JPH0981748A - Method for discriminating outline shape and automatic sorting device - Google Patents

Method for discriminating outline shape and automatic sorting device

Info

Publication number
JPH0981748A
JPH0981748A JP25924895A JP25924895A JPH0981748A JP H0981748 A JPH0981748 A JP H0981748A JP 25924895 A JP25924895 A JP 25924895A JP 25924895 A JP25924895 A JP 25924895A JP H0981748 A JPH0981748 A JP H0981748A
Authority
JP
Japan
Prior art keywords
shape
change curve
coordinate system
contour
test object
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP25924895A
Other languages
Japanese (ja)
Inventor
Hideji Shinoki
秀次 篠木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP25924895A priority Critical patent/JPH0981748A/en
Publication of JPH0981748A publication Critical patent/JPH0981748A/en
Pending legal-status Critical Current

Links

Landscapes

  • Image Analysis (AREA)

Abstract

PROBLEM TO BE SOLVED: To sort an inspecting object according to the thickness, weight, etc., in addition of its outline shape. SOLUTION: Light is projected on the inspecting object, mounted on the mount surface 8 of an inspection stage from a light source 10 and its projection image is picked up by a camera 9. A processor 15 processes the picked-up projection image to represent its outline coordinates by an orthogonal coordinate system, and converts them to a cylindrical coordinate system having its origin at the center of gravity of the projection image so that θ becomes constant. A normalization correlative value between the variation curve of θto (r) at the converted coordinates and the variation curve of a master which is previously stored is calculated to sort the shape. At the same time, the thickness and weight are measured by a thickness measuring sensor 11 and a scale 12 and compared with those of the master to control a sorting mechanism 4 which classifies the inspecting object by shapes according to the sorting result.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、不透明な物体の輪
郭の形状を識別する方法と、この識別により物体を選別
する装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for identifying the contour shape of an opaque object and an apparatus for selecting an object by this identification.

【0002】[0002]

【従来の技術】不透明な物体の輪郭形状を識別する手段
としてチェイン符号化法や幾何学的特徴抽出法が知られ
ている。チェイン符号化法はデジタル化された画像情報
から画素間の位置関係を所定の方向指数で表し、これを
鎖状につないだ方向指数の列で輪郭形状を表現する方法
である(特公平4-17079 号公報参照)。幾何学的特徴抽
出法はデジタル化された画像の輪郭情報から頂点の数や
角度を計測する方法で、三角形や四角形など明確な形状
の識別に利用される。
2. Description of the Related Art A chain coding method and a geometrical feature extraction method are known as means for identifying the contour shape of an opaque object. The chain coding method is a method in which the positional relationship between pixels is expressed by a predetermined direction index from the digitized image information, and the contour shape is expressed by a chain of direction indexes connected in a chain (Patent Publication 4- (See Publication No. 17079). The geometric feature extraction method is a method of measuring the number and angles of vertices from the contour information of a digitized image, and is used to identify a clear shape such as a triangle or a quadrangle.

【0003】また、他の輪郭形状識別技術としては、デ
ジタル化された被検物の画像から面積・縦横比・外周長
などの特徴量を求め、予め設定された値に対して合致す
るか否かを判断するものがあった。さらに、輪郭ではな
く全体形状で識別する技術としては、図11に示すよう
に、二値化された被検物のデジタル画像30とマスタ画像
31との差をとるパターンマッチング法があった。
Further, as another contour shape identifying technique, a feature amount such as an area, an aspect ratio, and an outer peripheral length is obtained from a digitized image of an object to be examined, and whether or not it agrees with a preset value. There was something to judge. Further, as a technique for identifying not by the contour but by the entire shape, as shown in FIG. 11, a binarized digital image 30 of the test object and a master image are used.
There was a pattern matching method that took the difference from 31.

【0004】[0004]

【発明が解決しようとする課題】しかし、上記の形状識
別技術は、識別する形状に応じた特徴抽出手段を選定す
る必要がある。一度設定された特徴抽出手段は形状が限
定されるため、新しい形状を追加することが容易にでき
なかった。特に、チェイン符号化法は物体の寸法が変わ
るとデータ数が変わるため、相似形であっても異なる形
状と認識する。また、幾何学的特徴抽出法は明確な頂点
をもたない形状には適用できない。
However, in the above shape identification technique, it is necessary to select the feature extraction means according to the shape to be identified. Since the shape of the feature extraction means once set is limited, it is not easy to add a new shape. In particular, the chain coding method recognizes that even if the shapes are similar, the shapes are different because the number of data changes when the size of the object changes. In addition, the geometric feature extraction method cannot be applied to shapes that do not have clear vertices.

【0005】パターンマッチング法についても物体の寸
法が変わると異なる形状と認識される上に被検物が回転
方向に位置ずれを起こすと識別できなくなるという問題
があった。一方、透過光による画像処理での形状識別も
あるが、厚みや重さの要素を考慮した選別は不可能であ
る。結局、任意の形状を識別し、厚み・重さ・材質を加
味して識別するような自動選別装置はなく、このような
選別は人手による作業に頼らざるをえなかった。
Also in the pattern matching method, there is a problem that when the size of the object is changed, the shape is recognized differently, and when the object is displaced in the rotational direction, the object cannot be identified. On the other hand, although there is shape identification by image processing using transmitted light, it is impossible to perform selection considering factors such as thickness and weight. In the end, there is no automatic sorting device that can discriminate any shape and consider the thickness, weight, and material, and such sorting must be done manually.

【0006】[0006]

【課題を解決するための手段】本発明は上記の課題を解
決するためになされたもので、被検物の投影像を画像処
理して画素の列で表し、この輪郭座標を直交座標系で全
て計測した後、投影像の重心を原点とする円筒座標系に
θの間隔が一定となるように補間・変換し、θに対する
rの変化曲線と予め同様の処理を経て記憶されたマスタ
の変化曲線との正規化相関値を求めることにより被検物
の形状を識別することを特徴とする。得られた輪郭デー
タをθの間隔が一定となるように円筒座標系に変換する
ことで、被検物の寸法の違いによるデータ数の変化を除
去している。
The present invention has been made in order to solve the above-mentioned problems, and a projected image of an object to be inspected is image-processed to be represented by a row of pixels, and the contour coordinates are expressed in a rectangular coordinate system. After all measurements, interpolate and convert into a cylindrical coordinate system with the center of gravity of the projected image as the origin so that the interval of θ becomes constant, and the change curve of r with respect to θ and the change of the master stored through similar processing in advance The feature is that the shape of the object to be inspected is identified by obtaining a normalized correlation value with the curve. By converting the obtained contour data into a cylindrical coordinate system so that the interval of θ becomes constant, the change in the number of data due to the difference in the dimensions of the test object is eliminated.

