JPH098011A - Method and apparatus for processing plasma - Google Patents

Method and apparatus for processing plasma

Info

Publication number
JPH098011A
JPH098011A JP7174446A JP17444695A JPH098011A JP H098011 A JPH098011 A JP H098011A JP 7174446 A JP7174446 A JP 7174446A JP 17444695 A JP17444695 A JP 17444695A JP H098011 A JPH098011 A JP H098011A
Authority
JP
Japan
Prior art keywords
substrate
plasma
heating
processing chamber
heating means
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7174446A
Other languages
Japanese (ja)
Inventor
Yasuhiro Mizohata
保▲廣▼ 溝畑
Yoshihiro Koyama
芳弘 小山
Sadao Hirae
貞雄 平得
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dainippon Screen Manufacturing Co Ltd
Original Assignee
Dainippon Screen Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dainippon Screen Manufacturing Co Ltd filed Critical Dainippon Screen Manufacturing Co Ltd
Priority to JP7174446A priority Critical patent/JPH098011A/en
Publication of JPH098011A publication Critical patent/JPH098011A/en
Pending legal-status Critical Current

Links

Landscapes

  • Drying Of Semiconductors (AREA)
  • Plasma Technology (AREA)
  • ing And Chemical Polishing (AREA)

Abstract

PURPOSE: To prevent the rear of a substrate from being contaminated and eliminate a fluctuation in a plasma damage distribution and a temperature distribution on a substrate surface. CONSTITUTION: When a substrate placed inside a processing chamber 10 is to be preheated by a hot plate 26, a rear face of the substrate W and the upper face of the hot plate 26 are brought close to each other so that the substrate W is supported by point contact or line contact by a substrate support member 40. At the time of ashing after preheating, the substrate W is separated from the hot plate 26 so that the substrate W is supported by point contact or line contact by the substrate support member 40.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、プラズマを発生させ
てウエハ等の基板にフォトレジスト膜の剥離やエッチン
グ等の処理を行なうプラズマ処理方法及び装置に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a plasma processing method and apparatus for generating plasma to remove a photoresist film on a substrate such as a wafer and perform etching.

【0002】[0002]

【従来の技術】例えば、超LSIの製造工程などにおい
ては、プラズマを利用して基板の表面からフォトレジス
ト膜を剥離(アッシング処理)したり基板の表面を選択
的エッチングしたりするプラズマ処理装置が使用され
る。このプラズマ処理装置は、例えばU.S.P.5,
346,578や特開昭63−260030号公報など
に開示されているように、石英ガラス等の絶縁性材料に
よって形成され密閉可能な処理チャンバ、この処理チャ
ンバの外面側に配設された誘導コイルや電極のプラズマ
発生部材(プラズマ源)、このプラズマ発生部材に高周
波電圧を印加して処理チャンバの内部にプラズマを発生
させる高周波電源、処理チャンバの内部へ処理ガスを供
給するガス供給ユニット、処理チャンバの内部を真空排
気する真空排気ユニットなどを備えて構成されている。
そして、このプラズマ処理装置では、処理チャンバの内
部へ基板を搬入した後、処理チャンバを気密に閉塞し、
処理チャンバの内部を真空排気してから、真空排気を継
続しながら処理チャンバ内へ処理ガスを導入し、誘導コ
イルや電極に高周波電圧を印加して処理チャンバの内部
にプラズマを発生させ、そのプラズマ雰囲気を基板の表
面へ導いて基板の処理が行なわれる。
2. Description of the Related Art For example, in a VLSI manufacturing process or the like, there is a plasma processing apparatus which uses plasma to remove a photoresist film from a surface of a substrate (ashing treatment) or selectively etch the surface of the substrate. used. This plasma processing apparatus is disclosed in U.S. Pat. S. P. 5,
As disclosed in JP-A-63-260030 and Japanese Patent Laid-Open No. 63-260030, a treatment chamber formed of an insulating material such as quartz glass and capable of being sealed, and an induction coil disposed on the outer surface side of the treatment chamber. Or electrode plasma generating member (plasma source), high frequency power source for applying high frequency voltage to the plasma generating member to generate plasma inside the processing chamber, gas supply unit for supplying processing gas into the processing chamber, processing chamber Is configured to include a vacuum exhaust unit for exhausting the inside of the vacuum.
In this plasma processing apparatus, after the substrate is loaded into the processing chamber, the processing chamber is hermetically closed,
After the inside of the processing chamber is evacuated, the processing gas is introduced into the processing chamber while continuing the vacuum exhaust, a high frequency voltage is applied to the induction coil and the electrode to generate plasma inside the processing chamber, and the plasma is generated. The substrate is processed by introducing the atmosphere to the surface of the substrate.

【0003】上記したプラズマ処理装置において、処理
しようとする基板は、処理チャンバ内へ搬入されて熱板
の上面に載置され、熱板上に載置された状態でプラズマ
処理される。そして、基板を加熱する必要があるとき
は、熱板にヒータを内設し、熱板の上面に密着状態で載
置された基板を熱伝導により加熱するようにしていた。
また、特開昭63−186419号公報に開示されてい
るように、基板を載置する基板ホルダを上下方向へ往復
移動自在に支持するとともに、基板ホルダの下方に加熱
ユニットを固設しておき、基板を加熱する際に、基板ホ
ルダを下降させて加熱ユニットに当接させ、基板ホルダ
の上面に密着状態で載置された基板を加熱ユニットから
の熱伝導により加熱するようにしていた。
In the above-described plasma processing apparatus, the substrate to be processed is carried into the processing chamber, placed on the upper surface of the hot plate, and plasma-processed while being placed on the hot plate. Then, when it is necessary to heat the substrate, a heater is internally provided in the hot plate so that the substrate placed in close contact with the upper surface of the hot plate is heated by heat conduction.
Further, as disclosed in JP-A-63-186419, a substrate holder on which a substrate is placed is supported so as to be reciprocally movable in the vertical direction, and a heating unit is fixedly provided below the substrate holder. When the substrate is heated, the substrate holder is lowered and brought into contact with the heating unit, and the substrate placed in close contact with the upper surface of the substrate holder is heated by heat conduction from the heating unit.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、基板を
熱板(或いは基板ホルダ)上に置くだけでも、基板の裏
面側は汚染されてしまうことになる。しかも、従来のプ
ラズマ処理装置では、熱板上に基板を載置した状態でプ
ラズマ処理が行なわれることから、熱板の上面と基板の
裏面との間に隙間ができないように熱板に基板を密着さ
せなければならない。すなわち、基板の反り等のため
に、基板の裏面と熱板の上面とが接触している部分と僅
かに離れている部分とがあると、基板裏面と熱板上面と
の間のコンデンサ容量の分布に大きなばらつきを生じ
て、基板の表面がプラズマから受けるダメージの分布も
大きくばらつき、また、基板の面内における温度分布も
ばらつくなどの不都合を生じる。そこで、静電チャック
によって基板を熱板に吸着したり基板を熱板に上から押
し付けたりして、基板の裏面全体を熱板の上面に均一に
密着させるようにしているが、このため、基板の裏面全
体において汚染が生じる恐れがある。
However, even if the substrate is placed on the hot plate (or substrate holder), the back side of the substrate will be contaminated. Moreover, in the conventional plasma processing apparatus, since the plasma processing is performed with the substrate placed on the hot plate, the substrate is placed on the hot plate so that there is no gap between the upper surface of the hot plate and the back surface of the substrate. Must be in close contact. That is, if there is a portion where the back surface of the substrate is in contact with the upper surface of the heat plate and a portion that is slightly apart due to warpage of the substrate, the capacitance of the capacitor between the back surface of the substrate and the upper surface of the heat plate is This causes a large variation in the distribution, which causes a large variation in the distribution of damage to the surface of the substrate from the plasma, and also a variation in the temperature distribution in the plane of the substrate. Therefore, an electrostatic chuck attracts the substrate to the hot plate or presses the substrate against the hot plate from above so that the entire back surface of the substrate is evenly adhered to the upper surface of the hot plate. Contamination may occur on the entire back surface of the.

