JPH0979815A - Work position detecting device - Google Patents

Work position detecting device

Info

Publication number
JPH0979815A
JPH0979815A JP25950995A JP25950995A JPH0979815A JP H0979815 A JPH0979815 A JP H0979815A JP 25950995 A JP25950995 A JP 25950995A JP 25950995 A JP25950995 A JP 25950995A JP H0979815 A JPH0979815 A JP H0979815A
Authority
JP
Japan
Prior art keywords
positioning hole
position detecting
work
light
light source
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP25950995A
Other languages
Japanese (ja)
Inventor
Nobuyuki Aoyanagi
伸幸 青柳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shinkawa Ltd
Original Assignee
Shinkawa Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shinkawa Ltd filed Critical Shinkawa Ltd
Priority to JP25950995A priority Critical patent/JPH0979815A/en
Priority to TW85103475A priority patent/TW305926B/zh
Publication of JPH0979815A publication Critical patent/JPH0979815A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48245Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48245Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • H01L2224/48247Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a bond pad of the item

Landscapes

  • Length Measuring Devices By Optical Means (AREA)
  • Wire Bonding (AREA)

Abstract

PROBLEM TO BE SOLVED: To inexpensively detect a position at high speed with high accuracy. SOLUTION: A laser beam source 3 is arranged on one side of a position in which a positioning hole 2 of a work 1 is normally positioned, and a two-dimensional position detecting element 4 is arranged on the other side so as to be opposed to the laser beam source 3, and a spotlight 7 passing through the positioning hole 2 of the laser beam source 3 is received by the two-dimensional position detecting element 4, and operation processing is performed on four photoelectric currents Ix1 , Ix2 , Iy1 and Iy2 generated by the two dimensional position detecting element 4 by an operation circuit 12, and a dislocation quantity of the positioning hole 2 is calculated.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明はリードフレーム又は
テープキャリア等のワークの位置検出装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a position detecting device for a work such as a lead frame or a tape carrier.

【0002】[0002]

【従来の技術】例えば、ボンデイング装置においては、
リードフレーム又はテープキャリア等のワークのボンデ
イング部分をボンデイング位置に位置決めする必要があ
る。従来、ワークの位置決めとして、カメラによるパタ
ーン検出方法と、ワークの周辺に設けられた位置決め穴
に位置決めピンを挿入する方法等が知られている。
2. Description of the Related Art For example, in a bonding apparatus,
It is necessary to position the bonding part of the work such as the lead frame or the tape carrier at the bonding position. Conventionally, as a method of positioning a work, a pattern detection method using a camera, a method of inserting a positioning pin into a positioning hole provided around the work, and the like are known.

【0003】[0003]

【発明が解決しようとする課題】カメラによるパターン
検出方法は、カメラを用いること、また複雑な画像処理
装置を用いること等により、高価な設備となる。またパ
ターンマッチングを行なうため、検出速度が比較的に遅
い。更に同じパターンがある場合、誤検出の恐れがあ
る。位置決めピン挿入方法は、位置決め穴と位置決めピ
ンとにガタ(隙間)があるため、精度が低い。また位置
決め穴の径が変わった場合には、位置決めピン等の部品
を交換する必要がある。更に位置決めピンの挿入に時間
がかかる。
The pattern detection method using a camera is expensive because it uses a camera and a complicated image processing device. Further, since pattern matching is performed, the detection speed is relatively slow. Further, if there is the same pattern, there is a risk of false detection. The positioning pin insertion method has low accuracy because there is looseness (gap) between the positioning hole and the positioning pin. Further, if the diameter of the positioning hole changes, it is necessary to replace parts such as the positioning pin. Furthermore, it takes time to insert the positioning pin.

【0004】本発明の課題は、低価格で高速に、かつ高
精度に位置検出が可能なワークの位置検出装置を提供す
ることにある。
An object of the present invention is to provide a work position detecting device which can detect a position at low cost at high speed and with high accuracy.

【0005】[0005]

【課題を解決するための手段】上記課題を達成するため
の本発明の第1の手段は、ワークの位置決め穴が正規に
位置決めされる位置の一方側に光源を配置し、他方側に
前記光源に対向して半導体受光素子を配置し、前記光源
の前記位置決め穴を通った光を前記半導体受光素子で受
光し、半導体受光素子で発生する4個の光電流を演算回
路で演算処理して位置決め穴のずれ量を算出することを
特徴とする。
According to a first aspect of the present invention for achieving the above object, a light source is arranged on one side of a position where a positioning hole of a work is properly positioned, and the light source is on the other side. The semiconductor light receiving element is arranged so as to face the light source, the light passing through the positioning hole of the light source is received by the semiconductor light receiving element, and the four photocurrents generated by the semiconductor light receiving element are arithmetically processed by the arithmetic circuit to perform positioning. The feature is that the amount of deviation of the hole is calculated.