【0007】また、正方形とひし形のように微妙な形状
の違いを識別するため、円筒座標系で表された上記輪郭
座標におけるある点から隣接する点に至るベクトルを順
次求め、同じ方向成分をもつデータ数をカウントするこ
とでベクトルの角度に対するデータ数の変化曲線を求め
て、この変化曲線と予め同様の処理を経て記憶されたマ
スタの変化曲線との正規化相関値を求めることにより被
検物の形状を識別することを特徴とする。上記2つの方
法を組み合わせて形状認識をしてもよい。
Further, in order to identify a subtle difference in shape such as a square and a rhombus, a vector from one point to an adjacent point in the contour coordinates represented by the cylindrical coordinate system is sequentially obtained and has the same direction component. The change curve of the number of data with respect to the angle of the vector is obtained by counting the number of data, and the normalized correlation value between this change curve and the change curve of the master stored through the similar processing in advance is obtained to obtain the test object. It is characterized by identifying the shape of. Shape recognition may be performed by combining the above two methods.

【0008】さらに、被検物の投影像から求めた上記の
変化曲線を1点ずつデータの数だけシフトし、その度ご
とにマスタの変化曲線との正規化相関値を計算し、最大
の相関値から被検物の形状を認識することが好ましい。
これにより、被検物の回転に影響されることなく形状認
識を行うことができる。そして、上記の変化曲線が一定
値を示す場合には、被検物の形状を円形と認識する。具
体的には、相関値の計算を行う前に変化曲線データの分
散値を計算し、分散値が小さい場合は特異データとして
相関値計算を行わず、0で割り算することを防ぐ。
Further, the above-mentioned change curve obtained from the projected image of the test object is shifted one by one by the number of data, and the normalized correlation value with the change curve of the master is calculated every time, and the maximum correlation is calculated. It is preferable to recognize the shape of the test object from the value.
Thereby, the shape recognition can be performed without being affected by the rotation of the test object. Then, when the above-mentioned change curve shows a constant value, the shape of the test object is recognized as a circle. Specifically, before calculating the correlation value, the variance value of the change curve data is calculated, and when the variance value is small, the correlation value is not calculated as singular data, and division by 0 is prevented.

【0009】このような方法を利用した自動選別装置は
次の各構成を特徴とする。 被検物を載せる検査ステージ、検査ステージの裏面側
から被検物に投光する光源、検査ステージの表面側に位
置し、被検物の投影像を撮像するカメラ、撮像した投影
像を画像処理してその輪郭座標を直交座標系で認識する
手段、直交座標系で表された輪郭座標を、投影像の重心
を原点とする円筒座標系にθが一定となるように補間・
変換する手段、補間・変換された座標におけるθのrに
対する変化曲線と予め同様に処理して記憶されたマスタ
の変化曲線との正規化相関値を演算する手段、および正
規化相関値から被検物の形状を判断し、被検物を形状ご
とに分類する仕分け機構とを具えること。
An automatic sorting apparatus using such a method is characterized by the following respective configurations. An inspection stage on which the inspection object is placed, a light source that projects light from the back side of the inspection stage onto the inspection object, a camera that is located on the front surface side of the inspection stage and that captures a projected image of the inspection object, and image processing of the captured projection image Then, the means for recognizing the contour coordinates in the Cartesian coordinate system, the contour coordinates expressed in the Cartesian coordinate system are interpolated so that θ becomes constant in the cylindrical coordinate system whose origin is the center of gravity of the projected image.
A means for converting, a means for calculating a normalized correlation value between a change curve of θ for r in interpolated / converted coordinates and a master change curve stored in advance by the same processing, and a test from the normalized correlation value A sorting mechanism that determines the shape of an object and classifies the object to be inspected according to the shape.

【0010】被検物を載せる検査ステージ、検査ステ
ージの裏面側から被検物に投光する光源、検査ステージ
の表面側に位置し、被検物の投影像を撮像するカメラ、
撮像した投影像を画像処理してその輪郭座標を直交座標
系で表す手段、直交座標系で表された輪郭座標を、投影
像の重心を原点とする円筒座標にθが一定となるように
補間・変換する手段、補間・変換された輪郭座標におけ
るある点から隣接する点に至るベクトルを順次求め、同
じ方向成分をもつデータ数をカウントすることでベクト
ルの角度に対するデータ数の変化曲線を求める手段、こ
の変化曲線と予め同様に処理して記憶されたマスタの変
化曲線との正規化相関値を演算する手段、および正規化
相関値から被検物の形状を判断し、被検物を形状ごとに
分類する仕分け機構とを具えること。
An inspection stage on which an object to be inspected is mounted, a light source for projecting light from the back side of the inspection stage onto the object to be inspected, a camera which is located on the front surface side of the inspection stage and takes a projected image of the object to be inspected
A means for processing the captured projection image by image processing to express its contour coordinates in a rectangular coordinate system, and interpolating the contour coordinates expressed in a rectangular coordinate system so that θ is constant to the cylindrical coordinates whose origin is the center of gravity of the projected image. -Means for converting, means for sequentially obtaining vectors from a certain point to an adjacent point in the interpolated / transformed contour coordinates, and counting the number of data having the same direction component to obtain a change curve of the number of data with respect to the angle of the vector , A means for calculating a normalized correlation value between the change curve and a master change curve which is similarly processed and stored in advance, and the shape of the object to be inspected is determined from the normalized correlation value, and the object is analyzed for each shape. It has a sorting mechanism to classify into.