【0005】この発明は、以上のような事情に鑑みてな
されたものであり、基板の裏面側の汚染を防止すること
ができ、かつ、基板面におけるプラズマダメージ分布や
温度分布が大きくばらつく、といったような不都合が生
じないプラズマ処理方法、並びに、その方法を実施する
のに好適なプラズマ処理装置を提供することを目的とす
る。
The present invention has been made in view of the above circumstances, and it is possible to prevent contamination on the back surface side of the substrate, and the plasma damage distribution and temperature distribution on the substrate surface greatly vary. An object of the present invention is to provide a plasma processing method which does not cause such inconvenience, and a plasma processing apparatus suitable for carrying out the method.

【0006】[0006]

【課題を解決するための手段】請求項1に記載のプラズ
マ処理方法は、処理チャンバ内に収納された基板を加熱
手段によって加熱した後、プラズマを発生させて基板に
所定の処理を行なうプラズマ処理方法であって、基板と
前記加熱手段とを近接させた状態で基板支持手段によっ
て基板を点接触又は線接触で支持しつつ、基板を前記加
熱手段によって加熱し、基板と前記加熱手段とを離間さ
せた状態で前記基板支持手段によって基板を点接触又は
線接触で支持しつつ、プラズマを発生させて基板に所定
の処理を行なう。
A plasma processing method according to claim 1, wherein a substrate accommodated in a processing chamber is heated by a heating means, and then plasma is generated to perform a predetermined processing on the substrate. In the method, the substrate is heated by the heating means while supporting the substrate by point contact or line contact by the substrate support means in a state where the substrate and the heating means are in close proximity, and the substrate and the heating means are separated from each other. In this state, the substrate is supported by the substrate supporting means by point contact or line contact, and plasma is generated to perform a predetermined process on the substrate.

【0007】請求項2に記載のプラズマ処理装置は、プ
ラズマを発生させて基板に所定の処理を行なうプラズマ
処理装置であって、基板を水平姿勢で収容する処理チャ
ンバと、前記処理チャンバの下方に配置されるととも
に、基板を加熱する加熱手段と、基板を支持する基板支
持手段と、前記基板支持手段に支持された基板と前記加
熱手段との距離を変えるように、前記加熱手段と前記基
板支持手段とを相対的に移動させる駆動手段と、前記加
熱手段で基板を加熱する際には、基板と前記加熱手段と
を接近させた状態で前記駆動手段を停止させ、プラズマ
を発生させて基板に所定の処理を行なう際には、基板と
前記加熱手段とを離間させた状態で前記駆動手段を停止
させる制御手段と、前記処理チャンバの内壁側全周に設
けられ、基板と前記加熱手段とを離間させた状態のとき
の基板の周縁に近接する内周縁を備えた遮蔽部材と、を
有する。
A plasma processing apparatus according to a second aspect of the present invention is a plasma processing apparatus for generating a plasma to perform a predetermined processing on a substrate, wherein the processing chamber accommodates the substrate in a horizontal posture, and below the processing chamber. The heating means and the substrate support are arranged so as to change the distance between the heating means for heating the substrate, the substrate support means for supporting the substrate, and the substrate supported by the substrate support means and the heating means. When the substrate is heated by the drive means for moving the means relative to the heating means, the drive means is stopped in a state where the substrate and the heating means are brought close to each other, and plasma is generated to cause the substrate to move. When performing a predetermined process, a control unit that stops the driving unit in a state where the substrate and the heating unit are separated from each other, and a control unit that is provided all around the inner wall side of the processing chamber, Having a shielding member having a inner peripheral edge adjacent to the periphery of the substrate in the state obtained by separating the thermal unit.

【0008】請求項3に記載のプラズマ処理装置は、プ
ラズマを発生させて基板に所定の処理を行なうプラズマ
処理装置であって、基板を水平姿勢で収容する処理チャ
ンバと、前記処理チャンバの下方に配置されるととも
に、基板を加熱する加熱手段と、前記加熱手段の上面に
設けられ、前記加熱手段の上面と基板の裏面との間に間
隙を形成するように基板を載置する突起部材と、基板を
支持する基板支持手段と、前記基板支持手段に支持され
た基板と前記加熱手段との距離を変えるように、前記加
熱手段と前記基板支持手段とを相対的に移動させる駆動
手段と、前記加熱手段で基板を加熱する際には、前記突
起部材に基板を載置させるように基板と前記加熱手段と
を接近させた状態で前記駆動手段を停止させ、プラズマ
を発生させて基板に所定の処理を行なう際には、基板と
前記加熱手段とを離間させた状態で前記駆動手段を停止
させる制御手段と、前記処理チャンバの内壁側全周に設
けられ、基板と前記加熱手段とを離間させた状態のとき
の基板の周縁に近接する内周縁を備えた遮蔽部材と、を
有する。
A plasma processing apparatus according to a third aspect of the present invention is a plasma processing apparatus for generating a plasma to perform a predetermined processing on a substrate, the processing chamber accommodating the substrate in a horizontal posture, and a processing chamber below the processing chamber. A heating unit that is disposed and that heats the substrate, and a protrusion member that is provided on the upper surface of the heating unit and that mounts the substrate so as to form a gap between the upper surface of the heating unit and the back surface of the substrate, Substrate supporting means for supporting the substrate; driving means for relatively moving the heating means and the substrate supporting means so as to change the distance between the substrate supported by the substrate supporting means and the heating means; When the substrate is heated by the heating means, the driving means is stopped in a state where the substrate and the heating means are brought close to each other so that the substrate is placed on the protruding member, and plasma is generated to cause the substrate to move. When performing a fixed process, a control unit that stops the driving unit in a state where the substrate and the heating unit are separated from each other, and a substrate and the heating unit that are provided all around the inner wall side of the processing chamber. And a shielding member having an inner peripheral edge that is close to the peripheral edge of the substrate in the separated state.

【0009】請求項4に記載のプラズマ処理装置は、請
求項2又は請求項3に記載のプラズマ処理装置であっ
て、前記加熱手段は、固定されており、前記基板支持手
段は、前記駆動手段によって上下方向に移動自在であ
る。
A plasma processing apparatus according to a fourth aspect is the plasma processing apparatus according to the second or third aspect, wherein the heating means is fixed and the substrate supporting means is the driving means. It can be moved up and down.

【0010】請求項5に記載のプラズマ処理装置は、請
求項4に記載のプラズマ処理装置であって、基板の裏面
に当接する前記基板支持手段の上端部が絶縁性材料によ
って形成されている。
A plasma processing apparatus according to a fifth aspect is the plasma processing apparatus according to the fourth aspect, wherein an upper end portion of the substrate supporting means that abuts a back surface of the substrate is formed of an insulating material.

【0011】請求項6に記載のプラズマ処理装置は、請
求項2ないし請求項5のいずれかに記載のプラズマ処理
装置であって、前記処理チャンバ及び前記遮蔽部材が絶
縁性材料によって形成されている。
A plasma processing apparatus according to a sixth aspect of the present invention is the plasma processing apparatus according to any of the second to fifth aspects, wherein the processing chamber and the shielding member are made of an insulating material. .

【0012】[0012]

【作用】請求項1に記載のプラズマ処理方法では、基板
は、加熱時及びプラズマを発生させた所定の処理時のい
ずれにおいても、点接触又は線接触により支持され、基
板は、基板支持手段と数点において接触し或いは線状に
接触するだけであるので、基板が加熱手段上に直接載置
されることによって起こる基板の裏面側の汚染が防止さ
れる。そして、加熱の際には、基板は加熱手段と近接し
た状態に支持され、加熱は、基板と加熱手段との隙間に
存在する気体の層の熱伝導に依存する、いわゆるプロキ
シミティベーク方式によって行なわれる。一方、加熱後
に所定の処理を行なう際には、基板は加熱手段から離さ
れる。
According to the plasma processing method of the present invention, the substrate is supported by point contact or line contact both during heating and during predetermined processing in which plasma is generated, and the substrate is supported by the substrate supporting means. Since the contact is made only at several points or linearly, the contamination on the back surface side of the substrate caused by the substrate being placed directly on the heating means is prevented. Then, at the time of heating, the substrate is supported in a state of being close to the heating means, and the heating is performed by a so-called proximity bake method which depends on heat conduction of a gas layer existing in the gap between the substrate and the heating means. Be done. On the other hand, when performing a predetermined process after heating, the substrate is separated from the heating means.

