JPH0982351A - Phosphoric acid type fuel cell power generation device - Google Patents

Phosphoric acid type fuel cell power generation device

Info

Publication number
JPH0982351A
JPH0982351A JP7230589A JP23058995A JPH0982351A JP H0982351 A JPH0982351 A JP H0982351A JP 7230589 A JP7230589 A JP 7230589A JP 23058995 A JP23058995 A JP 23058995A JP H0982351 A JPH0982351 A JP H0982351A
Authority
JP
Japan
Prior art keywords
refrigerant
phosphoric acid
fuel cell
temperature sensor
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7230589A
Other languages
Japanese (ja)
Inventor
Takashi Ujiie
孝 氏家
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP7230589A priority Critical patent/JPH0982351A/en
Publication of JPH0982351A publication Critical patent/JPH0982351A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)

Abstract

PROBLEM TO BE SOLVED: To safely operate a device by calculating a temperature rise in a cooling pipe from outputs of temperature sensors on the refrigerant inlet and outlet sides, sending out an abnormal signal when its value exceeds a reference value in a no-load operation condition, and detecting a phosphoric acid lacking condition caused in a single cell in its early stages. SOLUTION: A refrigerant side inlet temperature sensor 2 to detect a temperature of a refrigerant flowing to the inlet side of a refrigerant common pipe 24 and a refrigerant outlet temperature sensor 3 to detect a temperature of the refrigerant flowing to the outlet side of a refrigerant discharge pipe 25, are incorporated as an abnormality detecting means to detect a phosphoric acid lacking condition of an electrolyte layer. An abnormality detecting circuit 4 is arranged to generate an abnormal signal when its value exceeds a reference value in a no-load operation condition by calculating a temperature rise in the refrigerant in a cooling pipe by inputting outputs of the two temperature sensors 2 and 3. A phosphoric acid quantity of an electrolyte layer lacks, and when reaction gas leaks by passing through a matrix, the refrigerant flowing in the cooling pipe is heated, and a temperature rise in the refrigerant exceeds the reference value, and the abnormality detecting circuit 4 generates an abnormal signal.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】この発明は、リン酸を電解質
として用いるリン酸型燃料電池発電装置、特にリン酸の
不足を監視する機能を備えた発電装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a phosphoric acid fuel cell power generator using phosphoric acid as an electrolyte, and more particularly to a power generator having a function of monitoring a shortage of phosphoric acid.

【0002】[0002]

【従来の技術】リン酸型燃料電池発電装置は、マトリッ
クスにリン酸を保持した電解質層を燃料極と空気極とに
より挟持してなる単セルを積層して燃料電池積層体を構
成し、燃料極に燃料ガスとして水素を、また空気極に酸
化剤ガスとして酸素を供給し、電気化学反応により発電
する装置である。
2. Description of the Related Art In a phosphoric acid fuel cell power generator, a fuel cell stack is constructed by stacking single cells in which an electrolyte layer holding phosphoric acid in a matrix is sandwiched between a fuel electrode and an air electrode. It is a device that supplies hydrogen to the electrode as a fuel gas and oxygen to the air electrode as an oxidant gas to generate electricity by an electrochemical reaction.