【0011】また、上記の装置において、検査ステー
ジに被検物の厚みを計測するセンサと秤の少なくとも一
方を具えること。これにより、輪郭形状に加えて被検物
の厚みや重さを選択基準とすることができる。 さらに、の構成に加えて被検物の画像からその面積
を演算する手段を具えること。厚み測定センサと秤によ
り厚みと重さが判るため、面積が判れば比重を演算する
ことができ、面積や比重も選別基準とすることができ
る。
In the above apparatus, the inspection stage should be provided with at least one of a sensor for measuring the thickness of the test object and a scale. Thereby, in addition to the contour shape, the thickness and weight of the test object can be used as the selection criterion. Further, in addition to the above configuration, it must be provided with a means for calculating the area of the image of the test object. Since the thickness and weight can be known by the thickness measuring sensor and the scale, the specific gravity can be calculated if the area is known, and the area and the specific gravity can also be used as selection criteria.

【0012】[0012]

【実施例】以下、スローアウェイチップ(以下TAとい
う)の選別を行う実施例に基づいて本発明を説明する。
図1は本発明装置の構成図である。図示のように、検査
ステージ1、TAの供給機構2およびTAを分類箱3に
分け入れる仕分け機構4とを具える。供給機構2と仕分
け機構4はいずれも2軸ロボットである。前者はパーツ
フィーダ5上の多数のTAからその一つをチャック6で
把持して検査ステージ上に搬送し、後者は検査ステージ
上のTAをチャック7で把持し、検査結果に基づいて分
類箱3の所定区域に投入する。分類箱3の区域数は選別
パターン数に対応して適宜設定すればよい。なお、検査
ステージ上へのTAの載置は向きを揃えて行う必要がな
く、単に検査ステージ1に載せればよい。
EXAMPLES The present invention will be described below based on examples in which throw-away chips (hereinafter referred to as TA) are selected.
FIG. 1 is a block diagram of the device of the present invention. As shown in the figure, it comprises an inspection stage 1, a TA supply mechanism 2 and a sorting mechanism 4 for sorting TA into a sorting box 3. The supply mechanism 2 and the sorting mechanism 4 are both biaxial robots. The former grips one of many TAs on the parts feeder 5 with the chuck 6 and conveys it onto the inspection stage, and the latter grips the TA on the inspection stage with the chuck 7 and sorts the classification boxes 3 based on the inspection results. It is put in the predetermined area of. The number of areas in the classification box 3 may be set appropriately in accordance with the number of selection patterns. It is not necessary to place the TAs on the inspection stage in the same direction, and the TAs may simply be placed on the inspection stage 1.

【0013】検査ステージ1の詳細を図2に示す。検査
ステージ1は、TAの載置面8の上方にITVカメラ
9、下方にハロゲン光源10、両側に厚み測定センサ11を
具え、台部が秤12として機能する。光源10は載置面上の
被検物(TA)に拡散光を投光し、カメラ9はTAの投
影像を撮像する。また、厚み測定センサ11は、図3に示
すように、対向して配置された投光器13と受光器14から
なる。載置面上に何もない場合、投光器13から照射され
た載置面8と平行なレーザスリット光は全て受光器14に
到達する(図3A参照)。一方、載置面上にTAが有れ
ばスリット光の一部は遮蔽されるため、受光できなかっ
た距離よりTAの厚さを認識することができる(図3B
参照)。このようにTAの撮像は載置面8の上方から行
い、厚み測定は載置面8の側方から行うため、両作業が
互いに干渉することはない。秤11は被検物を載置する前
後の測定値の差から重量を求める。検査ステージ1で
は、TAの撮像、厚み測定および重量測定が行われ、そ
の結果は全て処理装置15(図2)に送られる。処理装置
15は送られてきたデータより後述する手順でTAの選別
を行い、そのデータを仕分け機構制御部16に送って仕分
け機構4を制御する。
The details of the inspection stage 1 are shown in FIG. The inspection stage 1 has an ITV camera 9 above the mounting surface 8 of the TA, a halogen light source 10 below and a thickness measuring sensor 11 on both sides, and the table portion functions as a scale 12. The light source 10 projects diffused light onto the test object (TA) on the mounting surface, and the camera 9 captures a projected image of the TA. Further, as shown in FIG. 3, the thickness measuring sensor 11 is composed of a light projector 13 and a light receiver 14 which are arranged to face each other. When there is nothing on the mounting surface, all the laser slit light emitted from the projector 13 and parallel to the mounting surface 8 reaches the light receiver 14 (see FIG. 3A). On the other hand, if TA is present on the mounting surface, a part of the slit light is blocked, so that the thickness of TA can be recognized from the distance where the light cannot be received (FIG. 3B).
reference). In this way, the TA is imaged from above the mounting surface 8 and the thickness is measured from the side of the mounting surface 8, so that both operations do not interfere with each other. The scale 11 calculates the weight from the difference between the measured values before and after mounting the test object. At the inspection stage 1, the TA is imaged, the thickness is measured, and the weight is measured, and all the results are sent to the processing device 15 (FIG. 2). Processor
15 sorts TAs according to the procedure described later from the sent data and sends the data to the sorting mechanism control unit 16 to control the sorting mechanism 4.

【0014】処理装置15の構成を図4に示す。ITVカ
メラ9で撮像された像はA/D変換部17でデジタル化さ
れ、メモリ18に記憶される。メモリ18はCPU19と接続
されており、このCPU19でデジタル化された画像の輪
郭座標を抽出する。メモリ18の内容はD/A変換部20に
よりアナログ信号になりモニタ21で確認できる。処理装
置15では画像データに所定の演算処理を施してTAの選
別を行う。即ち、マスタパターン(選別の基準となる形
状)のθ−r変化曲線(後述)を登録しておき、被検物
についてもこの変化曲線を求め、両変化曲線の相関値か
ら被検物の形状がどのマスタパターンに相当するかを判
断する。また、必要に応じてVθ−n変化曲線(後述)
についても同様に相関値を求め、その結果から形状を区
別する。その際、厚みや重量などを選別基準として加え
てもよい。厚みや重量なども基準として選別する場合、
被検物の厚み、重量などを計測し、これをマスターデー
タと比較して一致しているか否かで判断する。
The structure of the processing device 15 is shown in FIG. The image captured by the ITV camera 9 is digitized by the A / D converter 17 and stored in the memory 18. The memory 18 is connected to the CPU 19 and extracts the outline coordinates of the image digitized by the CPU 19. The contents of the memory 18 become an analog signal by the D / A converter 20 and can be confirmed by the monitor 21. In the processor 15, the image data is subjected to predetermined arithmetic processing to select TA. That is, a θ-r change curve (described later) of the master pattern (shape that serves as a reference for selection) is registered, this change curve is also obtained for the test object, and the shape of the test object is determined from the correlation value of both change curves. Which master pattern corresponds to is determined. Also, if necessary, a Vθ-n change curve (described later)
In the same manner, the correlation value is obtained, and the shape is distinguished from the result. In that case, you may add thickness, weight, etc. as a selection criterion. When selecting based on thickness and weight,
The thickness, weight, etc. of the test object are measured and compared with the master data to judge whether or not they match.