【0006】上記課題を達成するための本発明の第2の
手段は、上記第1の手段における半導体受光素子は、2
次元位置検出素子又は4分割フォトダイオードであるこ
とを特徴とする。
A second means of the present invention for achieving the above object is that the semiconductor light receiving element in the first means is
It is characterized by being a dimensional position detecting element or a four-division photodiode.

【0007】上記課題を達成するための本発明の第3の
手段は、ワークの位置決め穴が正規に位置決めされる位
置の一方側に4個の投光器を配置し、他方側に前記投光
器に対向して4個のファイバセンサを配置し、前記光源
の前記位置決め穴を通った光を前記4個のファイバセン
サで受光し、4個のファイバセンサの電流を演算回路で
演算処理して位置決め穴のずれ量を算出することを特徴
とする。
A third means of the present invention for attaining the above object is to dispose four light projectors on one side of a position where a positioning hole of a work is properly positioned and to face the light projector on the other side. 4 fiber sensors are arranged, the light passing through the positioning holes of the light source is received by the 4 fiber sensors, and the currents of the 4 fiber sensors are processed by a calculation circuit to shift the positioning holes. It is characterized by calculating an amount.

【0008】[0008]

【発明の実施の形態】本発明の実施の形態を図1乃至図
4により説明する。ワーク1の位置決め穴2が正規に位
置決めされる位置の一方側に光源としてレーザー光源3
を配置し、他方側に前記レーザー光源3に対向して半導
体受光素子を配置する。半導体受光素子として、図1及
び図2の場合は、2次元位置検出素子4を使用し、図3
の場合は、4分割フォトダイオード20を使用する。ま
た図4の場合は、一方側に4個の投光器31A乃至31
Dを配置し、他方側に前記投光器31A乃至31Dに対
向して4個のファイバセンサ30A乃至30Dを配置す
る。そして、前記光源の前記位置決め穴2を通った光を
前記次元位置検出素子4又は20若しくはファイバセン
サ30A乃至30Dで受光し、半導体受光素子4又は4
分割フォトダイオード20若しくはファイバセンサ30
A乃至30Dで発生する4個の光電流を演算回路12又
は25で演算処理して位置決め穴2のずれ量を算出す
る。
BEST MODE FOR CARRYING OUT THE INVENTION An embodiment of the present invention will be described with reference to FIGS. A laser light source 3 is provided as a light source on one side of the position where the positioning hole 2 of the work 1 is properly positioned.
And a semiconductor light receiving element is arranged on the other side so as to face the laser light source 3. As the semiconductor light receiving element, the two-dimensional position detecting element 4 is used in the case of FIGS.
In this case, the four-division photodiode 20 is used. Further, in the case of FIG. 4, four light projectors 31A to 31A are provided on one side.
D is arranged, and four fiber sensors 30A to 30D are arranged on the other side so as to face the light projectors 31A to 31D. Then, the light passing through the positioning hole 2 of the light source is received by the dimensional position detecting element 4 or 20 or the fiber sensors 30A to 30D, and the semiconductor light receiving element 4 or 4 is received.
Split photodiode 20 or fiber sensor 30
The four photocurrents generated in A to 30D are arithmetically processed by the arithmetic circuit 12 or 25 to calculate the displacement amount of the positioning hole 2.

【0009】[0009]

【実施例】以下、本発明の第1実施例を図1及び図2に
より説明する。図1に示すように、リードフレーム又は
テープキャリア等のワーク1の位置決め穴2が正規に位
置決めされる位置の上方には、レーザー光源3が配置さ
れ、位置決め穴2の下方には、2次元位置検出素子4の
中心部5が配置されている。2次元位置検出素子4は、
平板状のシリコンの表面にP層、裏面にN層、中間のI
層の3層から構成されている。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS A first embodiment of the present invention will be described below with reference to FIGS. As shown in FIG. 1, a laser light source 3 is arranged above a position where a positioning hole 2 of a work 1 such as a lead frame or a tape carrier is properly positioned, and a two-dimensional position is below the positioning hole 2. The central portion 5 of the detection element 4 is arranged. The two-dimensional position detecting element 4 is
P layer on the surface of flat silicon, N layer on the back surface, I in the middle
It is composed of three layers.