【0003】図2は、リン酸型燃料電池発電装置の燃料
電池積層体の一例を示す分解斜視図である。リン酸を保
持したマトリックスからなる電解質層11を燃料極12
と空気極13とにより挟持して単セル10が形成されて
いる。燃料極12は、燃料ガスを通流する溝を備えたリ
ブ付き燃料極基材に燃料極触媒層を密着して構成され、
また空気極13は、燃料ガスと直交する方向に空気を通
流する溝を備えたリブ付き空気極基材に空気極触媒層を
密着して構成されている。このように形成された単セル
10をガス不拡散性のセパレータ14を介在させて積層
し、複数層積層するごとに冷却板20を組み込んで燃料
電池積層体を構成している。冷却板20には複数の冷却
管21が埋設されており、この冷却管21に冷媒として
冷却水を通流して燃料電池積層体を冷却することによ
り、電気化学反応に伴う発熱を除去して運転温度を所定
温度に保持する。
FIG. 2 is an exploded perspective view showing an example of a fuel cell stack of a phosphoric acid fuel cell power generator. An electrolyte layer 11 made of a matrix holding phosphoric acid is attached to a fuel electrode 12
The unit cell 10 is formed by being sandwiched by the air electrode 13 and the air electrode 13. The fuel electrode 12 is constituted by closely adhering a fuel electrode catalyst layer to a ribbed fuel electrode base material provided with a groove for passing a fuel gas,
Further, the air electrode 13 is constituted by closely adhering an air electrode catalyst layer to a ribbed air electrode base material having a groove for passing air in a direction orthogonal to the fuel gas. The unit cell 10 thus formed is laminated with the gas non-diffusing separator 14 interposed, and the cooling plate 20 is incorporated every time a plurality of layers are laminated to form a fuel cell laminate. A plurality of cooling pipes 21 are embedded in the cooling plate 20, and cooling water is passed through the cooling pipes 21 as a refrigerant to cool the fuel cell stack, thereby removing heat generated by the electrochemical reaction and operating the same. The temperature is maintained at a predetermined temperature.

【0004】図3は、上記の冷却板20の構成を示す斜
視図である。方形の冷却板20には複数の同一管径の冷
却管21が並列に埋設されており、冷却管21の管末
は、それぞれ冷媒供給管24に取り付けられて冷媒供給
用ヘッダー22と、冷媒排出管25に取り付けられて冷
媒排出用ヘッダー23に連結されている。したがって、
冷媒として送られる冷却水は、冷媒供給管24より冷媒
供給用ヘッダー22へと導かれたのち複数の冷却管21
をほぼ均等に分流して冷却板20を冷却し、冷媒排出用
ヘッダー23に集められて冷媒排出管25より排出され
ることとなる。
FIG. 3 is a perspective view showing the structure of the cooling plate 20. A plurality of cooling pipes 21 having the same pipe diameter are embedded in parallel in a rectangular cooling plate 20, and the ends of the cooling pipes 21 are attached to a refrigerant supply pipe 24, respectively, and are connected to a refrigerant supply header 22 and a refrigerant discharge. It is attached to the pipe 25 and is connected to the refrigerant discharge header 23. Therefore,
The cooling water sent as the refrigerant is guided from the refrigerant supply pipe 24 to the refrigerant supply header 22 and then the plurality of cooling pipes 21.
Are almost evenly diverted to cool the cooling plate 20, are collected in the refrigerant discharge header 23, and are discharged from the refrigerant discharge pipe 25.

【0005】上記のごとく構成された燃料電池積層体の
各側面に、それぞれ燃料ガスと空気の供給用マニホール
ドおよび排出用マニホールドを組み込み、運転温度を 1
90℃程度に保持しながら、燃料ガスと空気を通流すれ
ば、各単セル10で電気化学反応が生じて発電運転が持
続されることとなる。
A fuel gas and air supply manifold and a discharge manifold are installed on each side surface of the fuel cell stack constructed as described above, and the operating temperature is set to 1
If the fuel gas and air are allowed to flow while maintaining the temperature at about 90 ° C., an electrochemical reaction occurs in each single cell 10 and the power generation operation is continued.