【0015】<マスタの登録>ここでは、θ−r変化曲
線に基づく選別とVθ−n変化曲線に基づく選別とを併
用した場合を例に説明する。まず、検査ステージ上に登
録したい形状のもの(マスタ=TA自身でもよい)を載
せ、分類番号を指定する。分類番号は各マスタパターン
と対応しており、マスタパターンと同一形状と判断され
れば、対応する分類番号の信号が仕分け機構制御部に送
られる。マスタをカメラ9で撮像し、処理装置15に送ら
れた画像を直交座標系で表してその輪郭座標を抽出す
る。本例では正方形のマスタ(TA)を撮像しており、
その輪郭データは複数の画素により図5(A)のように
表される。
<Registration of Master> Here, a case where selection based on the θ-r change curve and selection based on the Vθ-n change curve are used together will be described as an example. First, the shape to be registered (master may be TA itself) is placed on the inspection stage, and the classification number is designated. The classification number corresponds to each master pattern, and if it is determined that the pattern has the same shape as the master pattern, a signal of the corresponding classification number is sent to the sorting mechanism control unit. The master 9 is imaged by the camera 9, the image sent to the processing device 15 is represented by a rectangular coordinate system, and its contour coordinates are extracted. In this example, a square master (TA) is imaged,
The contour data is represented by a plurality of pixels as shown in FIG.

【0016】次に、この輪郭座標データを投影像の重心
Cを原点とした円筒座標に変換する。変換は円筒座標の
θが一定となるように行う(図5B参照)。即ち、重心
Cから輪郭座標のある画素までの距離をr0 とし、順次
角度θごとの重心Cから輪郭画素までの距離をr1 ,r
2 ,r3 …として輪郭座標を表す。θは選別精度と演算
速度を考慮して適宜設定すればよい。これにより、被検
物のサイズにかかわらずデータ数を一定にすることがで
きる。この円筒座標におけるθに対するrの変化(θ−
r変化曲線)をグラフにすると図6(A)のようにな
る。さらに、図6(D)に示すように、円筒座標系の輪
郭座標におけるある画素から隣接する画素へのベクトル
の方向Vθを順次求め、同じ方向成分をもつデータ数を
カウントすることでベクトルの角度Vθに対するデータ
の数nの変化(Vθ−n変化曲線)を求める(図6C参
照)。以上の両変化曲線のデータをマスタパターンとし
てメモリ18に記憶しておく。
Next, the contour coordinate data is converted into cylindrical coordinates with the center of gravity C of the projected image as the origin. The conversion is performed so that the cylindrical coordinate θ is constant (see FIG. 5B). That is, the distance from the center of gravity C to a pixel with contour coordinates is r 0, and the distance from the center of gravity C to the contour pixel for each angle θ is r 1 , r
The contour coordinates are represented as 2 , r 3 . θ may be appropriately set in consideration of the sorting accuracy and the calculation speed. This makes it possible to keep the number of data constant regardless of the size of the test object. The change of r with respect to θ in this cylindrical coordinate (θ−
The graph of (r change curve) is shown in FIG. 6 (A). Further, as shown in FIG. 6D, the vector direction Vθ from a certain pixel to an adjacent pixel in the contour coordinates of the cylindrical coordinate system is sequentially obtained, and the number of data having the same direction component is counted to calculate the vector angle. A change in the number n of data with respect to Vθ (Vθ-n change curve) is obtained (see FIG. 6C). The data of both change curves described above is stored in the memory 18 as a master pattern.

【0017】その他、マスタデータとして、マスタの厚
み、重さ、面積、比重を登録する。厚みと重さは厚み測
定センサ11と秤12で測定する。面積は投影像の直交座標
データより演算する。比重は面積と厚みより体積を求
め、これを重量で除することで求めればよい。複数のマ
スタを登録する場合は上記の手順を各マスタごとに繰り
返す。マスタの登録数はメモリ量が許す限り可能であ
る。
In addition, as the master data, the thickness, weight, area, and specific gravity of the master are registered. The thickness and weight are measured by the thickness measuring sensor 11 and the scale 12. The area is calculated from the orthogonal coordinate data of the projected image. The specific gravity may be obtained by obtaining the volume from the area and the thickness and dividing this by the weight. When registering multiple masters, the above procedure is repeated for each master. The number of registered masters is possible as long as the amount of memory allows.

【0018】<TAの選別>TAの選別を行う際も上記
と同様に被検物についてのθ−r変化曲線とVθ−r変
化曲線とを求める。そして、数式1に基づいてマスタの
変化曲線との正規化相関値を演算する。数式1は変化曲
線を正規化しているため、マスタと相似の被検物も同様
な変化曲線として認識する。この相関値がほぼ1に近い
値であれば被検物の形状がマスタと同一または相似と認
識され、0に近づくに従って全く異なる形状と認識され
る。被検物の形状がマスタパターンとして登録されてい
ない場合でも最も近いマスタパターンとの相関値は1よ
りも小さくなるため、「その他」として区別できる。
「その他」として識別するためのしきい値は被検物によ
っても異なるが、今回のTAの選別では0.8程度で良
好な結果を得た。
<Selection of TA> When selecting TA, the θ-r change curve and the Vθ-r change curve of the test object are obtained in the same manner as above. Then, the normalized correlation value with the change curve of the master is calculated based on Expression 1. Since Equation 1 normalizes the change curve, an object similar to the master is recognized as a similar change curve. If the correlation value is a value close to 1, the shape of the test object is recognized as the same as or similar to the master, and as it approaches 0, it is recognized as a completely different shape. Even if the shape of the object to be inspected is not registered as the master pattern, the correlation value with the closest master pattern is smaller than 1, and therefore it can be distinguished as “other”.
Although the threshold value for identifying as “other” varies depending on the object to be inspected, a good result was obtained in this TA selection of about 0.8.