【0010】そこで、ワーク1が図示しない移送手段で
所定の位置決め位置に送られ、位置決め穴2がレーザー
光源3の真下に位置する。そして、レーザー光源3から
レーザー光6が照射されると、位置決め穴2を通ったレ
ーザー光6は、位置決め穴2の大きさのスポット光7と
なって2次元位置検出素子4に入射する。2次元位置検
出素子4にスポット光7が入射すると、入射位置には光
エネルギーに比例した電荷が発生する。この発生した電
荷は、光電流として表面のP層を通り、XY方向の電極
8x1 、8x2 、8y1 、8y2 より電流Ix1 、Ix
2 、Iy1 、Iy2 として出力する。この場合、電流I
1 、Ix2 、Iy1 、Iy2 はスポット光7の入射位
置の中心から電極8x1 、8x2 、8y1 、8y2 まで
の距離に逆比例して分割されて取り出される。
Then, the work 1 is sent to a predetermined positioning position by a transfer means (not shown), and the positioning hole 2 is positioned directly below the laser light source 3. When the laser light 6 is emitted from the laser light source 3, the laser light 6 passing through the positioning hole 2 becomes spot light 7 having the size of the positioning hole 2 and enters the two-dimensional position detecting element 4. When the spot light 7 is incident on the two-dimensional position detecting element 4, a charge proportional to the light energy is generated at the incident position. The generated charges pass as a photocurrent through the P layer on the surface, and the currents Ix 1 and Ix are supplied from the electrodes 8x 1 , 8x 2 , 8y 1 and 8y 2 in the XY directions.
It outputs as 2 , Iy 1 and Iy 2 . In this case, the current I
x 1 , Ix 2 , Iy 1 and Iy 2 are divided and taken out in inverse proportion to the distances from the center of the incident position of the spot light 7 to the electrodes 8x 1 , 8x 2 , 8y 1 and 8y 2 .

【0011】今、図2に示すように、2次元位置検出素
子4に発生する光電流をI0 、電極8x1 と8x2 の距
離をLx、電極8y1 と8y2 の距離をLyとし、2次
元位置検出素子4の中心部5よりX0 、Y0 ずれた位置
にスポット光7の中心9が入射すると、電流Ix1 、I
2 、Iy1 、Iy2 は数1で表される。また電流Ix
1 、Ix2 、Iy1 、Iy2 の比は数2で表される。更
に数2より位置決め穴2のずれ量X0 、Y0 は数3で表
される。
Now, as shown in FIG. 2, the photocurrent generated in the two-dimensional position detecting element 4 is I 0 , the distance between the electrodes 8x 1 and 8x 2 is Lx, and the distance between the electrodes 8y 1 and 8y 2 is Ly, When the center 9 of the spot light 7 is incident at a position displaced from the central portion 5 of the two-dimensional position detecting element 4 by X 0 , Y 0 , the currents Ix 1 , Ix
x 2 , Iy 1 , and Iy 2 are represented by Formula 1 . Also the current Ix
The ratio of 1 , Ix 2 , Iy 1 , and Iy 2 is expressed by the equation 2 . Further, from Equation 2, the displacement amounts X 0 and Y 0 of the positioning hole 2 are expressed by Equation 3.

【数1】 Ix1 =(1/2)・(1+2X0 /Lx)・I0 Ix2 =(1/2)・(1−2X0 /Lx)・I0 Iy1 =(1/2)・(1+2Y0 /Ly)・I0 Iy2 =(1/2)・(1−2Y0 /Ly)・I0 [Number 1] Ix 1 = (1/2) · ( 1 + 2X 0 / Lx) · I 0 Ix 2 = (1/2) · (1-2X 0 / Lx) · I 0 Iy 1 = (1/2) · (1 + 2Y 0 / Ly ) · I 0 Iy 2 = (1/2) · (1-2Y 0 / Ly) · I 0

【数2】 Ix1 /Ix1 =(Lx+2X0 )/(Lx−2X0 ) Iy1 /Iy2 =(Ly+2Y0 )/(Ly−2Y0 [Number 2] Ix 1 / Ix 1 = (Lx + 2X 0) / (Lx-2X 0) Iy 1 / Iy 2 = (Ly + 2Y 0) / (Ly-2Y 0)

【数3】X0 =(1/2)・(Ix1 +Ix2 )/(I
1 −Ix2 )・Lx Y0 =(1/2)・(Iy1 +Iy2 )/(Iy1 −I
2 )・Ly
[Formula 3] X 0 = (1/2) · (Ix 1 + Ix 2 ) / (I
x 1 −Ix 2 ) · Lx Y 0 = (1/2) · (Iy 1 + Iy 2 ) / (Iy 1 −I
y 2 ) ・ Ly