【0013】ここで、基板を加熱手段上に直接載置した
ときに上面から例えば0.1mm浮き上がる部分が生じ
る程度の反り等が基板にあったとする。仮に、このよう
に基板を加熱手段上に載置した状態で所定の処理を行な
うとすれば、基板の裏面と加熱手段の上面との間のコン
デンサ容量の分布が基板面内で大きくばらついて、基板
表面がプラズマから受けるダメージの分布も大きくばら
つくこととなる。また、加熱手段から基板への熱伝導も
基板面内で均一にならず、基板面内における温度分布も
ばらつくことになる。これに対し、この発明の方法で
は、加熱した後に所定の処理を行なう際に基板を加熱手
段から、例えば10mm上方へ離すようにする。このた
め、基板の反り等による基板の裏面と加熱手段上面との
間の距離の面内ばらつきは、1%(=0.1mm/10
mm)の範囲内となり、その距離の面内のばらつきによ
るコンデンサ容量分布の面内ばらつきへの影響は無視し
得る程度となる。従って、基板面内におけるプラズマダ
メージ分布への影響も問題とならない程度となる。ま
た、所定の処理中は、基板が加熱手段から離され、か
つ、真空雰囲気とされるので、加熱手段から基板への熱
伝導が起こらず、従って、基板面内における温度分布の
ばらつきは生じない。尚、所定の処理中における加熱手
段から基板への熱移動を期待しなくても、所定の処理を
開始する前に基板を加熱しておくので、何ら問題は無
く、また、所定の処理が始まると、基板はプラズマから
熱を受け、さらに、例えば、フォトレジスト膜を剥離す
る場合にはフォトレジストが酸化される際の反応熱によ
る温度上昇も加わるので、加熱手段からの熱伝導は、特
に必要ではない。
Here, it is assumed that when the substrate is directly placed on the heating means, the substrate is warped to the extent that a portion of the substrate is lifted by, for example, 0.1 mm. If the predetermined processing is performed with the substrate placed on the heating means in this way, the distribution of the capacitor capacitance between the back surface of the substrate and the upper surface of the heating means greatly varies in the substrate surface. The distribution of damage that the substrate surface receives from the plasma also greatly varies. Further, heat conduction from the heating means to the substrate is not uniform in the plane of the substrate, and the temperature distribution in the plane of the substrate also varies. On the other hand, in the method of the present invention, the substrate is separated from the heating means by, for example, 10 mm above when performing a predetermined process after heating. Therefore, the in-plane variation of the distance between the back surface of the substrate and the upper surface of the heating unit due to the warp of the substrate is 1% (= 0.1 mm / 10).
mm), and the influence of the in-plane variation of the distance on the in-plane variation of the capacitor capacitance distribution is negligible. Therefore, the influence on the plasma damage distribution in the surface of the substrate is not a problem. Further, during the predetermined processing, the substrate is separated from the heating means and placed in a vacuum atmosphere, so that heat conduction from the heating means to the substrate does not occur, and therefore, the variation of the temperature distribution in the substrate surface does not occur. . Even if the heat transfer from the heating means to the substrate during the predetermined processing is not expected, since the substrate is heated before starting the predetermined processing, there is no problem and the predetermined processing starts. The substrate receives heat from the plasma, and further, for example, when the photoresist film is peeled off, the temperature rises due to the reaction heat when the photoresist is oxidized. Therefore, heat conduction from the heating means is particularly necessary. is not.

【0014】請求項2に記載のプラズマ処理装置では、
加熱手段で基板を加熱する際及びプラズマを発生させて
基板に所定の処理を行なう際のいずれにおいても、基板
は基板支持手段によって支持されている。そして、加熱
手段で基板を加熱する際には、駆動手段によって加熱手
段と基板支持手段とを相対的に移動させることにより、
基板支持手段に支持された基板と加熱手段との距離を変
え、基板と加熱手段とを近接させた状態で制御手段は駆
動手段を停止させる。一方、プラズマを発生させて基板
に所定の処理を行なう際には、駆動手段によって加熱手
段と基板支持手段とを相対的に移動させることにより、
基板支持手段に支持された基板と加熱手段との距離を変
え、基板と加熱手段とを離間させた状態で制御手段は駆
動手段を停止させる。従って、プラズマを発生させて基
板に所定の処理を行なう際には、基板は加熱手段から離
されているので、上述したように、基板面内においてプ
ラズマダメージ分布や温度分布のばらつきを生じること
はない。また、所定の処理中においては、処理チャンバ
の内壁側全周に設けられた遮蔽部材の内周縁が、基板と
加熱手段とを離間させた状態のときの基板の周縁に近接
するので、基板の上方側空間と下方側空間とが遮蔽部材
によって仕切られた状態となる。従って、基板と加熱手
段との間にもプラズマが発生して印加電力の利用効率が
悪くなるといったことが防止される。
In the plasma processing apparatus according to the second aspect,
The substrate is supported by the substrate supporting unit both when the substrate is heated by the heating unit and when the substrate is subjected to a predetermined process by generating plasma. When the heating means heats the substrate, the driving means relatively moves the heating means and the substrate supporting means,
The control means stops the driving means in a state where the distance between the substrate supported by the substrate supporting means and the heating means is changed and the substrate and the heating means are brought close to each other. On the other hand, when plasma is generated to perform a predetermined process on the substrate, the heating unit and the substrate supporting unit are relatively moved by the driving unit,
The distance between the substrate supported by the substrate supporting unit and the heating unit is changed, and the control unit stops the driving unit in a state where the substrate and the heating unit are separated from each other. Therefore, when plasma is generated and a predetermined process is performed on the substrate, the substrate is separated from the heating means, so that the plasma damage distribution and the temperature distribution vary within the substrate surface as described above. Absent. In addition, during a predetermined process, the inner peripheral edge of the shielding member provided on the entire inner wall side periphery of the processing chamber is close to the peripheral edge of the substrate when the substrate and the heating unit are separated from each other. The upper space and the lower space are in a state of being partitioned by the shielding member. Therefore, it can be prevented that plasma is generated between the substrate and the heating means and the utilization efficiency of the applied power is deteriorated.