【0019】[0019]

【数1】 [Equation 1]

【0020】例えば、マスタパターンと合同の被検物を
マスタと同一方向に検査ステージ上に載置すれば、被検
物のθ−rおよびVθ−n変化曲線はマスタのそれと同
一となり、相関値が1となる。また、マスタパターンと
相似の被検物を検査ステージ上に同一方向に載置した場
合、θ−rおよびVθ−n変化曲線は図7に示すように
なる。同図において、実線がマスタパターンの変化曲
線、破線が被検物の変化曲線である。θ−r変化曲線は
正規化して相関値を求めるため、図7(A)のような曲
線(実線と破線)も同じ曲線として認識する。輪郭形状
の判断は、θ−r変化曲線による識別だけでもよいし、
これにVθ−n変化曲線による識別を併用してもよい。
選別精度に合わせて適宜選択すればよい。特に、Vθ−
n変化曲線による識別は微妙な角度の違いを考慮できる
ため、長方形と平行四辺形、正方形とひし形などθ−r
変化曲線では識別し難い形状も明確に区別できる。
For example, if an object to be inspected that is congruent with the master pattern is placed on the inspection stage in the same direction as the master, the θ-r and Vθ-n change curves of the object to be inspected will be the same as those of the master, and the correlation value will be the same. Becomes 1. Further, when an object similar to the master pattern is placed on the inspection stage in the same direction, the θ-r and Vθ-n change curves are as shown in FIG. 7. In the figure, the solid line is the change curve of the master pattern, and the broken line is the change curve of the test object. Since the θ-r change curve is normalized to obtain the correlation value, the curves (solid line and broken line) as shown in FIG. 7A are recognized as the same curve. The determination of the contour shape may be performed only by the θ-r change curve,
This may be combined with the identification based on the Vθ-n change curve.
It may be appropriately selected according to the sorting accuracy. In particular, Vθ−
Since n-curve identification can consider subtle differences in angles, rectangles and parallelograms, squares and rhombuses such as θ-r
Shapes that are difficult to identify with change curves can be clearly distinguished.

【0021】ところで、被検物の検査ステージへの載置
は向きを揃えずに行われるため、マスタと被検物が同一
形状でも各変化曲線の位相はまず一致せず相関値は低
い。そこで、マスタまたは被検物の変化曲線のデータを
1データずつデータの数だけシフトし、その度ごとにマ
スタの変化曲線との相関値を演算する。そして、最大の
相関値から形状判断を行う。即ち、マスタパターンと被
検物が同一形状なら、順次変化曲線のデータをシフトし
ていくとどこかで両曲線の位相が一致するため最大相関
値は1となる。このことから被検物の向きにかかわらず
形状判断を行うのである。
By the way, since the inspection object is placed on the inspection stage in the same direction, even if the master and the inspection object have the same shape, the phases of the respective change curves do not match first and the correlation value is low. Therefore, the data of the change curve of the master or the test object is shifted by one data by the number of data, and the correlation value with the change curve of the master is calculated each time. Then, the shape is determined from the maximum correlation value. That is, when the master pattern and the test object have the same shape, the maximum correlation value becomes 1 when the data of the change curves are sequentially shifted and the phases of both curves match. From this fact, the shape is determined regardless of the orientation of the object.

【0022】例えば、二等辺三角形のマスタに対して、
合同で向きの異なる被検物を検査した場合、両θ−r変
化曲線は図8(A)に示すように位相がずれて一致しな
い。しかし、いずれかの変化曲線を順次シフトし、その
度ごとに相関値を求めてそれをグラフ化すれば、同図
(B)のようになり、最大値が1となることからマスタ
との同一性を認識することができる。このとき、データ
のシフト量よりマスタに対して被検物がどれだけ回転し
ているかも知ることもできる。
For example, for a master of an isosceles triangle,
When inspecting a test object which is conjoint and has a different direction, the both θ-r change curves are out of phase and do not match as shown in FIG. 8 (A). However, if one of the change curves is sequentially shifted, the correlation value is calculated for each time, and the correlation value is graphed, it becomes as shown in FIG. 7B, and the maximum value becomes 1, so it is the same as the master. Can recognize sex. At this time, it is possible to know how much the test object is rotating with respect to the master from the shift amount of the data.

【0023】また、被検物やマスタの形状が円形の場
合、図9に示すように、θ−r変化曲線(同図B)とV
θ−n変化曲線(同図C)は共に一定値となる。その場
合、数式1の分母が0となって正常な相関値の演算がで
きない。そこで、相関値の演算に先立って変化曲線デー
タの分散を演算し、分散値が小さい場合(例えば0)は
相関値の演算を行わず、被検物の形状を円形と判断すれ
ばよい。変化曲線が一定値を示すのは被検物が円形の場
合だけである。
When the shape of the object to be inspected or the master is circular, as shown in FIG. 9, the θ-r change curve (FIG. 9B) and V
Both θ-n change curves (C in the same figure) are constant values. In that case, the denominator of Equation 1 becomes 0, and a normal correlation value cannot be calculated. Therefore, the variance of the change curve data is calculated prior to the calculation of the correlation value, and when the variance value is small (for example, 0), the correlation value is not calculated and the shape of the test object may be determined to be circular. The change curve shows a constant value only when the test object is circular.

