper surface electrode 1, the shorter the distance of the current passage and the smaller the effect of the plasma resistance, so that the high-frequency current becomes uniform. From this point of view, it is appropriate that the distance between the sample table 2 and the top electrode 1 be 10 cm or less.
Depending on the application, it should be 3 cm or less.

【0014】(実施例2)図2は本発明の別実施例であ
り、装置の側面図である。この装置では、電磁石15で磁
場を発生させる。電磁石は電力消費が問題だが、永久磁
石と比べ磁場強度の劣化がない。磁石の位置は図1と同
じく真空容器の上下に配してもよい。あるいは、電磁石
の数は1つでもよい。
(Embodiment 2) FIG. 2 is a side view of an apparatus according to another embodiment of the present invention. In this device, a magnetic field is generated by the electromagnet 15. Electric magnets have a problem of power consumption, but they do not deteriorate in magnetic field strength as compared with permanent magnets. The magnets may be located above and below the vacuum container as in FIG. Alternatively, the number of electromagnets may be one.

【0015】(実施例3)図3、4はアンテナ形状の別
実施例である。この装置ではアンテナの形状によりプラ
ズマ密度の分布を制御できる例えば図3や4のように2
重ループに近い形にするとアンテナからの距離に依存す
るプラズマ強度の不均一を改善できる。
(Embodiment 3) FIGS. 3 and 4 show another embodiment of the antenna shape. In this device, the plasma density distribution can be controlled by the shape of the antenna. For example, as shown in FIGS.
The shape close to the heavy loop can improve the nonuniformity of the plasma intensity depending on the distance from the antenna.

【0016】(実施例4)図5は、アンテナを真空容器
の外の設けた構造である。この場合も、上面電極19と試
料台20の間にアンテナ18が挾まれでる構造にして先の実
施例と同じ効果が得られる。この構造では側壁21を石
英、アルミナ、窒化シリコン等の誘電体にする必要があ
る。アンテナ18と上面電極19の位置関係は重要で、効率
良く電磁波を伝播するためには、上面電極19の端からア
ンテナ18までの距離L(図5に示す)を電源8の電磁波に
真空中での波長の8分の1以上にする必要があることが
実験的に分かったこの構造ではアンテナ18のスパッタな
どの影響がないことが利点である。
(Embodiment 4) FIG. 5 shows a structure in which an antenna is provided outside a vacuum container. In this case as well, the antenna 18 is sandwiched between the upper electrode 19 and the sample table 20 to obtain the same effect as that of the previous embodiment. In this structure, the side wall 21 needs to be made of a dielectric material such as quartz, alumina, and silicon nitride. The positional relationship between the antenna 18 and the upper surface electrode 19 is important, and in order to efficiently propagate the electromagnetic wave, the distance L (shown in FIG. 5) from the end of the upper surface electrode 19 to the antenna 18 is applied to the electromagnetic wave of the power source 8 in a vacuum. This structure, which has been experimentally found to be required to be ⅛ or more of the wavelength of 1, is advantageous in that there is no influence of sputtering of the antenna 18.

【0017】[0017]

【発明の効果】以上のように、本発明により本装置によ
りプラズマ発生効率が高く、かつ30cm以上の大口径試料
の均一処理が可能の、表面処理装置を提供できる。
As described above, according to the present invention, it is possible to provide a surface treatment apparatus having a high plasma generation efficiency and capable of uniformly treating a large-diameter sample of 30 cm or more by the present apparatus.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明を適用した装置の構成図で(a)は上面
図、(b)は側面図。
FIG. 1 is a configuration diagram of an apparatus to which the present invention is applied, in which (a) is a top view and (b) is a side view.

【図2】別実施例の側面図。FIG. 2 is a side view of another embodiment.

【図3】別実施例の上面図。FIG. 3 is a top view of another embodiment.

【図4】別実施例の上面図。FIG. 4 is a top view of another embodiment.

【図5】別実施例の側面図。FIG. 5 is a side view of another embodiment.

【符号の説明】[Explanation of symbols]

1−上面電極、2−試料台、3−試料、4−側壁、5−
アンテナ、6−電力線シール部、7−整合回路、8−電
源、9−磁石、10−真空排気管、11ー試料搬送管、
12−整合器、13−バイアス電源、14−伝送路、1
5−電磁石、16−アンテナ、17−アンテナ、18ー
アンテナ、19ー上面電極、20ー試料台、21ー側
壁。
1-upper surface electrode, 2-sample stage, 3-sample, 4-side wall, 5-
Antenna, 6-power line seal part, 7-matching circuit, 8-power source, 9-magnet, 10-vacuum exhaust pipe, 11-sample carrier pipe,
12-matching device, 13-bias power supply, 14-transmission line, 1
5-electromagnet, 16-antenna, 17-antenna, 18-antenna, 19-top electrode, 20-sample stage, 21-side wall.