【0015】請求項3に記載のプラズマ処理装置では、
加熱手段で基板を加熱する際及びプラズマを発生させて
基板に所定の処理を行なう際のいずれにおいても、基板
は基板支持手段によって支持されている。そして、加熱
手段で基板を加熱する際には、駆動手段によって加熱手
段と基板支持手段とを相対的に移動させることにより、
基板支持手段に支持された基板と加熱手段との距離を変
え、加熱手段の上面に設けられた突起部材に基板を載置
するように基板と加熱手段とを近接させた状態で制御手
段は駆動手段を停止させる。従って、基板の加熱は、基
板の裏面と加熱手段の上面との間に隙間が形成された状
態で、プロキシミティベーク方式によって行なわれる。
一方、プラズマを発生させて基板に所定の処理を行なう
際には、駆動手段によって加熱手段と基板支持手段とを
相対的に移動させることにより、基板支持手段に支持さ
れた基板と加熱手段との距離を変え、基板と加熱手段と
を離間させた状態で制御手段は駆動手段を停止させる。
従って、プラズマを発生させて基板に所定の処理を行な
う際には、基板は加熱手段から離されているので、上述
したように、基板面内においてプラズマダメージ分布や
温度分布のばらつきを生じることはない。また、所定の
処理中においては、処理チャンバの内壁側全周に設けら
れた遮蔽部材の内周縁が、基板と加熱手段とを離間させ
た状態のときの基板の周縁に近接するので、基板の上方
側空間と下方側空間とが遮蔽部材によって仕切られた状
態となる。従って、基板と加熱手段との間にもプラズマ
が発生して印加電力の利用効率が悪くなるといったこと
が防止される。
In the plasma processing apparatus according to claim 3,
The substrate is supported by the substrate supporting unit both when the substrate is heated by the heating unit and when the substrate is subjected to a predetermined process by generating plasma. When the heating means heats the substrate, the driving means relatively moves the heating means and the substrate supporting means,
The control means is driven in a state where the distance between the substrate supported by the substrate supporting means and the heating means is changed, and the substrate and the heating means are brought close to each other so that the substrate is placed on the protruding member provided on the upper surface of the heating means. Stop the means. Therefore, the heating of the substrate is performed by the proximity bake method with a gap formed between the back surface of the substrate and the upper surface of the heating means.
On the other hand, when plasma is generated to perform a predetermined process on the substrate, the heating unit and the substrate supporting unit are relatively moved by the driving unit so that the substrate supported by the substrate supporting unit and the heating unit are separated from each other. The control means stops the driving means in a state where the distance is changed and the substrate and the heating means are separated from each other.
Therefore, when plasma is generated and a predetermined process is performed on the substrate, the substrate is separated from the heating means, so that the plasma damage distribution and the temperature distribution vary within the substrate surface as described above. Absent. In addition, during a predetermined process, the inner peripheral edge of the shielding member provided on the entire inner wall side periphery of the processing chamber is close to the peripheral edge of the substrate when the substrate and the heating unit are separated from each other. The upper space and the lower space are in a state of being partitioned by the shielding member. Therefore, it can be prevented that plasma is generated between the substrate and the heating means and the utilization efficiency of the applied power is deteriorated.

【0016】請求項4に記載のプラズマ処理装置では、
駆動手段によって基板支持手段が上下方向へ往復移動
し、熱板は固定されたままであるので、熱板を移動させ
る場合に比べて機構が簡単になる。また、熱板にはヒー
タや温度センサなどの配線が接続されているが、熱板自
体は移動しないので、配線に不要な力が加わったりする
ことがない。
In the plasma processing apparatus according to claim 4,
Since the substrate supporting means reciprocates in the vertical direction by the driving means and the hot plate remains fixed, the mechanism becomes simple as compared with the case where the hot plate is moved. Further, wiring such as a heater and a temperature sensor is connected to the hot plate, but since the hot plate itself does not move, unnecessary force is not applied to the wiring.

【0017】請求項5に記載のプラズマ処理装置では、
基板の裏面と当接する基板支持手段の上端が絶縁性材料
によって形成されているので、基板支持手段が高周波電
流の経路となることがない。
In the plasma processing apparatus according to claim 5,
Since the upper end of the substrate supporting means that contacts the back surface of the substrate is formed of an insulating material, the substrate supporting means does not serve as a high-frequency current path.

【0018】請求項6に記載のプラズマ処理装置では、
処理チャンバ及び遮蔽部材が絶縁性材料によって形成さ
れており、処理チャンバの内部のプラズマに曝される部
分は全て非金属製となるので、基板に対して金属汚染を
生じる心配が無い。
In the plasma processing apparatus according to claim 6,
Since the processing chamber and the shielding member are made of an insulating material and the portion exposed to the plasma inside the processing chamber is made of non-metal, there is no fear of metal contamination of the substrate.

【0019】[0019]

【実施例】以下、この発明の好適な実施例について図面
を参照しながら説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT A preferred embodiment of the present invention will be described below with reference to the drawings.

【0020】図1及び図2は、本発明のプラズマ処理装
置の1例を示し、その要部の概略構成を一部縦断面で示
す正面図である。
1 and 2 are front views showing an example of a plasma processing apparatus according to the present invention, in which a part of a schematic structure of a main portion thereof is shown in a longitudinal section.

【0021】このプラズマ処理装置は、半球状をなし石
英ガラス、セラミック等の絶縁性材料で形成された処理
チャンバ10を有し、処理チャンバ10は、導電性材
料、例えばアルミニウム材によって形成されたチャンバ
台板12上に載設され、処理チャンバ10の下端面とチ
ャンバ台板12の上面とが気密に接合している。処理チ
ャンバ10の下端部には、その内壁面側の全周にドーナ
ツ状のプラズマ遮蔽板14が固着されている。このプラ
ズマ遮蔽板14は、基板Wの外周形状とほぼ同等の内周
縁を有している。処理チャンバ10の上部には、ガス導
入管16に連通したガス導入口18が形設されており、
ガス導入管16は、図示しないガス供給ユニットに流路
接続されている。また、処理チャンバ10には、その外
面を取り巻くようにプラズマ源となる誘導コイル20が
配設されており、誘導コイル20は高周波電源22に接
続されている。このように誘導コイル20が処理チャン
バ10の外側に配設されているので、処理チャンバ10
の内部が金属によって汚染される心配は無い。高周波電
源22は、例えば数百KHz〜数百MHzの高周波電流
を発生する。
This plasma processing apparatus has a processing chamber 10 formed of an insulating material having a hemispherical shape such as quartz glass or ceramics, and the processing chamber 10 is formed of a conductive material such as an aluminum material. It is mounted on the base plate 12, and the lower end surface of the processing chamber 10 and the upper surface of the chamber base plate 12 are hermetically joined. A donut-shaped plasma shield plate 14 is fixed to the lower end of the processing chamber 10 along the entire inner wall surface thereof. The plasma shield plate 14 has an inner peripheral edge that is substantially the same as the outer peripheral shape of the substrate W. A gas introduction port 18 communicating with the gas introduction pipe 16 is formed in the upper part of the processing chamber 10.
The gas introduction pipe 16 is connected to a gas supply unit (not shown) by a flow path. An induction coil 20 serving as a plasma source is arranged in the processing chamber 10 so as to surround the outer surface thereof, and the induction coil 20 is connected to a high frequency power source 22. Since the induction coil 20 is thus arranged outside the processing chamber 10, the processing chamber 10
There is no concern about the inside of the being contaminated with metal. The high frequency power supply 22 generates a high frequency current of, for example, several hundred KHz to several hundred MHz.

【0022】チャンバ台板12には、処理チャンバ10
の内部空間に連通する円形状の段付き貫通孔24が形設
されており、この段付き貫通孔24に熱板26が挿通さ
れている。そして、段付き貫通孔24の大径部内周面と
熱板26の外周面との間の空間が環状通気路28となっ
ており、その環状通気路28に連通する排気路30が、
チャンバ台板12の一側面側に形成されている。排気路
30は、それに連通接続された排気管32を介し、図示
しない真空排気ユニットに流路接続されている。また、
チャンバ台板12の他側面側には、基板Wを出し入れす
るための開口部34が形設されており、開口部34に
は、それを開閉し気密に閉塞するゲートバルブ36が付
設されている。
The chamber base plate 12 has a processing chamber 10
A circular stepped through hole 24 that communicates with the internal space is formed, and a heat plate 26 is inserted into the stepped through hole 24. The space between the inner peripheral surface of the large-diameter portion of the stepped through hole 24 and the outer peripheral surface of the heat plate 26 serves as an annular ventilation passage 28, and the exhaust passage 30 communicating with the annular ventilation passage 28 is
It is formed on one side surface side of the chamber base plate 12. The exhaust passage 30 is connected to an unillustrated vacuum exhaust unit through an exhaust pipe 32 that is connected to the exhaust passage 30. Also,
On the other side surface side of the chamber base plate 12, an opening 34 for taking in and out the substrate W is formed, and a gate valve 36 for opening and closing the opening W and airtightly closing the opening W is attached to the opening 34. .

