JPH0981247A - Pressure control device - Google Patents

Pressure control device

Info

Publication number
JPH0981247A
JPH0981247A JP23631995A JP23631995A JPH0981247A JP H0981247 A JPH0981247 A JP H0981247A JP 23631995 A JP23631995 A JP 23631995A JP 23631995 A JP23631995 A JP 23631995A JP H0981247 A JPH0981247 A JP H0981247A
Authority
JP
Japan
Prior art keywords
pressure
cavitation coefficient
cavitation
valve
pressure reducing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP23631995A
Other languages
Japanese (ja)
Inventor
Nobuo Oshima
信夫 大島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Original Assignee
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meidensha Corp, Meidensha Electric Manufacturing Co Ltd filed Critical Meidensha Corp
Priority to JP23631995A priority Critical patent/JPH0981247A/en
Publication of JPH0981247A publication Critical patent/JPH0981247A/en
Pending legal-status Critical Current

Links

Landscapes

  • Pipeline Systems (AREA)
  • Control Of Fluid Pressure (AREA)

Abstract

PROBLEM TO BE SOLVED: To execute effective pressure control even for a pipeline system having a large flow rate change range in a pressure control device to be used for a water feeding/distributing field in water treatment facilities. SOLUTION: The pressure control device is provided with a pressure gauge 5 for measuring the pressure of water distribution, a flow meter 6 for measuring a flow rate, pressure reducing valves 2, 3 arranged in series in a pipeline system to adjust the pressure of water distribution, an initial cavitation coefficient reference table storing initial cavitation coefficient data, and a controller 4 for finding out the cavitation coefficients of the valves 2, 3 from the measured signals of the pressure gauge 5 and the flow meter 6, calculating the cavitation coefficient ratios of the valves 2, 3 by referring to the initial cavitation coefficient reference table and controlling the valves 2, 3 so that the calculated cavitation coefficient ratio of the valve 2 is equal to that of the valve 3.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、水処理施設におけ
る送水、配水場に使用される圧力制御装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a pressure controller used for water supply and water distribution in a water treatment facility.

【0002】[0002]

【従来の技術】従来の水処理施設における圧力制御装置
では、キャビテーションの問題を解決するために弁を直
列に何段も重ねることによって対応していた。また直列
につないだ弁が等しいキャビテーション係数となるよう
に各弁の弁開度比を流量の関数として決定し、弁を制御
する事例もある。
2. Description of the Related Art In a conventional pressure control device in a water treatment facility, in order to solve the problem of cavitation, many valves are arranged in series to deal with the problem. In some cases, the valve opening ratio of each valve is determined as a function of the flow rate so that the valves connected in series have the same cavitation coefficient, and the valves are controlled.

【0003】[0003]

【発明が解決しようとする課題】上記のような従来の制
御方法では、流量変動幅が大きい場合や流量が急変する
ような配管系においては、良好な圧力制御を行うことは
できない。またバルブのキャビテーションの限界はバル
ブ形式等で異なり、同じキャビテーション係数に制御す
ることが最適な制御とは言えない。
With the conventional control method as described above, good pressure control cannot be performed in the case of a large flow rate fluctuation range or a piping system in which the flow rate changes abruptly. Further, the limit of cavitation of a valve differs depending on the valve type and the like, and controlling with the same cavitation coefficient cannot be said to be optimum control.

【0004】本発明は上記の点に鑑みてなされたもので
その目的は、流量変動幅が大きい配管系においても良好
な圧力制御が行える圧力制御装置を提供することにあ
る。
The present invention has been made in view of the above points, and an object thereof is to provide a pressure control device capable of performing good pressure control even in a piping system having a large flow rate fluctuation range.