【0012】電流Ix1 、Ix2 、Iy1 、Iy2 はそ
れぞれアンプ10x1 、10x2 、10y1 、10y2
で増幅され、それぞれ信号処理回路11x1 、11
2 、11y1 、11y2 でD/A変換される。従っ
て、信号処理回路11x1 、11x2 、11y1 、11
2 からは、電流Ix1 、Ix2 、Iy1 、Iy2 に比
例した電圧Vx1 、Vx2 、Vy1 、Vy2 が出力し、
この電圧Vx1 、Vx2 、Vy1 、Vy2 は演算回路1
2に入力される。演算回路12は、電圧Vx1 とVx2
の差又は比、電圧Vy1 とVy2 の差又は比を演算す
る。これをA/D変換器13で変換して位置決め穴2の
位置ずれX0 、Y0 を出し、制御回路14に入力する。
制御回路14は、位置ずれX0 、Y0 をボンデイング時
の補正量としてボンデイング装置のXYテーブルを駆動
するか、またはワーク1を移動させて位置決め穴2を2
次元位置検出素子4の中心部5に位置させる。
The currents Ix 1 , Ix 2 , Iy 1 and Iy 2 are supplied to amplifiers 10x 1 , 10x 2 , 10y 1 and 10y 2, respectively.
Signal processing circuits 11x 1 and 11x, respectively.
D / A conversion is performed on x 2 , 11y 1 and 11y 2 . Therefore, the signal processing circuits 11x 1 , 11x 2 , 11y 1 and 11
From y 2, the current Ix 1, Ix 2, Iy 1 , Iy 2 voltage Vx 1 that is proportional to, Vx 2, Vy 1, Vy 2 outputs,
The voltages Vx 1 , Vx 2 , Vy 1 , and Vy 2 are calculated by the arithmetic circuit 1.
2 is input. The arithmetic circuit 12 has the voltages Vx 1 and Vx 2
Of the voltage Vy 1 and Vy 2 is calculated. This is converted by the A / D converter 13 to obtain the positional deviations X 0 and Y 0 of the positioning hole 2 and input to the control circuit 14.
The control circuit 14 drives the XY table of the bonding apparatus by using the positional deviations X 0 and Y 0 as the correction amounts at the time of bonding, or moves the work 1 to move the positioning holes 2 to two positions.
It is located at the central portion 5 of the dimensional position detecting element 4.

【0013】図3は本発明の第2実施例を示す。本実施
例は、前記実施例の2次元位置検出素子4に代えて4個
の素子20A、20B、20C、20Dを有する4分割
フォトダイオード20を用いた例を示す。本実施例の場
合は、素子20A、20B、20C、20Dの電極21
A、21B、21C、21Dから出力する電流Ia、I
b、Ic、Idは、スポット光7が当てられた光量(素
子20A、20B、20C、20Dにスポット光6が当
たったそれぞれの面積)に比例する。即ち、電流Iaは
素子20Aの面積22A、電流Ibは素子20Bの面積
22B、電流Icは素子20Cの面積22C、電流Id
は素子20Dの面積22Dに比例する。この電流Ia、
Ib、Ic、Idはアンプ23A、23B、23C、2
3Dで増幅され、それぞれ信号処理回路24A、24
B、24C、24DでD/A変換される。従って、信号
処理回路24A、24B、24C、24Dからは増幅さ
れた電流Ia、Ib、Ic、Idに比例した電圧Va、
Vb、Vc、Vdが出力する。この電圧Va、Vb、V
c、Vdは演算回路25で処理される。
FIG. 3 shows a second embodiment of the present invention. This embodiment shows an example in which a four-division photodiode 20 having four elements 20A, 20B, 20C and 20D is used instead of the two-dimensional position detecting element 4 of the above-mentioned embodiment. In the case of this embodiment, the electrodes 21 of the elements 20A, 20B, 20C and 20D are used.
Currents Ia and I output from A, 21B, 21C and 21D
b, Ic, and Id are proportional to the amount of light to which the spot light 7 is applied (the areas where the spot light 6 hits the elements 20A, 20B, 20C, and 20D). That is, the current Ia is the area 22A of the element 20A, the current Ib is the area 22B of the element 20B, the current Ic is the area 22C of the element 20C, and the current Id.
Is proportional to the area 22D of the element 20D. This current Ia,
Ib, Ic, and Id are amplifiers 23A, 23B, 23C, and 2
The signal processing circuits 24A and 24 are amplified by 3D, respectively.
D / A conversion is performed on B, 24C, and 24D. Therefore, the voltage Va proportional to the amplified currents Ia, Ib, Ic, Id from the signal processing circuits 24A, 24B, 24C, 24D,
Vb, Vc, and Vd are output. This voltage Va, Vb, V
c and Vd are processed by the arithmetic circuit 25.