【0023】熱板26は、導電性材料、例えばアルミニ
ウム材によって形成されており、基板Wを予備加熱する
ために内部にヒータ(図示せず)を有していて、例えば
常温〜300℃の温度に調節される。また、熱板26
は、それに形成された複数本、例えば3本の貫通細孔3
8を通して上下方向へ往復移動する3本の支持ピン42
を有した基板支持部材40を備えている。基板支持部材
40は、図示しない基板昇降駆動用シリンダのピストン
棒に連結されており、基板昇降駆動用シリンダを制御装
置によって駆動制御することにより、所定位置に静止
し、及び、上下方向に往復移動するようになっている。
基板支持部材40の支持ピン42の、基板Wの裏面に当
接する上端部44は、セラミック等の絶縁性材料で形成
されている。尚、支持ピンの全体をセラミック等の絶縁
性材料で形成してもよい。また、熱板26の下端部に
は、鍔部46が一体形成されており、熱板26の鍔部4
6の上面とチャンバ台板12の下面とは、環状シール部
材48を介在させて気密に当接するようになっている。
さらに、熱板26の上面には、基板Wの裏面に当接して
基板Wを支持し、その際に基板Wの裏面と熱板26の上
面との間に隙間が形成されるようにする小突起部材50
が複数個、例えば3個固設されている。小突起部材50
としては、例えば微小なセラミックボールが使用され、
その下半部を熱板26の上面に埋設して取り付ける。
The heating plate 26 is made of a conductive material such as an aluminum material, has a heater (not shown) therein for preheating the substrate W, and has a temperature of room temperature to 300 ° C., for example. Is adjusted to. Also, the heat plate 26
Is a plurality of, for example, three through pores 3 formed therein.
3 support pins 42 that reciprocate up and down through 8
The substrate supporting member 40 having The substrate supporting member 40 is connected to a piston rod of a cylinder for raising and lowering a substrate, which is not shown, and is controlled to drive the substrate raising and lowering drive cylinder by a control device so as to be stationary at a predetermined position and reciprocate vertically. It is supposed to do.
The upper end portion 44 of the support pin 42 of the substrate support member 40 that abuts the back surface of the substrate W is made of an insulating material such as ceramic. The entire support pin may be made of an insulating material such as ceramic. Further, a flange portion 46 is integrally formed at the lower end of the hot plate 26, and the flange portion 4 of the hot plate 26 is formed.
The upper surface of 6 and the lower surface of the chamber base plate 12 are in airtight contact with an annular seal member 48 interposed.
Further, the upper surface of the heat plate 26 is in contact with the back surface of the substrate W to support the substrate W, and at that time, a gap is formed between the back surface of the substrate W and the upper surface of the heat plate 26. Protruding member 50
A plurality of, for example, three are fixed. Small projection member 50
As, for example, minute ceramic balls are used,
The lower half portion is embedded and attached to the upper surface of the heating plate 26.

【0024】次に、上記した構成のプラズマ処理装置を
使用して行なわれるプラズマ処理について、アッシング
処理する場合を例にとって説明する。
Next, the plasma processing performed by using the plasma processing apparatus having the above-mentioned configuration will be described by taking the case of ashing processing as an example.

【0025】まず、基板支持部材40が、図1に示すよ
うに支持ピン42の上端が熱板26の上面の小突起部材
50の頂点位置より下方となる最下位置(加熱位置)と
図2に示した最上位置(処理位置)との中間の基板搬出
入位置にあり、ゲートバルブ36が開いた状態におい
て、表面にフォトレジスト膜が被着された基板Wが、図
示しない基板搬送機構によってチャンバ台板12の開口
部34を通し処理チャンバ10内へ搬入され、基板支持
部材40の支持ピン42上へ移載される。基板支持部材
40によって基板Wが支持されると、基板支持部材40
が下降し、図1に示すように、基板Wが、基板支持部材
40の支持ピン42上から熱板26上面の小突起部材5
0上へ移載され、熱板26上に小突起部材50によって
3点で支持される。この状態において、基板はプロキシ
ミティベーク方式によって所定時間予備加熱される。こ
の間に、ゲートバルブ36が閉じて処理チャンバ10内
が気密化され、また、真空排気ユニットが作動して、環
状通気路28及び排気路30を通して処理チャンバ10
内の空気が排除される。このとき、図1に示すように、
基板Wの上面とプラズマ遮蔽板14の内周縁との間が離
れているので、処理チャンバ10内の空気は速やかに排
除される。尚、基板Wを予備加熱する間に、基板W搬送
機構の搬送アームを処理チャンバ10内から退出させた
り、処理チャンバ10内の気密化を行なったり、処理チ
ャンバ10内を真空排気したりする各操作が平行して行
なわれるので、予備加熱に要する時間の分だけ一連の処
理に要する時間が長くかかってスループットが大きく低
下する、といったことにはならない。
First, as shown in FIG. 1, the substrate support member 40 has a lowermost position (heating position) in which the upper ends of the support pins 42 are located below the apex positions of the small protrusion members 50 on the upper surface of the heat plate 26, as shown in FIG. At the substrate loading / unloading position intermediate between the uppermost position (processing position) shown in FIG. 2 and the state where the gate valve 36 is open, the substrate W having the photoresist film deposited on its surface is transferred to the chamber by a substrate transfer mechanism (not shown). It is carried into the processing chamber 10 through the opening 34 of the base plate 12 and transferred onto the support pins 42 of the substrate support member 40. When the substrate W is supported by the substrate support member 40, the substrate support member 40
As shown in FIG. 1, the substrate W moves from the support pin 42 of the substrate support member 40 to the small projection member 5 on the upper surface of the heat plate 26.
0, and is supported on the heat plate 26 at three points by the small protrusion member 50. In this state, the substrate is preheated for a predetermined time by the proximity bake method. During this time, the gate valve 36 is closed to make the inside of the processing chamber 10 airtight, and the vacuum exhaust unit is operated to pass through the annular ventilation passage 28 and the exhaust passage 30.
The air inside is eliminated. At this time, as shown in FIG.
Since the upper surface of the substrate W and the inner peripheral edge of the plasma shield plate 14 are separated from each other, the air in the processing chamber 10 is quickly removed. During the preheating of the substrate W, the transfer arm of the substrate W transfer mechanism is withdrawn from the processing chamber 10, the inside of the processing chamber 10 is hermetically sealed, and the inside of the processing chamber 10 is evacuated. Since the operations are performed in parallel, it does not mean that the time required for a series of processes is extended by the time required for the preheating and the throughput is significantly reduced.

【0026】予備加熱が終了すると、基板支持部材40
が上昇し、基板Wが熱板26上面の小突起部材50上か
ら基板支持部材40の支持ピン42上へ移載され、図2
に示す処理位置まで基板支持部材40が上昇して、基板
Wが熱板26の上面から上方へ、例えば10mm離れた
状態で静止する。このとき、基板Wの周縁がプラズマ遮
蔽板14の内周縁と近接している。次に、ガス供給ユニ
ットからガス導入管16を通して送給される処理ガス、
例えば酸素ガス等をガス導入口18から処理チャンバ1
0内へ導入しながら、真空排気を継続して処理チャンバ
10内部を所望の真空圧、例えば数十mmTorr〜数
Torrに保つ。このとき、処理チャンバ10内部の排
気は、基板Wの周縁とプラズマ遮蔽板14の内周縁との
間の僅かな隙間を通して行なわれることとなる。そし
て、誘導コイル20に高周波電流が流され、処理チャン
バ10の内部にプラズマが発生して、基板Wのアッシン
グ処理が行なわれる。
When the preheating is completed, the substrate supporting member 40
2 and the substrate W is transferred from the small protrusion member 50 on the upper surface of the heat plate 26 to the support pin 42 of the substrate support member 40,
The substrate supporting member 40 rises to the processing position shown in (4), and the substrate W stands still above the upper surface of the heat plate 26 at a distance of, for example, 10 mm. At this time, the peripheral edge of the substrate W is close to the inner peripheral edge of the plasma shield plate 14. Next, the processing gas sent from the gas supply unit through the gas introduction pipe 16,
For example, oxygen gas or the like is supplied from the gas inlet 18 to the processing chamber 1
While being introduced into 0, vacuum evacuation is continued to keep the inside of the processing chamber 10 at a desired vacuum pressure, for example, several tens of mmTorr to several Torr. At this time, the exhaust of the inside of the processing chamber 10 is performed through a slight gap between the peripheral edge of the substrate W and the inner peripheral edge of the plasma shield plate 14. Then, a high-frequency current is passed through the induction coil 20, plasma is generated inside the processing chamber 10, and the ashing process of the substrate W is performed.