【0005】[0005]

【課題を解決するための手段】[Means for Solving the Problems]

(1)本発明は、水処理施設における送水、配水場に使
用される圧力制御装置において、配水圧力を測定する圧
力計と、流量を測定する流量計と、配水圧力を調節する
ための減圧弁であり、配管系に直列に配設された第1、
第2減圧弁と、初生キャビテーション係数のデータが格
納された初生キャビテーション係数参照テーブルと、前
記圧力計および流量計の測定信号から第1、第2減圧弁
の各キャビテーション係数を求めるとともに、前記初生
キャビテーション係数参照テーブルを参照して前記第
1、第2減圧弁のキャビテーション係数比を演算し、該
演算された第1減圧弁のキャビテーション係数比と第2
減圧弁のキャビテーション係数比とが等しくなるように
第1、第2減圧弁を制御する制御部とを設けたことを特
徴としている。
(1) The present invention is a pressure control device used for water supply and distribution in a water treatment facility, a pressure gauge for measuring distribution pressure, a flow meter for measuring flow rate, and a pressure reducing valve for adjusting distribution pressure. And the first, which is arranged in series in the piping system,
A second pressure reducing valve, an initial cavitation coefficient reference table in which data of the initial cavitation coefficient is stored, and the cavitation coefficients of the first and second pressure reducing valves are obtained from the measurement signals of the pressure gauge and the flowmeter, and the initial cavitation is also performed. The cavitation coefficient ratio of the first and second pressure reducing valves is calculated by referring to the coefficient reference table, and the calculated cavitation coefficient ratio of the first pressure reducing valve and the second cavitation coefficient ratio are calculated.
It is characterized in that a control unit for controlling the first and second pressure reducing valves is provided so that the cavitation coefficient ratio of the pressure reducing valve becomes equal.

【0006】(2)キャビテーション発生の根本的な原
因は、流路の収縮、拡大流れ方向の急変に伴う局部的な
圧力の低下に起因する。またキャビテーション発生の程
度はキャビテーション係数により求められ、次式で表さ
れる(水道施設設計指針、解説1990年版「日本水道
協会」より)。尚、より簡単な計算式もあるが、本式は
より厳密なものである。
(2) The fundamental cause of the occurrence of cavitation is the local pressure drop due to the abrupt change of the flow path contraction and expansion flow direction. The degree of cavitation is calculated from the cavitation coefficient and is represented by the following formula (from the Japan Water Works Association, 1990 Guidelines for Water Supply Facilities, Commentary). Although there are simpler calculation formulas, this formula is more strict.

【0007】 σ=(H2+10)/{H1−H2+(v2/2g)}…(1) σ:キャビテーション係数 H1:弁の一次圧 H2:弁の二次圧 v:流速(m/s) g:重力の加速度 バルブは形式の違いによる構造形状等により、それぞれ
固有のキャビテーション現象を起こす。従ってキャビテ
ーションの発生のない運転を行うためには、それぞれの
バルブの特性を考慮した運転が必要になる。
Σ = (H 2 +10) / {H 1 −H 2 + (v 2 / 2g)} (1) σ: Cavitation coefficient H 1 : Primary valve pressure H 2 : Secondary valve pressure v: Velocity (m / s) g: Acceleration of gravity Valves cause their own cavitation phenomenon depending on the structural shape and the like depending on the type. Therefore, in order to perform the operation without the occurrence of cavitation, it is necessary to consider the characteristics of each valve.

【0008】バルブのキャビテーションの限界を示す指
標として、初生キャビテーション係数(σc)の数値が
知られている。バルブにキャビテーションを起こさせな
いためにはσ>σcであることが必要である。言い換え
れば「σ/σc>1」であればよいことになる(キャビ
テーション係数比SSはSS=σ/σcである)。
A numerical value of the initial cavitation coefficient (σc) is known as an index showing the limit of cavitation of the valve. To prevent cavitation from occurring in the valve, it is necessary that σ> σc. In other words, “σ / σc> 1” is sufficient (the cavitation coefficient ratio SS is SS = σ / σc).

【0009】本発明の圧力制御装置においては、配管の
流量が変化すると、圧力を一定に保つために、各弁の弁
開度を制御するが、その際弁に指令を出す制御装置が各
弁のキャビテーション係数比(SS)を均等に保つよう
に、弁開度比を決定しながら圧力一定制御を行うもので
ある。これによって流量変動の大きい場合にも安全な圧
力一定制御が実現できる。
In the pressure control device of the present invention, when the flow rate of the pipe changes, the valve opening of each valve is controlled in order to keep the pressure constant. At that time, the control device that issues a command to the valve controls each valve. The constant pressure control is performed while the valve opening ratio is determined so that the cavitation coefficient ratio (SS) is maintained uniform. As a result, safe constant pressure control can be realized even when the flow rate fluctuation is large.