【0006】[0006]

【発明が解決しようとする課題】このように構成された
燃料電池積層体を用いるリン酸型燃料電池発電装置にお
いては、各単セル10の空気極13で主として生じる電
気化学反応の生成水の蒸気が空気極基材を透過して空気
通流用の溝へと放出される際に、これに伴ってリン酸が
飛散し、電解質層11のリン酸が徐々に減少するので、
発電運転の進行とともに、やがてはリン酸が不足する事
態に至ることとなる。電解質層11のリン酸が不足する
と、電極触媒の活性が低下するので高負荷時の発電電圧
の低下が大きくなり、またリン酸の不足が不均等に生じ
るとリン酸を保持している部分に電流が集中し電流密度
が高まるので、過負荷となって損傷する危険性がある。
また、さらにリン酸の不足が進行すると、燃料ガスと空
気との差圧によって電解質層11のマトリックスを透過
して反応ガスが漏洩し、反応ガス間で直接反応が起こっ
て、燃料電池積層体に多大な損傷を与える危険性があ
る。
In the phosphoric acid fuel cell power generator using the fuel cell stack constructed as described above, the vapor of water produced by the electrochemical reaction mainly generated in the air electrode 13 of each single cell 10 When the gas permeates the air electrode base material and is discharged into the groove for air flow, phosphoric acid scatters along with this, and the phosphoric acid in the electrolyte layer 11 gradually decreases.
As the power generation operation progresses, the situation will eventually lead to a shortage of phosphoric acid. When the phosphoric acid in the electrolyte layer 11 is insufficient, the activity of the electrode catalyst is reduced, so that the power generation voltage at the time of high load is greatly reduced, and when the phosphoric acid is insufficiently deficient, the phosphoric acid is retained in the portion. Since current concentrates and current density increases, there is a risk of overload and damage.
Further, when the phosphoric acid deficiency further progresses, the reaction gas leaks through the matrix of the electrolyte layer 11 due to the pressure difference between the fuel gas and the air, and a direct reaction occurs between the reaction gases, resulting in a fuel cell stack. Risk of serious damage.

【0007】このような重大な損傷の発生を回避するた
めには、リン酸の不足状態を早期に検知して対応策を講
じることが必要である。このため従来のリン酸型燃料電
池発電装置では、高負荷時の発電電圧の低下度の監
視、起動時における無負荷電圧の低下度の監視、ある
いは、外部から単セルに差圧を加えてのガス透過量の
測定等によりリン酸の不足を検知する手段が採られてい
る。
In order to avoid the occurrence of such serious damage, it is necessary to detect the phosphoric acid deficiency state at an early stage and take a countermeasure. For this reason, in the conventional phosphoric acid fuel cell power generator, the degree of decrease in the generated voltage at high load is monitored, the degree of decrease in the no-load voltage at startup is monitored, or a differential pressure is applied to the single cell from the outside. A means for detecting the shortage of phosphoric acid by measuring the amount of gas permeation is adopted.

【0008】しかしながら、上記のやの手段におい
ては、単セルの積層数の多い燃料電池積層体の場合に
は、かなりの個数の単セルでリン酸が不足しなければ電
圧の低下による検知は困難であるので、局部的な不足の
発生を見逃してしまう危険性があり、検知された時点で
は既にかなりの規模の損傷が生じてしまっている危険性
が高い。また、の手段においては差圧を加えることと
なるので、局部的にリン酸が不足した単セルに対しては
きびしい条件となり、加えた差圧によってリン酸が不足
した部分に残存するリン酸が吹き抜けてしまうという危
険性がある。
However, in the above-mentioned means, in the case of a fuel cell stack having a large number of stacked unit cells, it is difficult to detect due to a decrease in voltage unless phosphoric acid is insufficient in a considerable number of unit cells. Therefore, there is a risk of overlooking the occurrence of a local shortage, and there is a high risk that a considerable amount of damage has already occurred at the time of detection. Further, in the means of, since a differential pressure is applied, it becomes a severe condition for a single cell where the phosphoric acid is locally insufficient, and the phosphoric acid remaining in the portion where the phosphoric acid is insufficient due to the applied differential pressure is There is a danger that it will blow through.