【0024】以上説明した手順をフローチャートに整理
すると図10のようになる。まず「マスタパターンの登
録」を行い、必要に応じてその「追加」を行う。次に、
「識別パラメータの設定」として、θ−r変化曲線とV
θ−n変化曲線の一方または双方を選択し、必要に応じ
て厚み、重量、面積、比重の少なくとも1つを選択す
る。検査ステージに被検物を載せ、各パラメータを計測
する。θ−r変化曲線および/またはVθ−n変化曲線
のデータから分散値を計算し、それが0であれば被検物
の形状を円形と判断する。分散値が0でなければ、被検
物のθ−r変化曲線とVθ−n変化曲線を求め、マスタ
パターンの同変化曲線との相関値を演算する。続いて被
検物とマスタの各変化曲線について「データシフト」を
行い、両者の最大相関値を演算する。マスタが複数ある
場合、一連の相関値の演算を全てのマスタについて同様
に行う。必要に応じてマスタパターンの変更を行っても
よい。そして、得られた相関値データ、厚み、重量、面
積、比重から被検物を選別する。実際の選別作業では、
これら一連の演算を秤の静定時間中に行うことで選別時
間を短縮化することができる。今回開発した自動選別装
置では、50mm角以下のTAを被検物とし、30パタ
ーンの選別を行う場合で3秒/個の選別能力が得られ
た。
The procedure described above is arranged in a flow chart as shown in FIG. First, "register master pattern" is performed, and "addition" is performed as necessary. next,
As the “setting of identification parameter”, θ-r change curve and V
One or both of the θ-n change curves are selected, and at least one of thickness, weight, area, and specific gravity is selected as necessary. The object is placed on the inspection stage and each parameter is measured. The variance value is calculated from the data of the θ-r change curve and / or the Vθ-n change curve, and if it is 0, the shape of the test object is determined to be circular. If the variance value is not 0, the θ-r change curve and the Vθ-n change curve of the test object are obtained, and the correlation value with the same change curve of the master pattern is calculated. Subsequently, "data shift" is performed on each change curve of the test object and the master, and the maximum correlation value between the two is calculated. When there are a plurality of masters, a series of correlation value calculations are similarly performed for all masters. The master pattern may be changed as needed. Then, the test object is selected based on the obtained correlation value data, thickness, weight, area, and specific gravity. In the actual sorting work,
The selection time can be shortened by performing these series of calculations during the settling time of the balance. With the automatic sorting apparatus developed this time, a TA of 50 mm square or less was used as the test object, and a sorting ability of 3 seconds / piece was obtained when 30 patterns were sorted.

【0025】[0025]

【発明の効果】以上説明したように、本発明によれば任
意の形状をもつ被検物に対して、複雑な設定をすること
なく、単に被検物を検査ステージに載せるだけで形状識
別をすることができる。マスタパターンの登録・追加も
識別したい形状のものを検査ステージに載せるだけでよ
い。また、厚みや重量、比重といった基準も加味して選
別することができる。従って、TAやボルト,ナット,
歯車など種々の形状をもつ機械部品の選別検査に利用す
ると効果的である。特に、輪郭形状の他に、厚み,重
量,面積,比重といった選別基準を適宜付加すること
で、粗い選別から細かい選別まで種々の選別を行うこと
ができる。
As described above, according to the present invention, the shape of an object having an arbitrary shape can be identified simply by placing the object on the inspection stage without complicated setting. can do. The registration / addition of the master pattern only needs to be placed on the inspection stage in the desired shape. In addition, it is possible to select by taking into consideration criteria such as thickness, weight and specific gravity. Therefore, TA, bolts, nuts,
It is effective when used for selection inspection of machine parts with various shapes such as gears. In particular, by appropriately adding selection criteria such as thickness, weight, area, and specific gravity in addition to the contour shape, various selections from rough selection to fine selection can be performed.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明選別装置の構成図。FIG. 1 is a block diagram of a sorting apparatus of the present invention.

【図2】本発明装置の検査ステージの構成図。FIG. 2 is a configuration diagram of an inspection stage of the device of the present invention.

【図3】厚み計測センサを示す説明図で、(A)は被検
物のない状態、(B)は被検物のある状態を示す。
3A and 3B are explanatory views showing a thickness measuring sensor, where FIG. 3A shows a state without a test object, and FIG. 3B shows a state with a test object.

【図4】本発明装置における処理装置の説明図。FIG. 4 is an explanatory diagram of a processing device in the device of the present invention.

【図5】(A)は直交座標における輪郭座標の抽出を示
す説明図、(B)は直交座標系から円筒座標系への補間
・変換を示す説明図。
5A is an explanatory diagram showing extraction of contour coordinates in rectangular coordinates, and FIG. 5B is an explanatory diagram showing interpolation / conversion from a rectangular coordinate system to a cylindrical coordinate system.

【図6】(A)は正方形の被検物を計測した場合におけ
るθ−r変化曲線を示すグラフ、(B)は円筒座標系に
おけるθとrの説明図、(C)は正方形の被検物を計測
した場合におけるVθ−n変化曲線を示すグラフ、
(D)は円筒座標系におけるVθの説明図。
6A is a graph showing a θ-r change curve when a square test object is measured, FIG. 6B is an explanatory diagram of θ and r in a cylindrical coordinate system, and FIG. 6C is a square test object. A graph showing a Vθ-n change curve when an object is measured,
(D) is an explanatory view of Vθ in a cylindrical coordinate system.

【図7】マスタと相似の被検物を計測した結果を示すグ
ラフで、(A)はθ−r変化曲線、(B)はVθ−n変
化曲線を示す。
7A and 7B are graphs showing the results of measuring an object similar to the master, in which FIG. 7A shows a θ-r change curve and FIG. 7B shows a Vθ-n change curve.

【図8】(A)はマスタと向きの異なる合同な二等辺三
角形の被検物を計測した場合においてθ−r変化曲線の
位相が異なることを示す説明図、(B)は変化曲線をシ
フトした場合における相関値の変化を示すグラフ。
FIG. 8A is an explanatory diagram showing that the phase of the θ-r change curve is different when measuring a congruent isosceles triangle test object whose orientation is different from that of the master; and FIG. 8B is a shift curve. The graph which shows the change of the correlation value at the time of doing.

【図9】被検物が円形の場合における計測状況の説明図
で、(A)は被検物の輪郭形状、(B)はθ−r変化曲
線、(C)はVθ−n曲線を示す。
9A and 9B are explanatory diagrams of measurement conditions when the test object is circular, in which FIG. 9A shows a contour shape of the test object, FIG. 9B shows a θ-r change curve, and FIG. 9C shows a Vθ-n curve. .

【図10】本発明方法の選別処理手順を示すフローチャ
ート。
FIG. 10 is a flowchart showing a selection processing procedure of the method of the present invention.

【図11】パターンマッチング法の説明図。FIG. 11 is an explanatory diagram of a pattern matching method.