【0010】[0010]

【発明の実施の形態】以下図面を参照しながら本発明の
実施の形態を説明する。図1は本発明の全体構成を示し
たものである。1は飲み水を溜めておくための配水池で
ある。2は配水圧力を調節するための減圧弁であり、3
は減圧弁2と直列につないだ減圧弁である。4は減圧弁
2,3が圧力と流量に応じた開度比になるように弁開度
指令を出す制御装置である。この制御装置4は圧力計5
及び流量計6の信号により減圧弁2,3の操作量を計算
し、それぞれの弁がキャビテーションの発生を最も抑制
するように減圧弁2,3に指令を出す。尚本実施例の減
圧弁2はコーン弁を、減圧弁3はバタフライ弁を各々採
用している。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 shows the overall configuration of the present invention. 1 is a reservoir for storing drinking water. 2 is a pressure reducing valve for adjusting the distribution pressure, and 3
Is a pressure reducing valve connected in series with the pressure reducing valve 2. Reference numeral 4 is a control device that issues a valve opening command so that the pressure reducing valves 2 and 3 have an opening ratio according to the pressure and the flow rate. This control device 4 has a pressure gauge 5
And the operation amount of the pressure reducing valves 2 and 3 is calculated from the signal of the flow meter 6, and each valve issues a command to the pressure reducing valves 2 and 3 so that the generation of cavitation is most suppressed. The pressure reducing valve 2 of the present embodiment is a cone valve, and the pressure reducing valve 3 is a butterfly valve.

【0011】上記のように構成された装置において、キ
ャビテーションの発生を最も抑制するのは、減圧弁2,
3のキャビテーション係数比(SS)が等しくなる時で
ある。図2は図1における制御装置4の機能ブロックを
示したものである。図1、図2において、圧力計5と流
量計6より入力されたデータにより、減圧弁2,3のキ
ャビテーション係数を計算し、初生キャビテーション係
数参照テーブルから、それぞれの減圧弁のキャビテーシ
ョン係数比(SS)を演算し、それぞれのキャビテーシ
ョン係数比SSが等しくなるように、減圧弁2,3に操
作指令を出す。
In the apparatus constructed as described above, it is the pressure reducing valve 2 that suppresses the occurrence of cavitation most.
It is when the cavitation coefficient ratios (SS) of 3 become equal. FIG. 2 shows functional blocks of the control device 4 in FIG. 1 and 2, the cavitation coefficients of the pressure reducing valves 2 and 3 are calculated from the data input from the pressure gauge 5 and the flow meter 6, and the cavitation coefficient ratio (SS ) Is calculated, and an operation command is issued to the pressure reducing valves 2 and 3 so that the cavitation coefficient ratios SS become equal.

【0012】[0012]

【実施例】図3は今回採用したバルブの初生キャビテー
ション係数のグラフ、図4は本発明の制御方法を採用し
た系での配水圧力一定送水制御の結果、図5は従来技術
であるキャビテーション係数一致制御での配水圧力一定
送水制御の結果を各々示している。大流量においては、
キャビテーションの問題を生じにくい系であるので図に
示すものは、流量が次第に減少し、システムの限界であ
るキャビテーションの発生する部分近辺としてある。尚
図4、図5において、11はコーン弁のキャビテーショ
ン係数比、12はバタフライ弁のキャビテーション係数
比、13は流量、14は配水圧力、15はコーン弁開
度、16はバタフライ弁開度の特性を各々示している。
EXAMPLE FIG. 3 is a graph of the initial cavitation coefficient of the valve adopted this time, FIG. 4 is the result of the constant water distribution pressure water supply control in the system adopting the control method of the present invention, and FIG. 5 is the conventional cavitation coefficient match. The results of the control of constant water pressure for water distribution are shown. At high flow rates,
Since the system is less likely to cause the problem of cavitation, the one shown in the figure is near the portion where cavitation occurs, which is the limit of the system, where the flow rate gradually decreases. 4 and 5, 11 is a cavitation coefficient ratio of a cone valve, 12 is a cavitation coefficient ratio of a butterfly valve, 13 is a flow rate, 14 is water distribution pressure, 15 is a cone valve opening, and 16 is a butterfly valve opening characteristic. Are shown respectively.