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】内部を真空に排気できる容器と容器内の試
料台と容器内に磁場を形成する磁石とからなる装置にお
いて、試料台と対向し平行電極を配し、かつ試料台と平
行電極面の間にアンテナを設け、アンテナに高周波電流
を流し、容器内にプラズマを発生させることを特徴とす
る表面処理装置。
1. An apparatus comprising a container whose interior can be evacuated to a vacuum, a sample table in the container, and a magnet for forming a magnetic field in the container, wherein parallel electrodes are arranged facing the sample table, and the sample table and parallel electrodes are arranged. A surface treatment device characterized in that an antenna is provided between the surfaces and a high-frequency current is passed through the antenna to generate plasma in the container.
【請求項2】請求項1の高周波電流の周波数は400MHzか
ら900MHz としたことを特徴とする表面処理装置。
2. The surface treatment apparatus according to claim 1, wherein the high frequency current has a frequency of 400 MHz to 900 MHz.
【請求項3】請求項1、2の装置において、磁場強度が
プラズマ中の電子のサイクロトロン周波数と一致するこ
とを特徴とする表面処理装置。
3. The surface treatment apparatus according to claim 1, wherein the magnetic field strength matches the cyclotron frequency of electrons in the plasma.
【請求項4】請求項1から3の装置において、試料台と
平行電極間の距離を高周波の真空中での波長の2分の1
以下にしてかつアンテナと平行電極間の距離を試料台と
平行電極間の距離の2分の1以下にすることを特徴とす
る表面処理装置。
4. The apparatus according to any one of claims 1 to 3, wherein the distance between the sample stage and the parallel electrode is one half of the wavelength in a high frequency vacuum.
The surface treatment apparatus characterized in that the distance between the antenna and the parallel electrode is set to be equal to or less than half the distance between the sample stage and the parallel electrode.
【請求項5】請求項1から4の装置において、平行電極
のはしからアンテナまでの距離を高周波の真空中の波長
の8分の1以上にしたことを特徴とする表面処理装置。
5. A surface treatment apparatus according to claim 1, wherein the distance from the parallel electrode chopstick to the antenna is not less than ⅛ of a wavelength in a high frequency vacuum.
【請求項6】請求項1から5記載の表面処理装置におい
て、プラズマを発生させる高周波とは異なる周波数の高
周波を試料台に印加したことを特徴とする表面処理装
置。
6. The surface treatment apparatus according to claim 1, wherein a high frequency having a frequency different from a high frequency for generating plasma is applied to the sample stage.
【請求項7】請求項1から6記載の表面処理装置におい
て、試料台と平行電極との間の距離を10cm以下にしたこ
とを特徴とする表面処理装置。
7. The surface treatment apparatus according to any one of claims 1 to 6, wherein the distance between the sample stage and the parallel electrode is 10 cm or less.
JP7232287A 1995-09-11 1995-09-11 Surface treatment device Pending JPH0982491A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7232287A JPH0982491A (en) 1995-09-11 1995-09-11 Surface treatment device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7232287A JPH0982491A (en) 1995-09-11 1995-09-11 Surface treatment device

Publications (1)

Publication Number Publication Date
JPH0982491A true JPH0982491A (en) 1997-03-28

Family

ID=16936862

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7232287A Pending JPH0982491A (en) 1995-09-11 1995-09-11 Surface treatment device

Country Status (1)

Country Link
JP (1) JPH0982491A (en)

Similar Documents

Publication Publication Date Title
US5401351A (en) Radio frequency electron cyclotron resonance plasma etching apparatus
US6679981B1 (en) Inductive plasma loop enhancing magnetron sputtering
US5397962A (en) Source and method for generating high-density plasma with inductive power coupling
JP3233575B2 (en) Plasma processing equipment
US5173641A (en) Plasma generating apparatus
JPH04354867A (en) Plasma treating device
JPH11135438A (en) Semiconductor plasma processing apparatus
JP3254069B2 (en) Plasma equipment
JPH0362517A (en) Microwave plasma processor
JPH0718433A (en) Icp sputtering device
JPH01184923A (en) Plasma processor optimum for etching, ashing, film formation and the like
JPS61213377A (en) Method and apparatus for plasma deposition
JP3294839B2 (en) Plasma processing method
JPH01184922A (en) Plasma processor useful for etching, ashing, film formation and the like
JP5705290B2 (en) Plasma processing equipment
JPH0982491A (en) Surface treatment device
JP3379506B2 (en) Plasma processing method and apparatus
KR101281191B1 (en) Inductively coupled plasma reactor capable
JPH08316205A (en) Method and device for performing plasma treatment
JPH0252855B2 (en)
JPH1074599A (en) Plasma treating method and device
JP4223143B2 (en) Plasma processing equipment
JP3205542B2 (en) Plasma equipment
JP2001332541A (en) Plasma processing device
JP3455616B2 (en) Etching equipment

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term
FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 12

Free format text: PAYMENT UNTIL: 20071129