【符号の説明】[Explanation of symbols]

1 検査ステージ 2 供給機構 3 分類箱 4 仕
分け機構 5 パーツフィーダ 6 チャック 7 チャック 8
載置面 9 ITVカメラ 10 光源 11 厚み計測センサ 12
秤 13 投光器 14 受光器 15 処理装置 16 仕分け機構制御部 17
A/D変換部 18 メモリ 19 CPU 20 D/A変換部 21 モニ
タ 30 被検物の画像 31 マスタ画像
1 Inspection stage 2 Supply mechanism 3 Sorting box 4 Sorting mechanism 5 Parts feeder 6 Chuck 7 Chuck 8
Mounting surface 9 ITV camera 10 Light source 11 Thickness measurement sensor 12
Scale 13 Emitter 14 Light receiver 15 Processor 16 Sorting mechanism controller 17
A / D converter 18 Memory 19 CPU 20 D / A converter 21 Monitor 30 Image of test object 31 Master image

Claims (12)

【特許請求の範囲】[Claims] 【請求項1】 被検物の投影像を画像処理して画素の列
で表し、 この輪郭座標を直交座標系で全て計測した後、投影像の
重心を原点とする円筒座標系にθの間隔が一定となるよ
うに補間・変換し、 θに対するrの変化曲線と予め同様に求めて記憶された
マスタの変化曲線との正規化相関値を求めることにより
被検物の形状を識別することを特徴とする輪郭形状の識
別方法。
1. A projection image of a test object is image-processed and expressed by a pixel row, and after measuring all of the contour coordinates in a rectangular coordinate system, an interval of θ is set in a cylindrical coordinate system whose origin is the center of gravity of the projection image. Is interpolated / converted to be constant, and the shape of the object to be inspected is identified by obtaining a normalized correlation value between the change curve of r with respect to θ and the change curve of the master stored in advance and similarly stored. A method for identifying a characteristic contour shape.
【請求項2】 被検物の投影像を画像処理して画素の列
で表し、 この輪郭座標を直交座標系で全て計測した後、投影像の
重心を原点とする円筒座標系にθの間隔が一定となるよ
うに補間・変換し、 円筒座標系に変換された輪郭座標におけるある点から隣
接する点に至るベクトルを順次求め、同じ方向成分をも
つデータ数をカウントすることでベクトルの角度に対す
るデータ数の変化曲線を求めて、 この変化曲線と予め同様に求めて記憶されたマスタの変
化曲線との正規化相関値を求めることにより被検物の形
状を識別することを特徴とする輪郭形状の識別方法。
2. A projected image of an object to be inspected is image-processed and expressed by a pixel array, all of the contour coordinates are measured in a rectangular coordinate system, and then the interval of θ is set in a cylindrical coordinate system whose origin is the center of gravity of the projected image. Is interpolated and converted so that the vector becomes constant, the vectors from a certain point in the contour coordinates converted into the cylindrical coordinate system to the adjacent points are sequentially obtained, and the number of data having the same direction component is counted A contour shape characterized by identifying a shape of an object to be examined by obtaining a change curve of the number of data and obtaining a normalized correlation value between this change curve and a change curve of a master which is similarly obtained and stored in advance. Identification method.
【請求項3】 請求項1記載の方法と請求項2記載の方
法とを組み合わせたことを特徴とする輪郭形状の識別方
法。
3. A method for identifying a contour shape, characterized by combining the method according to claim 1 and the method according to claim 2.
【請求項4】 被検物の投影像から求めた変化曲線を1
点ずつデータの数だけシフトし、その度ごとにマスタの
変化曲線との正規化相関値を計算し、最大の相関値から
被検物の形状を認識することを特徴とする請求項1〜3
のいずれかに記載の輪郭形状の識別方法。
4. The change curve obtained from the projected image of the test object is 1
4. A method of shifting a point-by-point number by the number of data, calculating a normalized correlation value with the change curve of the master each time, and recognizing the shape of the test object from the maximum correlation value.
A method for identifying a contour shape according to any one of 1.
【請求項5】 変化曲線が一定値を示す場合には、被検
物の形状を円形と認識することを特徴とする請求項1〜
4のいずれかに記載の輪郭形状の識別方法。
5. When the change curve shows a constant value, the shape of the test object is recognized as a circle.
4. The contour shape identification method according to any one of 4 above.
【請求項6】 被検物を載せる検査ステージ、 検査ステージの裏面側から被検物に投光する光源、 検査ステージの表面側に位置し、被検物の投影像を撮像
するカメラ、 撮像した投影像を画像処理してその輪郭座標を直交座標
系で認識する手段、 直交座標系で表された輪郭座標を、投影像の重心を原点
とする円筒座標系にθが一定となるように補間・変換す
る手段、 補間・変換された座標におけるθのrに対する変化曲線
と予め同様に求めて記憶されたマスタの変化曲線との正
規化相関値を演算する手段、 および正規化相関値から被検物の形状を判断し、被検物
を形状ごとに分類する仕分け機構とを具えることを特徴
とする自動選別装置。
6. An inspection stage on which an inspection object is placed, a light source for projecting light from the back surface side of the inspection stage onto the inspection object, a camera which is located on the front surface side of the inspection stage, and which captures a projected image of the inspection object, A means for recognizing the contour coordinates in a rectangular coordinate system by image processing the projected image. The contour coordinates expressed in the rectangular coordinate system are interpolated so that θ is constant in a cylindrical coordinate system whose origin is the center of gravity of the projected image. A means for converting, a means for calculating a normalized correlation value between the change curve of θ with respect to r in the interpolated / converted coordinates and the change curve of the master which is similarly obtained in advance and stored, and to be tested from the normalized correlation value An automatic sorting apparatus, comprising: a sorting mechanism that determines a shape of an object and classifies an object to be inspected according to the shape.
【請求項7】 被検物を載せる検査ステージ、 検査ステージの裏面側から被検物に投光する光源、 検査ステージの表面側に位置し、被検物の投影像を撮像
するカメラ、 撮像した投影像を画像処理してその輪郭座標を直交座標
系で表す手段、 直交座標系で表された輪郭座標を、投影像の重心を原点
とする円筒座標にθが一定となるように補間・変換する
手段、 補間・変換された輪郭座標におけるある点から隣接する
点に至るベクトルを順次求め、同じ方向成分をもつデー
タ数をカウントすることでベクトルの角度に対するデー
タ数の変化曲線を求める手段、 この変化曲線と予め同様に求めて記憶されたマスタの変
化曲線との正規化相関値を演算する手段および正規化相
関値から被検物の形状を判断し、被検物を形状ごとに分
類する仕分け機構とを具えることを特徴とする自動選別
装置。
7. An inspection stage on which an inspection object is placed, a light source for projecting light from the back side of the inspection stage onto the inspection object, a camera which is located on the front surface side of the inspection stage and takes a projected image of the inspection object, A means for image processing the projected image and expressing the contour coordinates in a Cartesian coordinate system. The contour coordinates expressed in a Cartesian coordinate system are interpolated / converted into cylindrical coordinates with the center of gravity of the projected image as the origin so that θ is constant. Means for sequentially obtaining a vector from a certain point to an adjacent point in the interpolated / converted contour coordinates, and counting the number of data having the same direction component to obtain a variation curve of the number of data with respect to the angle of the vector, A means for calculating a normalized correlation value between a change curve and a master change curve that is similarly obtained and stored in advance, and a classification that determines the shape of the test object from the normalized correlation value and classifies the test object for each shape. mechanism Automatic sorting apparatus characterized by comprising a.
【請求項8】 検査ステージに被検物を載置する供給機
構を具えることを特徴とする請求項6または7記載の自
動選別装置。
8. The automatic sorting apparatus according to claim 6 or 7, further comprising a supply mechanism for mounting an inspection object on the inspection stage.
【請求項9】 検査ステージに被検物の厚みを計測する
センサを具え、輪郭形状と厚みとを被検物の選別基準と
したことを特徴とする請求項6または7記載の自動選別
装置。
9. The automatic sorting apparatus according to claim 6, wherein the inspection stage is provided with a sensor for measuring the thickness of the object to be inspected, and the contour shape and the thickness are used as the criteria for selecting the object to be inspected.
【請求項10】 検査ステージに被検物の秤を具え、輪
郭形状と重量とを被検物の選別基準としたことを特徴と
する請求項6または7記載の自動選別装置。
10. The automatic sorting apparatus according to claim 6, wherein a scale of the test object is provided on the inspection stage, and the contour shape and the weight are used as the selection criteria of the test object.
【請求項11】 検査ステージに被検物の厚みを計測す
るセンサと秤とを具え、輪郭形状、厚みおよび重量を被
検物の選別基準としたことを特徴とする請求項6または
7記載の自動選別装置。
11. The inspection stage is provided with a sensor for measuring the thickness of the object to be inspected and a scale, and the contour shape, the thickness and the weight are used as criteria for selecting the object to be inspected. Automatic sorting device.
【請求項12】 投影像の座標からその面積を演算する
手段、 検査ステージに設けられた被検物の厚みを計測するセン
サ、 検査ステージに設けられた秤、 および被検物の面積・厚み・重量から比重を演算する手
段を具え、 比重の違いを被検物の選別基準としことを特徴とする請
求項6または7記載の自動選別装置。
12. A means for calculating the area from the coordinates of a projected image, a sensor for measuring the thickness of a test object provided on an inspection stage, a scale provided on the test stage, and an area / thickness of the test object. 8. The automatic sorting apparatus according to claim 6, further comprising means for calculating a specific gravity from the weight, wherein the difference in the specific gravity is used as a criterion for sorting the test object.
JP25924895A 1995-09-11 1995-09-11 Method for discriminating outline shape and automatic sorting device Pending JPH0981748A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25924895A JPH0981748A (en) 1995-09-11 1995-09-11 Method for discriminating outline shape and automatic sorting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25924895A JPH0981748A (en) 1995-09-11 1995-09-11 Method for discriminating outline shape and automatic sorting device