【0014】演算回路25においては、XY方向のずれ
量X0 、Y0 に対応した電圧を算出するために、加算回
路26x1 、26x2 、26y1 、26y2 で加算し、
その後に引算回路27x、27yで引算を行なう。加算
回路26x1 は、電圧VaとVbを加算して電圧Vx1
を算出し、加算回路26x2 は、電圧VcとVdを加算
して電圧Vx2 を算出し、加算回路26y1 は、電圧V
bとVdを加算して電圧Vy1 を算出し、加算回路26
2 は、電圧VaとVcを加算して電圧Vy2を算出す
る。これらを数式で表すと、数4のようになる。次に引
算回路27xは、電圧Vx1 とVx2 を引き算してX方
向の電圧の差Vxを算出し、引算回路27yは、電圧V
1 とVy2 を引き算してY方向の電圧の差Vyを算出
する。これを数式で表すと数5のようになる。
[0014] In the arithmetic circuit 25, in order to calculate the voltage corresponding to the deviation amount X 0, Y 0 of the XY directions, are added in the addition circuit 26x 1, 26x 2, 26y 1 , 26y 2,
After that, the subtraction circuits 27x and 27y perform subtraction. The adder circuit 26x 1 adds the voltages Va and Vb to obtain the voltage Vx 1
Is calculated, the adder circuit 26x 2 calculates the voltage Vx 2 by adding the voltage Vc and Vd, the adding circuit 26y 1, the voltage V
b and Vd are added to calculate the voltage Vy 1 , and the addition circuit 26
For y 2 , the voltage Vy 2 is calculated by adding the voltages Va and Vc. If these are expressed by mathematical formulas, they are as shown in Formula 4. Next, the subtraction circuit 27x subtracts the voltages Vx 1 and Vx 2 to calculate the voltage difference Vx in the X direction, and the subtraction circuit 27y calculates the voltage Vx.
by subtracting y 1 and Vy 2 calculates a difference Vy of the Y-direction voltage. When this is expressed by a mathematical formula, it becomes as shown in Formula 5.

【数4】Vx1 =Va+Vb Vx2 =Vc+Vd Vy1 =Vb+Vd Vy2 =Va+Vc## EQU4 ## Vx 1 = Va + Vb Vx 2 = Vc + Vd Vy 1 = Vb + Vd Vy 2 = Va + Vc

【数5】Vx=Vx1 −Vx2 Vy=Vy1 −Vy2 [Number 5] Vx = Vx 1 -Vx 2 Vy = Vy 1 -Vy 2

【0015】この演算回路25で演算された電圧Vx及
びVyは、A/D変換器28で変換して位置決め穴2の
位置ずれを出力し、制御回路29に入力する。制御回路
29は、位置ずれX0 、Y0 をボンデイング時の補正量
としてボンデイング装置のXYテーブルを駆動するか、
またはワークを移動させて位置決め穴2を2次元位置検
出素子4の中心部位置に位置させる。
The voltages Vx and Vy calculated by the calculation circuit 25 are converted by the A / D converter 28 to output the positional deviation of the positioning hole 2 and input to the control circuit 29. The control circuit 29 drives the XY table of the bonding apparatus by using the positional deviations X 0 and Y 0 as the correction amounts at the time of bonding, or
Alternatively, the work is moved to position the positioning hole 2 at the central position of the two-dimensional position detecting element 4.

【0016】図4は本発明の第3実施例を示す。本実施
例は、前記第2実施例の4分割フォトダイオード20の
4個の素子20A、20B、20C、20Dに代えて4
個のファイバセンサ30A、30B、30C、30Dを
用い、光源として前記ファイバセンサ30A、30B、
30C、30Dに対向してスポット光を照射する4個の
投光器31A、31B、31C、31Dを用いた。従っ
て、本実施例の場合には、投光器31A、31B、31
C、31Dより照射されて位置決め穴2を通った光をフ
ァイバセンサ30A、30B、30C、30Dが受光す
る受光量は、ファイバセンサ30Aは斜線で示す面積3
2A、ファイバセンサ30Bは斜線で示す面積32B、
ファイバセンサ30Cは受光しないので面積は0、ファ
イバセンサ30Dは斜線で示す面積32Dとなる。そこ
で、本実施例の場合もファイバセンサ30A、30B、
30C、30Dが受光した受光量に比例して前記第2実
施例と同様に電流Ia、Ib、Ic、Idが出力するの
で、前記第2実施例の回路で処理してずれ量X0 、Y0
を求めることができる。
FIG. 4 shows a third embodiment of the present invention. In this embodiment, four elements 20A, 20B, 20C and 20D of the four-division photodiode 20 of the second embodiment are replaced with four elements.
The individual fiber sensors 30A, 30B, 30C, 30D are used, and the fiber sensors 30A, 30B,
Four light projectors 31A, 31B, 31C, and 31D which face 30C and 30D and irradiate a spot light were used. Therefore, in the case of this embodiment, the projectors 31A, 31B, 31
The amount of light received by the fiber sensors 30A, 30B, 30C, and 30D that are emitted from C and 31D and that have passed through the positioning hole 2 is as follows:
2A, the fiber sensor 30B has a shaded area 32B,
Since the fiber sensor 30C does not receive light, the area is 0, and the fiber sensor 30D has a shaded area 32D. Therefore, also in the case of this embodiment, the fiber sensors 30A, 30B,
30C, 30D are likewise current Ia and the second embodiment in proportion to the amount of received light received, Ib, Ic, because Id is outputted, the shift amount is treated in the circuit of the second embodiment X 0, Y 0
Can be requested.