【0013】図4(本発明の制御方法)によれば、減圧
弁2と減圧弁3がうまく協調制御されていて、流量が1
5.05m3/minまでキャビテーションの発生が押
さえられていることがわかる。しかし図5(従来法のキ
ャビテーション係数一致制御)では20.09m3/m
inですでにキャビテーションの発生を起こしている。
According to FIG. 4 (control method of the present invention), the pressure reducing valve 2 and the pressure reducing valve 3 are well controlled in a coordinated manner, and the flow rate is 1.
It can be seen that the generation of cavitation is suppressed up to 5.05 m 3 / min. However, in FIG. 5 (conventional cavitation coefficient matching control), 20.09 m 3 / m
Cavitation has already occurred in.

【0014】本発明の制御方式(図4)では、初生キャ
ビテーションの発生後も限界キャビテーション係数に達
せず、限界以上の厳しい運転状況にあっても減圧弁等に
致命的な被害を与える事をさけることができている。こ
れに対して従来法(図5)では限界を越えると減圧弁3
のキャビテーション係数比(SS)が急速に下がり、減
圧弁等に致命的な被害を与える可能性が高い。
In the control system of the present invention (FIG. 4), the critical cavitation coefficient is not reached even after the initiation cavitation has occurred, and fatal damage to the pressure reducing valve and the like is avoided even in severe operating conditions beyond the limit. I am able to. On the other hand, in the conventional method (Fig. 5), the pressure reducing valve 3
The cavitation coefficient ratio (SS) of No. 1 rapidly decreases, and there is a high possibility that the pressure reducing valve will be fatally damaged.

【0015】本実施例では代表的なコーン弁とバタフラ
イ弁の例を示したが、これに限らずその他の弁の制御に
おいても同様な効果が得られる。
In this embodiment, an example of a typical cone valve and butterfly valve has been shown, but the present invention is not limited to this, and similar effects can be obtained by controlling other valves.

【0016】[0016]

【発明の効果】以上のように本発明によれば、配水圧力
を調節するための各弁のキャビテーション係数比を均等
に保つように弁開度を決定しながら圧力一定制御を行う
ことができ、これによって流量変動幅が大きい配管系に
おいても、良好で安全な圧力制御が可能となる。
As described above, according to the present invention, it is possible to perform constant pressure control while determining the valve opening so as to keep the cavitation coefficient ratio of each valve for adjusting the water distribution pressure uniform. This enables good and safe pressure control even in a piping system where the flow rate fluctuation range is large.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例の全体を示す構成図。FIG. 1 is a configuration diagram showing an entire embodiment of the present invention.

【図2】本発明の制御装置の機能を表すブロック図。FIG. 2 is a block diagram showing functions of a control device of the present invention.

【図3】弁の初生キャビテーション係数を示すグラフ。FIG. 3 is a graph showing a valve initial cavitation coefficient.

【図4】本発明を適用した系での配水圧力一定送水制御
の結果を示す特性図。
FIG. 4 is a characteristic diagram showing the results of constant water distribution pressure water supply control in a system to which the present invention is applied.

【図5】従来のキャビテーション係数一致制御での配水
圧力一定送水制御の結果を示す特性図。
FIG. 5 is a characteristic diagram showing a result of constant water distribution pressure water supply control in conventional cavitation coefficient matching control.

【符号の説明】[Explanation of symbols]

1…配水池 2,3…減圧弁 4…制御装置 5…圧力計 6…流量計 1 ... Reservoir 2, 3 ... Pressure reducing valve 4 ... Control device 5 ... Pressure gauge 6 ... Flow meter