【0009】本発明は、上記のごとき従来技術の難点を
考慮してなされたもので、本発明の目的は、単セルで生
じるリン酸不足状態を早期に検知する手段を備え、安全
に運転できるリン酸型燃料電池発電装置を提供すること
にある。
The present invention has been made in consideration of the drawbacks of the prior art as described above, and an object of the present invention is to provide a means for early detection of a phosphoric acid deficiency state occurring in a single cell, which enables safe driving. An object is to provide a phosphoric acid fuel cell power generator.

【0010】[0010]

【課題を解決するための手段】上記の目的を達成するた
めに、本発明においては、マトリックスにリン酸を保持
した電解質層を燃料極と空気極とで挟持してなる単セル
を複数層ごとに冷却板を介在させつつ積層して構成され
る燃料電池積層体を備え、燃料極に燃料ガスを、また空
気極に酸化剤ガスを供給して、電気化学反応により発電
し、発電に伴う発熱を冷却板に埋設した冷却管に冷媒を
通流して除熱するリン酸型燃料電池発電装置において、
冷却管に冷媒を供給する冷媒供給管に、通流する冷媒の
温度を検知する冷媒入口側温度センサーを備え、また冷
却管より冷媒を排出する冷媒排出管に、通流する冷媒の
温度を検知する冷媒出口側温度センサーを備え、さら
に、冷媒入口側温度センサーと冷媒出口側温度センサー
の出力を入力として冷却管での冷媒の温度上昇を算出
し、その値が無負荷運転状態において基準値を越えたと
き異常信号を発する異常検出回路を備えることとする。
In order to achieve the above-mentioned object, in the present invention, a plurality of unit cells each having a matrix in which an electrolyte layer holding phosphoric acid is sandwiched between a fuel electrode and an air electrode are provided. A fuel cell stack, which is configured by stacking a cooling plate in between, is provided. Fuel gas is supplied to the fuel electrode and oxidant gas is supplied to the air electrode to generate electricity by an electrochemical reaction, and heat generated by the power generation. In a phosphoric acid fuel cell power generator that removes heat by passing a refrigerant through a cooling pipe embedded in a cooling plate,
The coolant supply pipe that supplies the coolant to the cooling pipe is equipped with a coolant inlet side temperature sensor that detects the temperature of the flowing coolant, and the temperature of the coolant flowing through the coolant discharge pipe that discharges the coolant from the cooling pipe is detected. It is equipped with a refrigerant outlet side temperature sensor to further calculate the temperature rise of the refrigerant in the cooling pipe by inputting the output of the refrigerant inlet side temperature sensor and the refrigerant outlet side temperature sensor, and the value is the reference value in the no-load operation state. An abnormality detection circuit that emits an abnormality signal when exceeding the limit shall be provided.

【0011】リン酸型燃料電池発電装置を上記のごとく
とすれば、無負荷時には電気化学反応が起こらないの
で、これに伴う発熱もない。したがって、燃料電池積層
体が正常であれば、冷却板に埋設した冷却管を流れる冷
媒は加熱されることなく排出されるので、冷媒入口側温
度センサーで検知される冷媒の温度と冷媒出口側温度セ
ンサーで検知される冷媒の温度は、ほぼ同一となる。こ
れに対して、電解質層のリン酸の不足が進行しマトリッ
クスを透過して反応ガスが漏洩すると、反応ガスが単セ
ル内で直接反応を起こし発熱することとなるので、無負
荷時においても冷却管を流れる冷媒は加熱され、冷媒出
口側温度センサーで検知される冷媒の温度は冷媒入口側
温度センサーで検知される冷媒の温度より高くなる。し
たがって、無負荷運転状態において、冷媒入口側温度セ
ンサーと冷媒出口側温度センサーの出力より冷媒の温度
上昇を算出し、その値を基準値と比較することにより電
解質層のリン酸の不足が知られることとなる。
When the phosphoric acid fuel cell power generator is constructed as described above, no electrochemical reaction occurs when there is no load, and therefore no heat is generated. Therefore, if the fuel cell stack is normal, the refrigerant flowing through the cooling pipe embedded in the cooling plate is discharged without being heated, and therefore the temperature of the refrigerant detected by the temperature sensor on the refrigerant inlet side and the temperature on the refrigerant outlet side are detected. The temperature of the refrigerant detected by the sensor is almost the same. On the other hand, when phosphoric acid in the electrolyte layer becomes insufficient and the reaction gas leaks after permeating the matrix, the reaction gas directly reacts in the single cell and generates heat. The refrigerant flowing through the pipe is heated, and the temperature of the refrigerant detected by the refrigerant outlet side temperature sensor becomes higher than the temperature of the refrigerant detected by the refrigerant inlet side temperature sensor. Therefore, in the no-load operation state, the temperature rise of the refrigerant is calculated from the outputs of the refrigerant inlet side temperature sensor and the refrigerant outlet side temperature sensor, and the lack of phosphoric acid in the electrolyte layer is known by comparing the value with the reference value. It will be.