【0017】なお、図1乃至図3では、レーザー光源3
を上方に配置し、半導体受光素子である2次元位置検出
素子4又は4分割フォトダイオード20を下方に配置し
たが、逆に配置してもよい。また光源としてレーザー光
源3を使用したが、他の一般の光源でもよい。また図4
の場合も、ファイバセンサ30A、30B、30C、3
0Dと投光器31A、31B、31C、31Dは逆に配
置してもよい。また本実施例のように、4個の投光器3
1A、31B、31C、31Dを配設するのが好ましい
が、その数は特に限定されるものではない。
In FIGS. 1 to 3, the laser light source 3 is used.
Is arranged above and the two-dimensional position detecting element 4 or the four-divided photodiode 20 which is a semiconductor light receiving element is arranged below, but they may be arranged in reverse. Although the laser light source 3 is used as the light source, another general light source may be used. FIG. 4
In the case of, the fiber sensors 30A, 30B, 30C, 3
The 0D and the light projectors 31A, 31B, 31C and 31D may be arranged in reverse. In addition, as in this embodiment, the four projectors 3
It is preferable to dispose 1A, 31B, 31C, 31D, but the number thereof is not particularly limited.

【0018】このように、光の入射位置又は光量を電流
に変換し、この電流を処理してワーク1の位置ずれを検
出するので、従来のカメラによるパターン検出方法のよ
うに、カメラを必要としなく、また画像を記憶したりパ
ターンマッチングを行なう必要がないので、低価格で高
速に検出できる。また従来の位置決めピン挿入方法にお
ける位置決めピンが不要で、調整が簡単であると共に、
高速で高精度に検出できる。
As described above, since the incident position of light or the amount of light is converted into an electric current and the electric current is processed to detect the positional deviation of the work 1, a camera is required as in the conventional pattern detection method using a camera. Moreover, since there is no need to store an image or perform pattern matching, it is possible to detect at low cost and at high speed. Moreover, the positioning pin in the conventional positioning pin insertion method is unnecessary, and the adjustment is easy and
It can be detected at high speed and with high accuracy.

【0019】[0019]

【発明の効果】本発明によれば、ワークの位置決め穴が
正規に位置決めされる位置の一方側に光源を配置し、他
方側に前記光源に対向して半導体受光素子を配置し、前
記光源の前記位置決め穴を通った光を前記半導体受光素
子で受光し、半導体受光素子で発生する4個の光電流を
演算回路で演算処理して位置決め穴のずれ量を算出する
ので、低価格で高速に、かつ高精度に位置検出が可能で
ある。またワークの位置決め穴が正規に位置決めされる
位置の一方側に4個の投光器を配置し、他方側に前記投
光器に対向して4個のファイバセンサを配置し、前記光
源の前記位置決め穴を通った光を前記4個のファイバセ
ンサで受光し、4個のファイバセンサの電流を演算回路
で演算処理して位置決め穴のずれ量を算出しても同様の
効果が得られる。
According to the present invention, the light source is arranged on one side of the position where the positioning hole of the work is properly positioned, and the semiconductor light receiving element is arranged on the other side so as to face the light source. The light passing through the positioning hole is received by the semiconductor light receiving element, and the four photocurrents generated in the semiconductor light receiving element are arithmetically processed by the arithmetic circuit to calculate the amount of deviation of the positioning hole, which is low cost and high speed. Moreover, the position can be detected with high accuracy. Further, four light projectors are arranged on one side of the position where the positioning hole of the work is properly positioned, and four fiber sensors are arranged on the other side so as to face the light projector, and the four fiber sensors are passed through the positioning holes of the light source. The same effect can be obtained by receiving the received light by the four fiber sensors and calculating the deviation amount of the positioning hole by calculating the current of the four fiber sensors by the calculation circuit.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明のワークの位置検出装置の第1実施例を
示すブロック図である。
FIG. 1 is a block diagram showing a first embodiment of a work position detecting apparatus of the present invention.

【図2】図2の2次元位置検出素子の平面図である。FIG. 2 is a plan view of the two-dimensional position detecting element of FIG.

【図3】本発明のワークの位置検出装置の第2実施例を
示すブロック図である。
FIG. 3 is a block diagram showing a second embodiment of the work position detecting apparatus of the present invention.

【図4】本発明のワークの位置検出装置の第3実施例を
示し、(a)は平面図、(b)は一部断面正面図であ
る。
4A and 4B show a third embodiment of the work position detecting apparatus of the present invention, wherein FIG. 4A is a plan view and FIG. 4B is a partially sectional front view.