【0027】アッシング処理中においては、基板支持部
材40によって支持された基板Wの周縁とプラズマ遮蔽
板14の内周縁とが近接しており、基板W及びプラズマ
遮蔽板14により処理チャンバ10の内部とチャンバ台
板12の段付き貫通孔24とが仕切られている。このた
め、基板Wと熱板26との間にはプラズマが発生せず、
印加電力の利用効率が悪くなったり熱板26に形成され
た貫通細孔38においてアーク様の局所放電を生じたり
する、といったことがない。また、上記したように、処
理チャンバ10の内部の排気は、基板Wの周縁とプラズ
マ遮蔽板14の内周縁との間の僅かな隙間を通して行な
われるため、基板Wの周縁とプラズマ遮蔽板14の内周
縁との間の距離を大きくした場合のように排気が真空源
に近い方へ偏ってアッシングレートの面内分布が悪くな
る、等といったことは起こらない。
During the ashing process, the peripheral edge of the substrate W supported by the substrate supporting member 40 and the inner peripheral edge of the plasma shield plate 14 are close to each other, so that the substrate W and the plasma shield plate 14 allow the inside of the processing chamber 10 The stepped through hole 24 of the chamber base plate 12 is partitioned. Therefore, plasma is not generated between the substrate W and the heating plate 26,
It does not occur that the utilization efficiency of the applied power is deteriorated or that an arc-like local discharge is generated in the through pores 38 formed in the heating plate 26. Further, as described above, the exhaust of the inside of the processing chamber 10 is performed through the slight gap between the peripheral edge of the substrate W and the inner peripheral edge of the plasma shield plate 14, so that the peripheral edge of the substrate W and the plasma shield plate 14 are separated. It does not occur that the exhaust gas is biased toward the vacuum source and the in-plane distribution of the ashing rate is deteriorated as in the case where the distance to the inner peripheral edge is increased.

【0028】アッシング処理が終了すると、基板支持部
材40が下降して基板搬出入位置に停止する。そして、
ガス供給ユニットから窒素ガス等のパージガスがガス導
入口18を通して処理チャンバ10内へ導入され、処理
チャンバ10の内部が大気圧に戻される。尚、このとき
には、基板支持部材40が図2に示した状態から下方へ
移動して基板搬出入位置に静止しており、基板Wの周縁
とプラズマ遮蔽板14の内周縁との間は離れているの
で、処理チャンバ10内部の大気圧への復帰は速やかに
行なわれる。処理チャンバ10の内部が大気圧に戻る
と、ゲートバルブ36が開き、基板搬送機構により、基
板支持部材40の支持ピン42上から処理済みの基板が
取り去られ、その基板がチャンバ台板12の開口部34
を通って処理チャンバ10外へ搬出される。そして、次
に処理すべき基板Wが処理チャンバ10内へ搬送され、
上記と同じ動作が繰り返される。
When the ashing process is completed, the substrate support member 40 descends and stops at the substrate loading / unloading position. And
A purge gas such as nitrogen gas is introduced from the gas supply unit into the processing chamber 10 through the gas introduction port 18, and the inside of the processing chamber 10 is returned to atmospheric pressure. At this time, the substrate supporting member 40 moves downward from the state shown in FIG. 2 and stands still at the substrate loading / unloading position, and the edge of the substrate W and the inner edge of the plasma shielding plate 14 are separated from each other. Therefore, the return to the atmospheric pressure in the processing chamber 10 is quickly performed. When the inside of the processing chamber 10 returns to atmospheric pressure, the gate valve 36 is opened, and the processed substrate is removed from the support pins 42 of the substrate support member 40 by the substrate transfer mechanism, and the substrate is transferred to the chamber base plate 12. Opening 34
And is carried out of the processing chamber 10. Then, the substrate W to be processed next is transferred into the processing chamber 10,
The same operation as above is repeated.

【0029】以上の実施例では、熱板26の上面に小突
起部材50を固設し、基板Wを予備加熱する際には熱板
26上面の小突起部材50によって基板Wを支持するよ
うな構成としたが、熱板上面に小突起部材を設けずに、
基板支持部材を、その支持ピンの上端が熱板の上面から
僅かに突出した位置に静止させることができるように
し、基板の予備加熱の際に、基板支持部材によって基板
を、基板裏面と熱板の上面とが近接した状態で支持する
ような構成としてもよい。
In the above embodiment, the small protrusion member 50 is fixedly mounted on the upper surface of the heat plate 26, and when the substrate W is preheated, the substrate W is supported by the small protrusion member 50 on the upper surface of the heat plate 26. Although it was configured, without providing a small protrusion member on the upper surface of the hot plate,
The substrate support member is allowed to rest at a position where the upper ends of the support pins thereof are slightly projected from the upper surface of the hot plate, and when the substrate is preheated, the substrate is supported by the substrate support member and the back surface of the substrate and the hot plate. It may be configured so as to be supported in a state where it is close to the upper surface of the.

【0030】尚、上記実施例では、プラズマ源として誘
導コイル20を用いたが、プラズマ源として電極を用い
るようにしてもよい。また、上記実施例のように、熱板
26を固定し基板支持部材40を上下方向へ往復移動さ
せるようにする方が好ましいが、熱板の方を上下方向へ
移動可能としても差し支えない。さらに、実施例装置
は、処理チャンバ10及びチャンバ台板12と熱板26
とを固定し、処理チャンバ10内への基板の搬入及び処
理チャンバ10内からの基板の搬出は、チャンバ台板1
2に形設された開口部34を通して行なわれるような構
成を有しているが、処理チャンバ及びチャンバ台板と熱
板とを相対的に上下方向へ往復移動させることができる
ようにし、基板の搬出入の際にチャンバ台板と熱板との
間を離間させて熱板の上面側を開放させるような装置構
成としてもよい。
Although the induction coil 20 is used as the plasma source in the above embodiment, an electrode may be used as the plasma source. Further, as in the above-mentioned embodiment, it is preferable that the heat plate 26 is fixed and the substrate supporting member 40 is reciprocally moved in the vertical direction, but the heat plate may be vertically movable. Further, the apparatus of the embodiment includes the processing chamber 10, the chamber base plate 12, and the heating plate 26.
Are fixed and the substrate is carried in and out of the processing chamber 10 by the chamber base plate 1
However, the processing chamber and the chamber base plate and the heating plate can be relatively reciprocally moved in the vertical direction so that the substrate can be reciprocally moved. It is also possible to adopt a device configuration in which the chamber base plate and the heating plate are separated from each other so that the upper surface side of the heating plate is opened at the time of loading and unloading.

【0031】[0031]

【発明の効果】請求項1に記載のプラズマ処理方法によ
れば、基板を加熱手段によって加熱する際には、基板と
加熱手段とを近接させた状態で基板支持手段によって基
板を点接触又は線接触で支持し、プラズマを発生させて
基板に所定の処理を行なう際には、基板と加熱手段とを
離間させた状態で前記基板支持手段によって基板を点接
触又は線接触で支持しているので、基板の裏面側の汚染
を生じることがなく、基板面におけるプラズマダメージ
分布や温度分布のばらつきも生じることがないため、基
板の処理品質を向上させることができる。
According to the plasma processing method of the first aspect, when the substrate is heated by the heating means, the substrate is point-contacted or linearly contacted by the substrate supporting means while the substrate and the heating means are placed close to each other. When the substrate is supported by contact and plasma is generated to perform a predetermined process, the substrate is supported by the substrate support means in a state of being separated from the heating means by point contact or line contact. Since the back surface of the substrate is not contaminated and the plasma damage distribution and the temperature distribution on the substrate surface are not varied, the processing quality of the substrate can be improved.