【0012】[0012]

【発明の実施の形態】図1は、本発明のリン酸型燃料電
池発電装置の実施の形態を示す異常検出手段の基本構成
図である。本図において、模式的に表示された燃料電池
積層体1は、電解質層にリン酸を用いた単セルをセパレ
ータを介在させて積層し、冷却板20を組み込んで構成
されている。燃料電池積層体1に組み込まれた冷却板2
0には、それぞれ複数の冷却管21が埋設されており、
これらの冷却管21の一端は冷媒供給用ヘッダー22を
介して冷媒供給管24へ連結され、他端は冷媒排出用ヘ
ッダー23を介して冷媒排出管25へ連結されている。
さらに、本構成においては、電解質層のリン酸の不足状
態を検出する異常検出手段として、冷媒供給管24の入
口側に通流する冷媒の温度を検知する冷媒入口側温度セ
ンサー2が、また冷媒排出管25の出口側に通流する冷
媒の温度を検知する冷媒出口側温度センサー3が組み込
まれ、さらに、これら二つの温度センサーの出力を入力
として冷却管での冷媒の温度上昇を算出し、その値が無
負荷運転状態において基準値を越えるとき異常信号を発
する異常検出回路4が備えられている。
DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 is a basic configuration diagram of an abnormality detecting means showing an embodiment of a phosphoric acid fuel cell power generator of the present invention. In the figure, the fuel cell stack 1 schematically shown is constructed by stacking single cells using phosphoric acid in an electrolyte layer with a separator interposed therebetween, and incorporating a cooling plate 20. Cooling plate 2 incorporated in fuel cell stack 1
0 has a plurality of cooling pipes 21 embedded therein,
One ends of these cooling pipes 21 are connected to a coolant supply pipe 24 via a coolant supply header 22 and the other ends are connected to a coolant discharge pipe 25 via a coolant discharge header 23.
Further, in the present configuration, the refrigerant inlet side temperature sensor 2 for detecting the temperature of the refrigerant flowing to the inlet side of the refrigerant supply pipe 24 serves as the abnormality detecting means for detecting the phosphoric acid deficiency state of the electrolyte layer. The refrigerant outlet side temperature sensor 3 for detecting the temperature of the refrigerant flowing to the outlet side of the discharge pipe 25 is incorporated, and further, the output of these two temperature sensors is input to calculate the temperature rise of the refrigerant in the cooling pipe, An abnormality detection circuit 4 is provided which issues an abnormality signal when the value exceeds a reference value in a no-load operation state.