【符号の説明】[Explanation of symbols]

1 ワーク 2 位置決め穴 3 レーザー光源 4 2次元位置検出素子 7 スポット光 11x1 、11x2 、11y1 、11y2 信号処理回
路 12 演算回路 14 制御回路 20 4分割フォトダイオード 20A、20B、20C、20D 素子 24A、24B、24C、24D 信号処理回路 25 演算回路 30A、30B、30C、30D ファイバセンサ 31A、31B、31C、31D 投光器
1 work 2 positioning hole 3 laser source 4 2-dimensional position detecting element 7 spot light 11x 1, 11x 2, 11y 1 , 11y 2 signal processing circuit 12 calculation circuit 14 control circuit 20 quadrant photodiode 20A, 20B, 20C, 20D element 24A, 24B, 24C, 24D Signal processing circuit 25 Arithmetic circuit 30A, 30B, 30C, 30D Fiber sensor 31A, 31B, 31C, 31D Projector

─────────────────────────────────────────────────────
─────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成7年12月5日[Submission date] December 5, 1995

【手続補正1】[Procedure amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0012[Correction target item name] 0012

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【0012】電流Ix1 、Ix2 、Iy1 、Iy2 はそ
れぞれアンプ10x1 、10x2 、10y1 、10y2
で増幅され、それぞれ信号処理回路11x1 、11
2 、11y1 、11y2 電圧変換される。従って、
信号処理回路11x1 、11x2、11y1 、11y2
からは、電流Ix1 、Ix2 、Iy1 、Iy2 に比例し
た電圧Vx1 、Vx2 、Vy1 、Vy2 が出力し、この
電圧Vx1 、Vx2 、Vy1 、Vy2 は演算回路12に
入力される。演算回路12は、電圧Vx1 とVx2の差
又は比、電圧Vy1 とVy2 の差又は比を演算する。こ
れをA/D変換器13で変換して位置決め穴2の位置ず
れX0 、Y0 を出し、制御回路14に入力する。制御回
路14は、位置ずれX0 、Y0 をボンデイング時の補正
量としてボンデイング装置のXYテーブルを駆動する
か、またはワーク1を移動させて位置決め穴2を2次元
位置検出素子4の中心部5に位置させる。
The currents Ix 1 , Ix 2 , Iy 1 and Iy 2 are supplied to amplifiers 10x 1 , 10x 2 , 10y 1 and 10y 2, respectively.
Signal processing circuits 11x 1 and 11x, respectively.
The voltage is converted by x 2 , 11y 1 and 11y 2 . Therefore,
The signal processing circuit 11x 1, 11x 2, 11y 1 , 11y 2
From a current Ix 1, Ix 2, Iy 1 , Iy 2 voltage Vx 1 that is proportional to, Vx 2, Vy 1, Vy 2 outputs, the voltage Vx 1, Vx 2, Vy 1 , Vy 2 arithmetic circuit 12 is input. The arithmetic circuit 12 calculates the difference or ratio between the voltages Vx 1 and Vx 2 , and the difference or ratio between the voltages Vy 1 and Vy 2 . This is converted by the A / D converter 13 to obtain the positional deviations X 0 and Y 0 of the positioning hole 2 and input to the control circuit 14. The control circuit 14 drives the XY table of the bonding apparatus by using the positional deviations X 0 and Y 0 as correction amounts during bonding, or moves the work 1 to move the positioning hole 2 to the central portion 5 of the two-dimensional position detecting element 4. Located in.

【手続補正2】[Procedure amendment 2]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0013[Correction target item name] 0013

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【0013】図3は本発明の第2実施例を示す。本実施
例は、前記実施例の2次元位置検出素子4に代えて4個
の素子20A、20B、20C、20Dを有する4分割
フォトダイオード20を用いた例を示す。本実施例の場
合は、素子20A、20B、20C、20Dの電極21
A、21B、21C、21Dから出力する電流Ia、I
b、Ic、Idは、スポット光7が当てられた光量(素
子20A、20B、20C、20Dにスポット光6が当
たったそれぞれの面積)に比例する。即ち、電流Iaは
素子20Aの面積22A、電流Ibは素子20Bの面積
22B、電流Icは素子20Cの面積22C、電流Id
は素子20Dの面積22Dに比例する。この電流Ia、
Ib、Ic、Idはアンプ23A、23B、23C、2
3Dで増幅され、それぞれ信号処理回路24A、24
B、24C、24Dで電圧変換される。従って、信号処
理回路24A、24B、24C、24Dからは増幅され
た電流Ia、Ib、Ic、Idに比例した電圧Va、V
b、Vc、Vdが出力する。この電圧Va、Vb、V
c、Vdは演算回路25で処理される。 ─────────────────────────────────────────────────────
FIG. 3 shows a second embodiment of the present invention. This embodiment shows an example in which a four-division photodiode 20 having four elements 20A, 20B, 20C and 20D is used instead of the two-dimensional position detecting element 4 of the above-mentioned embodiment. In the case of this embodiment, the electrodes 21 of the elements 20A, 20B, 20C and 20D are used.
Currents Ia and I output from A, 21B, 21C and 21D
b, Ic, and Id are proportional to the amount of light with which the spot light 7 is applied (the areas where the spot light 6 hits the elements 20A, 20B, 20C, and 20D). That is, the current Ia is the area 22A of the element 20A, the current Ib is the area 22B of the element 20B, the current Ic is the area 22C of the element 20C, and the current Id.
Is proportional to the area 22D of the element 20D. This current Ia,
Ib, Ic, and Id are amplifiers 23A, 23B, 23C, and 2
The signal processing circuits 24A and 24 are amplified by 3D, respectively.
The voltage is converted by B, 24C, and 24D. Therefore, the signals Va, V proportional to the amplified currents Ia, Ib, Ic, Id from the signal processing circuits 24A, 24B, 24C, 24D.
b, Vc and Vd are output. This voltage Va, Vb, V
c and Vd are processed by the arithmetic circuit 25. ─────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成7年12月18日[Submission date] December 18, 1995