【0032】請求項2に記載のプラズマ処理装置によれ
ば、基板と加熱手段とを近接させた状態で制御手段によ
って駆動手段を停止させて、加熱手段によって基板を加
熱し、また基板と加熱手段とを離間させた状態で、制御
手段によって駆動手段を停止させて、プラズマを発生さ
せて基板に所定の処理を行なっているので、基板の裏面
側に汚染が生じることもなく、基板面におけるプラズマ
ダメージ分布や温度分布のばらつきも生じることがない
ため、基板の処理品質を向上させることができる。ま
た、遮蔽部材によって基板と加熱手段との間でのプラズ
マ発生を阻止することができるため、印加電力の利用効
率の悪化といった不都合を避けることができる。
According to the plasma processing apparatus of the second aspect, the driving means is stopped by the control means in a state where the substrate and the heating means are brought close to each other, and the substrate is heated by the heating means, and the substrate and the heating means. In the state where the and are separated, the control means stops the driving means to generate the plasma and perform the predetermined processing on the substrate, so that the back surface side of the substrate is not contaminated and the plasma on the substrate surface is not generated. Since there is no variation in damage distribution or temperature distribution, the processing quality of the substrate can be improved. Further, since the plasma generation between the substrate and the heating means can be blocked by the shielding member, it is possible to avoid a disadvantage such as deterioration of utilization efficiency of the applied power.

【0033】請求項3に記載のプラズマ処理装置によれ
ば、加熱手段の上面に設けられた突起部材に基板を載置
させるように、基板と加熱手段とを接近させた状態で制
御手段によって駆動手段を停止させて、加熱手段によっ
て基板を加熱し、また基板と加熱手段とを離間させた状
態で、制御手段によって駆動手段を停止させて、プラズ
マを発生させて基板に所定の処理を行なっているので、
基板の裏面側に汚染が生じることもなく、基板面におけ
るプラズマダメージ分布や温度分布のばらつきも生じる
ことがないため、基板の処理品質を向上させることがで
きる。また、遮蔽部材によって基板と加熱手段との間で
のプラズマ発生を阻止することができ、印加電力の利用
効率の悪化といった不都合を避けることができる。
According to the plasma processing apparatus of the third aspect, the control means drives the substrate and the heating means in close proximity to each other so that the substrate is placed on the protrusion member provided on the upper surface of the heating means. The heating means to heat the substrate, and the control means to stop the driving means in a state where the substrate and the heating means are separated from each other to generate plasma and perform a predetermined treatment on the substrate. Because
Since the back surface of the substrate is not contaminated and the plasma damage distribution and the temperature distribution on the substrate surface are not varied, the processing quality of the substrate can be improved. In addition, the shield member can prevent plasma generation between the substrate and the heating means, and avoid the disadvantage that the utilization efficiency of the applied power is deteriorated.

【0034】請求項4に記載のプラズマ処理装置によれ
ば、基板支持手段を固定し加熱手段を上下方向へ往復移
動させる場合に比べ、機構が簡単になり、昇降駆動装置
も小型化することができる。また、加熱手段自体は固定
されたままで移動しないので、加熱手段に接続されたヒ
ータや温度センサなどの配線に不要な力が加わって断線
等の不都合を生じる、といった心配が無い。
According to the plasma processing apparatus of the fourth aspect, the mechanism is simpler and the elevating and lowering device can be downsized as compared with the case where the substrate supporting means is fixed and the heating means is reciprocally moved in the vertical direction. it can. Further, since the heating means itself remains fixed and does not move, there is no fear of causing inconvenience such as disconnection due to an unnecessary force applied to wiring such as a heater or a temperature sensor connected to the heating means.

【0035】請求項5に記載のプラズマ処理装置によれ
ば、基板の裏面に当接する基板支持手段の上端部が絶縁
性材料によって形成されているので、基板支持手段が高
周波電流の経路となって装置の不要な部分に高周波電流
が流れる、といったことを防止することができる。
According to the plasma processing apparatus of the fifth aspect, since the upper end portion of the substrate supporting means abutting on the back surface of the substrate is made of an insulating material, the substrate supporting means serves as a high frequency current path. It is possible to prevent a high-frequency current from flowing to an unnecessary portion of the device.

【0036】請求項6に記載のプラズマ処理装置によれ
ば、処理チャンバ及び遮蔽部材が絶縁性材料によって形
成されているので、処理チャンバの内部にプラズマ遮蔽
部材を設けたことが原因となって基板が金属汚染され
る、といった心配が無くなる。
According to the plasma processing apparatus of the sixth aspect, since the processing chamber and the shielding member are made of an insulating material, the plasma shielding member is provided inside the processing chamber as a cause. No more worrying about metal contamination.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明のプラズマ処理装置の概略構成の1例を
示す要部縦断面図であって、予備加熱時の状態を示す図
である。
FIG. 1 is a longitudinal sectional view of an essential part showing an example of a schematic configuration of a plasma processing apparatus of the present invention, showing a state during preheating.

【図2】同じく、アッシング処理時の状態を示す図であ
る。
FIG. 2 is a diagram similarly showing a state during ashing processing.

【符号の説明】[Explanation of symbols]

10 処理チャンバ 12 チャンバ台板 14 プラズマ遮蔽板 20 誘導コイル 22 高周波電源 26 熱板 40 基板支持部材 42 支持ピン 44 支持ピンの、絶縁性材料によって形成された上端
部 50 小突起部材 W 基板
DESCRIPTION OF SYMBOLS 10 Processing chamber 12 Chamber base plate 14 Plasma shield plate 20 Induction coil 22 High frequency power supply 26 Thermal plate 40 Substrate support member 42 Support pin 44 Support pin 44 upper end portion formed of an insulating material 50 Small protrusion member W substrate