【0013】本構成によれば、電解質層のリン酸量が正
常であれば、無負荷運転状態においては燃料電池積層体
1の内部での発熱が無く冷媒が加熱されることがないた
め、二つの温度センサーの出力から得られる冷媒の温度
上昇は基準値以下に保たれるので異常検出回路4が異常
信号を発することはない。電解質層のリン酸量が不足
し、マトリックスを透過して反応ガスが漏洩すると、反
応ガスが単セル内で直接反応を起こし発熱することとな
るので、無負荷時においても冷却管を流れる冷媒は加熱
される。したがって、二つの温度センサーの出力から得
られる冷媒の温度上昇は基準値を越え、異常検出回路4
が異常信号を発するので、容易にリン酸の不足の事態が
生じたことがわかることとなる。
According to this structure, when the amount of phosphoric acid in the electrolyte layer is normal, no heat is generated inside the fuel cell stack 1 and the refrigerant is not heated in the no-load operation state. Since the temperature rise of the refrigerant obtained from the outputs of the two temperature sensors is kept below the reference value, the abnormality detection circuit 4 does not issue an abnormality signal. When the amount of phosphoric acid in the electrolyte layer is insufficient and the reaction gas permeates the matrix and leaks, the reaction gas directly reacts in the single cell to generate heat, so the refrigerant flowing through the cooling pipe does not flow even under no load. Be heated. Therefore, the temperature rise of the refrigerant obtained from the outputs of the two temperature sensors exceeds the reference value, and the abnormality detection circuit 4
Emits an abnormal signal, so that it is easy to know that a situation of insufficient phosphoric acid has occurred.

【0014】なお、上記の構成例においては、冷媒排出
管25の出口側に冷媒出口側温度センサー3を組み込み
排出される冷媒の温度を検知することにより、燃料電池
積層体1の各単セルにおけるリン酸の不足の事態を一括
して検知する方法をもちいているが、冷媒出口側温度セ
ンサー3を各冷却板20の冷却管21に連結された冷媒
排出用ヘッダー23の出口部分に組み込めば、リン酸の
不足の発生個所が分割して検知されるので、より効果的
である。
In the above configuration example, by incorporating the refrigerant outlet side temperature sensor 3 at the outlet side of the refrigerant discharge pipe 25 to detect the temperature of the discharged refrigerant, the unit cells of the fuel cell stack 1 are detected. Although the method of collectively detecting the situation of phosphoric acid shortage is used, if the refrigerant outlet side temperature sensor 3 is incorporated in the outlet portion of the refrigerant discharge header 23 connected to the cooling pipe 21 of each cooling plate 20, This is more effective because the location where the phosphoric acid deficiency occurs is detected separately.

【0015】[0015]

【発明の効果】上述のように、本発明においては、マト
リックスにリン酸を保持した電解質層を燃料極と空気極
とで挟持してなる単セルを複数層ごとに冷却板を介在さ
せつつ積層して構成される燃料電池積層体を備え、燃料
極に燃料ガスを、また空気極に酸化剤ガスを供給して、
電気化学反応により発電し、発電に伴う発熱を冷却板に
埋設した冷却管に冷媒を通流して除熱するリン酸型燃料
電池発電装置において、冷却管に冷媒を供給する冷媒供
給管に、通流する冷媒の温度を検知する冷媒入口側温度
センサーを備え、また冷却管より冷媒を排出する冷媒排
出管に、通流する冷媒の温度を検知する冷媒出口側温度
センサーを備え、さらに、冷媒入口側温度センサーと冷
媒出口側温度センサーの出力を入力として冷却管での冷
媒の温度上昇を算出し、その値が無負荷運転状態におい
て基準値を越えたとき異常信号を発する異常検出回路を
備えることとしたので、発電運転を停止することなく単
セルで生じるリン酸不足状態を早期に検知することがで
き、安全に運転できるリン酸型燃料電池発電装置が得ら
れることとなった。
As described above, in the present invention, a single cell in which an electrolyte layer in which phosphoric acid is held in a matrix is sandwiched between a fuel electrode and an air electrode is laminated with a plurality of layers interposed by cooling plates. And a fuel gas are supplied to the fuel electrode and an oxidant gas is supplied to the air electrode,
In a phosphoric acid fuel cell power generator that generates electricity by an electrochemical reaction and passes the heat generated by power generation through a cooling pipe embedded in a cooling plate to remove heat, a refrigerant supply pipe that supplies the refrigerant to the cooling pipe A refrigerant inlet side temperature sensor for detecting the temperature of the flowing refrigerant is provided, and a refrigerant outlet pipe for discharging the refrigerant from the cooling pipe is provided with a refrigerant outlet side temperature sensor for detecting the temperature of the flowing refrigerant. An abnormality detection circuit that calculates the temperature rise of the refrigerant in the cooling pipe using the output of the temperature sensor on the side of the refrigerant and the temperature sensor on the outlet side of the refrigerant and outputs an abnormality signal when the value exceeds the reference value in the no-load operation state Therefore, the phosphoric acid deficiency state that occurs in the single cell can be detected early without stopping the power generation operation, and it is possible to obtain the phosphoric acid fuel cell power generator that can be operated safely.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明のリン酸型燃料電池発電装置の実施の形
態を示す異常検出手段の基本構成図
FIG. 1 is a basic configuration diagram of abnormality detecting means showing an embodiment of a phosphoric acid fuel cell power generator of the present invention.