【手続補正1】[Procedure amendment 1]

【補正対象書類名】図面[Document name to be amended] Drawing

【補正対象項目名】図2[Correction target item name] Figure 2

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【図2】 [Fig. 2]

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 ワークの位置決め穴が正規に位置決めさ
れる位置の一方側に光源を配置し、他方側に前記光源に
対向して半導体受光素子を配置し、前記光源の前記位置
決め穴を通った光を前記半導体受光素子で受光し、半導
体受光素子で発生する4個の光電流を演算回路で演算処
理して位置決め穴のずれ量を算出することを特徴とする
ワークの位置検出装置。
1. A light source is arranged on one side of a position where a positioning hole of a work is properly positioned, and a semiconductor light receiving element is arranged on the other side so as to face the light source, and passes through the positioning hole of the light source. A position detecting device for a workpiece, wherein light is received by the semiconductor light receiving element, and four photocurrents generated by the semiconductor light receiving element are arithmetically processed by an arithmetic circuit to calculate a deviation amount of a positioning hole.
【請求項2】 前記半導体受光素子は、2次元位置検出
素子又は4分割フォトダイオードであることを特徴とす
る請求項1記載のワークの位置検出装置。
2. The position detecting device for a work according to claim 1, wherein the semiconductor light receiving element is a two-dimensional position detecting element or a four-division photodiode.
【請求項3】 ワークの位置決め穴が正規に位置決めさ
れる位置の一方側に投光器を配置し、他方側に前記投光
器に対向して4個のファイバセンサを配置し、前記光源
の前記位置決め穴を通った光を前記4個のファイバセン
サで受光し、4個のファイバセンサの電流を演算回路で
演算処理して位置決め穴のずれ量を算出することを特徴
とするワークの位置検出装置。
3. A light projecting device is arranged on one side of a position where a positioning hole of a work is properly positioned, and four fiber sensors are arranged on the other side so as to face the light projecting device, and the positioning hole of the light source is arranged. A position detecting device for a work, wherein the light passing through is received by the four fiber sensors, and the currents of the four fiber sensors are arithmetically processed by an arithmetic circuit to calculate the deviation amount of the positioning hole.
JP25950995A 1995-09-13 1995-09-13 Work position detecting device Pending JPH0979815A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP25950995A JPH0979815A (en) 1995-09-13 1995-09-13 Work position detecting device
TW85103475A TW305926B (en) 1995-09-13 1996-03-22

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25950995A JPH0979815A (en) 1995-09-13 1995-09-13 Work position detecting device

Publications (1)

Publication Number Publication Date
JPH0979815A true JPH0979815A (en) 1997-03-28

Family

ID=17335099

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25950995A Pending JPH0979815A (en) 1995-09-13 1995-09-13 Work position detecting device

Country Status (2)

Country Link
JP (1) JPH0979815A (en)
TW (1) TW305926B (en)

Also Published As

Publication number Publication date
TW305926B (en) 1997-05-21

Similar Documents

Publication Publication Date Title
US4623253A (en) Position detecting apparatus
JPS6177701A (en) Edge detector of optical measuring instrument
JPH0979815A (en) Work position detecting device
JPS5983165A (en) Light source device for illumination
JPS6042725A (en) Focus detecting device
JPS58173408A (en) Edge detector in optical measuring apparatus
US7852033B2 (en) Driving control apparatus and method, and exposure apparatus
JPS6316892A (en) Distance measuring instrument for laser beam machine
JPS61233303A (en) Inspecting system for point to be inspected
JPS62212512A (en) Apparatus for detecting range information on object
JP2525237B2 (en) Relative position detector
JPH0949728A (en) Distance-measuring apparatus
JPS63169509A (en) Inclination measuring instrument
JPS6275308A (en) Displacement convertor
KR970004476B1 (en) Measurement apparatus of wafer position in altgner
SU1296836A1 (en) Method of measuring displacements of light spot
JPS6281521A (en) Range finder
JP2928061B2 (en) Displacement sensor
JPS61217786A (en) Optical type distance measuring apparatus
JPS63153411A (en) Shape measuring device
JPH0584485B2 (en)
JPS6281522A (en) Range finder
JPH03238305A (en) Optical-type position measuring apparatus
JPH0445314B2 (en)
JPS6044805A (en) Welding line tracking sensor

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20020218