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 処理チャンバ内に収納された基板を加熱
手段によって加熱した後、プラズマを発生させて基板に
所定の処理を行なうプラズマ処理方法であって、 基板と前記加熱手段とを近接させた状態で基板支持手段
によって基板を点接触又は線接触で支持しつつ、基板を
前記加熱手段によって加熱し、 基板と前記加熱手段とを離間させた状態で前記基板支持
手段によって基板を点接触又は線接触で支持しつつ、プ
ラズマを発生させて基板に所定の処理を行なうことを特
徴とするプラズマ処理方法。
1. A plasma processing method in which a substrate housed in a processing chamber is heated by a heating unit, and then plasma is generated to perform a predetermined process on the substrate, wherein the substrate and the heating unit are brought close to each other. In this state, the substrate is heated by the heating means while supporting the substrate by the point contact or the line contact by the substrate supporting means, and the substrate is supported by the substrate supporting means by the point contact or the line contact with the heating means. A plasma processing method characterized in that plasma is generated to perform a predetermined process on a substrate while supporting it by contact.
【請求項2】 プラズマを発生させて基板に所定の処理
を行なうプラズマ処理装置であって、 基板を水平姿勢で収容する処理チャンバと、 前記処理チャンバの下方に配置されるとともに、基板を
加熱する加熱手段と、 基板を支持する基板支持手段と、 前記基板支持手段に支持された基板と前記加熱手段との
距離を変えるように、前記加熱手段と前記基板支持手段
とを相対的に移動させる駆動手段と、 前記加熱手段で基板を加熱する際には、基板と前記加熱
手段とを近接させた状態で前記駆動手段を停止させ、プ
ラズマを発生させて基板に所定の処理を行なう際には、
基板と前記加熱手段とを離間させた状態で前記駆動手段
を停止させる制御手段と、 前記処理チャンバの内壁側全周に設けられ、基板と前記
加熱手段とを離間させた状態のときの基板の周縁に近接
する内周縁を備えた遮蔽部材と、を有することを特徴と
するプラズマ処理装置。
2. A plasma processing apparatus for generating a plasma to perform a predetermined processing on a substrate, the processing chamber accommodating the substrate in a horizontal posture, the processing chamber being disposed below the processing chamber, and heating the substrate. Heating means, substrate supporting means for supporting the substrate, and drive for relatively moving the heating means and the substrate supporting means so as to change the distance between the substrate supported by the substrate supporting means and the heating means Means and when heating the substrate by the heating means, when the driving means is stopped in a state where the substrate and the heating means are brought close to each other, and when plasma is generated to perform a predetermined treatment on the substrate,
A control unit that stops the driving unit in a state where the substrate and the heating unit are separated from each other, and a control unit that is provided on the entire circumference on the inner wall side of the processing chamber and that separates the substrate and the heating unit from each other. A plasma processing apparatus, comprising: a shield member having an inner peripheral edge adjacent to the peripheral edge.
【請求項3】 プラズマを発生させて基板に所定の処理
を行なうプラズマ処理装置であって、 基板を水平姿勢で収容する処理チャンバと、 前記処理チャンバの下方に配置されるとともに、基板を
加熱する加熱手段と、 前記加熱手段の上面に設けられ、前記加熱手段の上面と
基板の裏面との間に間隙を形成するように基板を載置す
る突起部材と、 基板を支持する基板支持手段と、 前記基板支持手段に支持された基板と前記加熱手段との
距離を変えるように、前記加熱手段と前記基板支持手段
とを相対的に移動させる駆動手段と、 前記加熱手段で基板を加熱する際には、前記突起部材に
基板を載置させるように基板と前記加熱手段とを接近さ
せた状態で前記駆動手段を停止させ、プラズマを発生さ
せて基板に所定の処理を行なう際には、基板と前記加熱
手段とを離間させた状態で前記駆動手段を停止させる制
御手段と、 前記処理チャンバの内壁側全周に設けられ、基板と前記
加熱手段とを離間させた状態のときの基板の周縁に近接
する内周縁を備えた遮蔽部材と、を有することを特徴と
するプラズマ処理装置。
3. A plasma processing apparatus for generating a plasma to perform a predetermined processing on a substrate, the processing chamber accommodating the substrate in a horizontal posture, the processing chamber being disposed below the processing chamber, and heating the substrate. Heating means, a projection member provided on the upper surface of the heating means, for mounting the substrate so as to form a gap between the upper surface of the heating means and the back surface of the substrate, and substrate supporting means for supporting the substrate, A driving unit that relatively moves the heating unit and the substrate supporting unit so as to change the distance between the substrate supported by the substrate supporting unit and the heating unit; and a heating unit that heats the substrate by the heating unit. Means to stop the driving means in a state where the substrate and the heating means are brought close to each other so as to place the substrate on the protrusion member, generate plasma and perform a predetermined process on the substrate, Control means for stopping the driving means in a state where the heating means is separated from each other, and a peripheral edge of the substrate when the substrate and the heating means are separated from each other, provided on the entire inner circumference of the processing chamber. A plasma processing apparatus, comprising: a shield member having an inner peripheral edge adjacent thereto.
【請求項4】 請求項2又は請求項3に記載のプラズマ
処理装置であって、 前記加熱手段は、固定されており、 前記基板支持手段は、前記駆動手段によって上下方向に
移動自在であることを特徴とするプラズマ処理装置。
4. The plasma processing apparatus according to claim 2, wherein the heating means is fixed, and the substrate supporting means is vertically movable by the driving means. A plasma processing apparatus characterized by the above.
【請求項5】 請求項4に記載のプラズマ処理装置であ
って、 基板の裏面に当接する前記基板支持手段の上端部が絶縁
性材料によって形成されていることを特徴とするプラズ
マ処理装置。
5. The plasma processing apparatus according to claim 4, wherein the upper end portion of the substrate supporting means that contacts the back surface of the substrate is made of an insulating material.
【請求項6】 請求項2ないし請求項5のいずれかに記
載のプラズマ処理装置であって、 前記処理チャンバ及び前記遮蔽部材が絶縁性材料によっ
て形成されていることを特徴とするプラズマ処理装置。
6. The plasma processing apparatus according to claim 2, wherein the processing chamber and the shielding member are made of an insulating material.
JP7174446A 1995-06-15 1995-06-15 Method and apparatus for processing plasma Pending JPH098011A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7174446A JPH098011A (en) 1995-06-15 1995-06-15 Method and apparatus for processing plasma

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7174446A JPH098011A (en) 1995-06-15 1995-06-15 Method and apparatus for processing plasma

Publications (1)

Publication Number Publication Date
JPH098011A true JPH098011A (en) 1997-01-10

Family

ID=15978650

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7174446A Pending JPH098011A (en) 1995-06-15 1995-06-15 Method and apparatus for processing plasma

Country Status (1)

Country Link
JP (1) JPH098011A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11135488A (en) * 1997-08-07 1999-05-21 Robert Bosch Gmbh Method and device for executing anisotropic etching on substrate by plasma, device for uniforming plasma generated from plasma source which is introduced and connected and plasma treating apparatus
US7078655B1 (en) 1999-08-12 2006-07-18 Ibiden Co., Ltd. Ceramic substrate, ceramic heater, electrostatic chuck and wafer prober for use in semiconductor producing and inspecting devices
WO2009150968A1 (en) * 2008-06-13 2009-12-17 芝浦メカトロニクス株式会社 Plasma processing apparatus, plasma processing method, and electronic device manufacturing method

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11135488A (en) * 1997-08-07 1999-05-21 Robert Bosch Gmbh Method and device for executing anisotropic etching on substrate by plasma, device for uniforming plasma generated from plasma source which is introduced and connected and plasma treating apparatus
US7078655B1 (en) 1999-08-12 2006-07-18 Ibiden Co., Ltd. Ceramic substrate, ceramic heater, electrostatic chuck and wafer prober for use in semiconductor producing and inspecting devices
WO2009150968A1 (en) * 2008-06-13 2009-12-17 芝浦メカトロニクス株式会社 Plasma processing apparatus, plasma processing method, and electronic device manufacturing method
JP2009302285A (en) * 2008-06-13 2009-12-24 Shibaura Mechatronics Corp Plasma treatment apparatus, plasma treatment method, and method of manufacturing electronic device
KR101289617B1 (en) * 2008-06-13 2013-07-24 시바우라 메카트로닉스 가부시끼가이샤 Plasma processing apparatus, plasma processing method, and electronic device manufacturing method

Similar Documents

Publication Publication Date Title
US7615259B2 (en) Method and apparatus for processing workpiece
JP3122617B2 (en) Plasma processing equipment
US5310453A (en) Plasma process method using an electrostatic chuck
KR100811906B1 (en) Processing method and processing apparatus
KR100639071B1 (en) Thin-film deposition system
JPH09326385A (en) Substrate cooling method
JPH0249424A (en) Etching process
JP3535309B2 (en) Decompression processing equipment
JPH11204442A (en) Single wafer heat treatment device
JP2879887B2 (en) Plasma processing method
JP3258885B2 (en) Film processing equipment
US20110179717A1 (en) Substrate processing apparatus
JP2004288704A (en) Plasma treatment device
JP4695297B2 (en) Thin film forming apparatus and load lock chamber
JP3253002B2 (en) Processing equipment
JP4744671B2 (en) Single wafer processing equipment
JP2869384B2 (en) Plasma processing method
JP2011211067A (en) Substrate treatment apparatus and substrate removal device to be used for the same
JPH11204443A (en) Single wafer heat treatment device
JPH098011A (en) Method and apparatus for processing plasma
JP3356354B2 (en) Processing equipment
JP2003332408A (en) Clamp mechanism and processing equipment
WO2020100400A1 (en) Vacuum processing apparatus
JPH08330279A (en) Plasma treatment device
JPH05152425A (en) Treatment apparatus and sputtering apparatus