Publications (1)

Publication Number Publication Date
JPH0981748A true JPH0981748A (en) 1997-03-28

Family

ID=17331471

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25924895A Pending JPH0981748A (en) 1995-09-11 1995-09-11 Method for discriminating outline shape and automatic sorting device

Country Status (1)

Country Link
JP (1) JPH0981748A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20020053762A (en) * 2000-12-27 2002-07-05 마츠시타 덴끼 산교 가부시키가이샤 Inspection method of master disk for magnetic recording medium
JP2007241332A (en) * 2006-03-03 2007-09-20 Fujitsu Ltd Manufacturer decision program and manufacturer decision device
WO2018221066A1 (en) 2017-05-30 2018-12-06 富士フイルム株式会社 Dispensing inspection assistance device and dispensing inspection assistance method

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20020053762A (en) * 2000-12-27 2002-07-05 마츠시타 덴끼 산교 가부시키가이샤 Inspection method of master disk for magnetic recording medium
JP2007241332A (en) * 2006-03-03 2007-09-20 Fujitsu Ltd Manufacturer decision program and manufacturer decision device
WO2018221066A1 (en) 2017-05-30 2018-12-06 富士フイルム株式会社 Dispensing inspection assistance device and dispensing inspection assistance method
US11594322B2 (en) 2017-05-30 2023-02-28 Fujifilm Toyama Chemical Co., Ltd. Dispensing audit support apparatus and dispensing audit support method

Similar Documents

Publication Publication Date Title
JP3805302B2 (en) Work take-out device
US6173070B1 (en) Machine vision method using search models to find features in three dimensional images
US5081689A (en) Apparatus and method for extracting edges and lines
EP1459035B1 (en) Method for determining corresponding points in stereoscopic three-dimensional measurements
JPH06147863A (en) Bending angle detector for bending machine
JPH06274736A (en) Coin recognition device
CN114485433A (en) Three-dimensional measurement system, method and device based on pseudo-random speckles
JPH0981748A (en) Method for discriminating outline shape and automatic sorting device
US6970590B2 (en) Side lit, 3D edge location method
JPH10326347A (en) Detection device and detection method for three-dimensional position attitude of circlar feature of parts, and recording medium for the detection device and detection method
JPH09281055A (en) Inspection method for chip
CN115770731A (en) Method and system for eliminating bad workpieces based on laser vision
JP3437141B2 (en) Pattern recognition method and apparatus
JP3109620B2 (en) Object identification device
CN114608458A (en) Device and method for detecting thickness of mounting adhesive
Kee et al. A simple approach to fine wire diameter measurement using a high-resolution flatbed scanner
JPH09192986A (en) Automatic recognizing device for tool cutting edge position by image processing
JPH0933227A (en) Discrimination method for three-dimensional shape
JP6864722B2 (en) Inspection equipment, inspection methods and programs
JP2790101B2 (en) Particle aggregation pattern judgment device
JP2879357B2 (en) Shape judgment method
JPH0560559A (en) Height measuring apparatus
JP3590809B2 (en) How to measure overlay error
JP2924718B2 (en) Inspection equipment for non-metallic inclusions
JP3013255B2 (en) Shape measurement method

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Effective date: 20041213

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20050512