【図2】リン酸型燃料電池発電装置の燃料電池積層体の
一例を示す分解斜視図
FIG. 2 is an exploded perspective view showing an example of a fuel cell stack of a phosphoric acid fuel cell power generator.

【図3】図2の燃料電池積層体に組み込まれた冷却板の
構成を示す斜視図
3 is a perspective view showing a configuration of a cooling plate incorporated in the fuel cell stack of FIG.

【符号の説明】[Explanation of symbols]

1 燃料電池積層体 2 冷媒入口側温度センサー 3 冷媒出口側温度センサー 4 異常検出回路 10 単セル 11 電解質層 12 燃料極 13 空気極 14 セパレータ 20 冷却板 21 冷却管 22 冷媒供給用ヘッダー 23 冷媒排出用ヘッダー 24 冷媒供給管 25 冷媒排出管 1 Fuel Cell Stack 2 Refrigerant Inlet Side Temperature Sensor 3 Refrigerant Outlet Side Temperature Sensor 4 Abnormality Detection Circuit 10 Single Cell 11 Electrolyte Layer 12 Fuel Electrode 13 Air Electrode 14 Separator 20 Cooling Plate 21 Cooling Pipe 22 Refrigerant Supply Header 23 For Refrigerant Discharge Header 24 Refrigerant supply pipe 25 Refrigerant discharge pipe