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 水処理施設における送水、配水場に使用
される圧力制御装置において、 配水圧力を測定する圧力計と、流量を測定する流量計
と、配水圧力を調節するための減圧弁であり、配管系に
直列に配設された第1、第2減圧弁と、初生キャビテー
ション係数のデータが格納された初生キャビテーション
係数参照テーブルと、前記圧力計および流量計の測定信
号から第1、第2減圧弁の各キャビテーション係数を求
めるとともに、前記初生キャビテーション係数参照テー
ブルを参照して前記第1、第2減圧弁のキャビテーショ
ン係数比を演算し、該演算された第1減圧弁のキャビテ
ーション係数比と第2減圧弁のキャビテーション係数比
とが等しくなるように第1、第2減圧弁を制御する制御
部とを設けたことを特徴とする圧力制御装置。
1. A pressure control device used for water supply and distribution in a water treatment facility, comprising a pressure gauge for measuring distribution pressure, a flow meter for measuring flow rate, and a pressure reducing valve for adjusting the distribution pressure. The first and second pressure reducing valves arranged in series in the piping system, the initial cavitation coefficient reference table in which the data of the initial cavitation coefficient is stored, and the first and second measurement signals from the pressure gauge and the flow meter. While calculating each cavitation coefficient of the pressure reducing valve, the cavitation coefficient ratio of the first and second pressure reducing valves is calculated by referring to the initiation cavitation coefficient reference table, and the calculated cavitation coefficient ratio of the first pressure reducing valve and the first cavitation coefficient ratio are calculated. And a control unit for controlling the first and second pressure reducing valves so that the cavitation coefficient ratio of the two pressure reducing valves becomes equal.
JP23631995A 1995-09-14 1995-09-14 Pressure control device Pending JPH0981247A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23631995A JPH0981247A (en) 1995-09-14 1995-09-14 Pressure control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23631995A JPH0981247A (en) 1995-09-14 1995-09-14 Pressure control device

Publications (1)

Publication Number Publication Date
JPH0981247A true JPH0981247A (en) 1997-03-28

Family

ID=16999046

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23631995A Pending JPH0981247A (en) 1995-09-14 1995-09-14 Pressure control device

Country Status (1)

Country Link
JP (1) JPH0981247A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2424966A (en) * 2005-04-07 2006-10-11 Geoffrey David Taylor Method and apparatus for controlling fluid flow.
KR100971995B1 (en) * 2009-10-08 2010-07-23 김태곤 Apparatus for automatically reducing pressure of water supply
GB2493778A (en) * 2011-08-19 2013-02-20 Framo Eng As Controlling fluid pressure in closed system by alternately opening and closing two valves connected to external system

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2424966A (en) * 2005-04-07 2006-10-11 Geoffrey David Taylor Method and apparatus for controlling fluid flow.
GB2424966B (en) * 2005-04-07 2007-03-21 Geoffrey David Taylor Method and apparatus for monitoring fluid flow
KR100971995B1 (en) * 2009-10-08 2010-07-23 김태곤 Apparatus for automatically reducing pressure of water supply
GB2493778A (en) * 2011-08-19 2013-02-20 Framo Eng As Controlling fluid pressure in closed system by alternately opening and closing two valves connected to external system
GB2493778B (en) * 2011-08-19 2014-06-18 Framo Eng As Fluid pressure control system
NO342047B1 (en) * 2011-08-19 2018-03-19 Framo Eng As Underwater module for pressure control

Similar Documents

Publication Publication Date Title
TWI386770B (en) And a discontinuous flow rate switching control method using a fluid of the pressure type flow control device
JP3856730B2 (en) A gas diversion supply method to a chamber from a gas supply facility provided with a flow rate control device.
JP2008234027A (en) Gas supply unit
JP2010107419A (en) Flow rate measuring apparatus
JPH09155180A (en) Liquid mixing device
JPH0981247A (en) Pressure control device
Hay et al. The coefficient of discharge of 30 inclined film cooling holes with rounded entries or exits
JPS6329209Y2 (en)
JP2000249619A (en) Gas leakage detecting method
JPH01214911A (en) Flow rate controller
JP3045221B2 (en) Chemical mixing device
JP3356854B2 (en) Pressure fluctuation generator
JPS6329210Y2 (en)
US10190900B2 (en) Method of fluid flow measurement using nozzle bank
JP3394144B2 (en) Pipe line flow control method
JPS5965319A (en) Control method for fluid pressure
JPH01227012A (en) Method and apparatus for controlling flow rate
JPS6091419A (en) Flow rate control method
US4271673A (en) Steam turbine plant
Doghri et al. Regulation response of pilot-operated diaphragm type pressure-reducing valves: laboratory testing and impact on the performance of pressure control modes in water distribution systems
JP3122271B2 (en) Method of injecting oxygen into boiler feedwater in thermal power plant
JPH11324932A (en) Water-distribution pressure control device
JPS6344750Y2 (en)
JPH07152438A (en) Constant flow liquid level controller
JPH0587337B2 (en)