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】マトリックスにリン酸を保持した電解質層
を燃料極と空気極とで挟持してなる単セルを複数層ごと
に冷却板を介在させつつ積層して構成される燃料電池積
層体を備え、燃料極に燃料ガスを、また空気極に酸化剤
ガスを供給して、電気化学反応により発電し、発電に伴
う発熱を冷却板に埋設した冷却管に冷媒を通流して除熱
するリン酸型燃料電池発電装置において、前記冷却管に
冷媒を供給する冷媒供給管に、通流する冷媒の温度を検
知する冷媒入口側温度センサーを備え、また前記冷却管
より冷媒を排出する冷媒排出管に、通流する冷媒の温度
を検知する冷媒出口側温度センサーを備え、さらに、冷
媒入口側温度センサーと冷媒出口側温度センサーの出力
を入力として冷却管での冷媒の温度上昇を算出し、その
値が無負荷運転状態において基準値を越えたとき異常信
号を発する異常検出回路を備えたことを特徴とするリン
酸型燃料電池発電装置。
1. A fuel cell laminate comprising a plurality of unit cells each having an electrolyte layer in which phosphoric acid is held in a matrix sandwiched between a fuel electrode and an air electrode, with a plurality of layers sandwiching a cooling plate. A fuel gas is supplied to the fuel electrode and an oxidant gas is supplied to the air electrode to generate electricity by an electrochemical reaction, and heat generated by the power generation is passed through a refrigerant through a cooling pipe embedded in a cooling plate to remove heat. In the acid fuel cell power generator, the refrigerant supply pipe for supplying the refrigerant to the cooling pipe is provided with a refrigerant inlet side temperature sensor for detecting the temperature of the flowing refrigerant, and the refrigerant discharge pipe for discharging the refrigerant from the cooling pipe. In the, provided with a refrigerant outlet side temperature sensor for detecting the temperature of the refrigerant flowing through, further, the temperature rise of the refrigerant in the cooling pipe is calculated by inputting the output of the refrigerant inlet side temperature sensor and the refrigerant outlet side temperature sensor, Value is no load Phosphoric acid fuel cell power generation apparatus characterized by comprising an abnormality detection circuit for emitting an abnormality signal when it exceeds the reference value at.
JP7230589A 1995-09-08 1995-09-08 Phosphoric acid type fuel cell power generation device Pending JPH0982351A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7230589A JPH0982351A (en) 1995-09-08 1995-09-08 Phosphoric acid type fuel cell power generation device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7230589A JPH0982351A (en) 1995-09-08 1995-09-08 Phosphoric acid type fuel cell power generation device

Publications (1)

Publication Number Publication Date
JPH0982351A true JPH0982351A (en) 1997-03-28

Family

ID=16910115

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7230589A Pending JPH0982351A (en) 1995-09-08 1995-09-08 Phosphoric acid type fuel cell power generation device

Country Status (1)

Country Link
JP (1) JPH0982351A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107528020A (en) * 2016-06-17 2017-12-29 Sk新技术株式会社 Secondary battery

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107528020A (en) * 2016-06-17 2017-12-29 Sk新技术株式会社 Secondary battery
CN107528020B (en) * 2016-06-17 2024-03-29 Sk新能源株式会社 Secondary battery pack

Similar Documents

Publication Publication Date Title
JP4952114B2 (en) Fuel cell system
JP2914802B2 (en) Fuel cell power generation system
JP4637448B2 (en) Fuel cell power generation system and method of operating fuel cell power generation system
JP2007220559A (en) Fuel cell system
JP2679298B2 (en) Phosphoric acid residual amount monitor for phosphoric acid fuel cell
JP2004220823A (en) Cell abnormality detection device of fuel cell
JP2010108815A (en) Electrochemical device
JPH0982351A (en) Phosphoric acid type fuel cell power generation device
JP5139870B2 (en) Fuel cell system and cross leak detection method using the same
JP4818319B2 (en) Fuel cell system
JPH08185878A (en) Fuel cell power generation device
JPH09306519A (en) Power generating device for phosphoric acid fuel cell
JP5172605B2 (en) Fuel cell system and cross leak detection method using the same
JPH0824052B2 (en) Stacked fuel cell
JP5051982B2 (en) Control of fuel cell using current density distribution measuring device
US20090208781A1 (en) Method for operating a fuel cell system
JPH11260385A (en) Fuel cell protection method, protection device, and fuel cell device
JPH08213038A (en) Control method of fuel cell power generation device
JP2012174396A (en) Solid polymer fuel cell power generating system
JP5508633B2 (en) Fuel cell abnormality detection device, fuel cell device, and fuel cell abnormality detection method
AU2017227948B2 (en) Fuel cell system with leakage detection
JPH09102324A (en) Phosphoric-acid type fuel cell generating system
JP2002056883A (en) Fuel cell device and operating method for the same
JPH10106602A (en) Phosphoric acid fuel cell
JP5041662B2 (en) FUEL CELL SYSTEM, FUEL CELL SYSTEM CONTROL METHOD, AND FUEL CELL SYSTEM ABNORMALITY DETECTING METHOD