JPH0979198A - Suction waterway of large drainage pump - Google Patents

Suction waterway of large drainage pump

Info

Publication number
JPH0979198A
JPH0979198A JP23293995A JP23293995A JPH0979198A JP H0979198 A JPH0979198 A JP H0979198A JP 23293995 A JP23293995 A JP 23293995A JP 23293995 A JP23293995 A JP 23293995A JP H0979198 A JPH0979198 A JP H0979198A
Authority
JP
Japan
Prior art keywords
water
drainage pump
roughness
ceiling
closed cross
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP23293995A
Other languages
Japanese (ja)
Inventor
Masahide Konishi
正英 小西
Yukihiro Yamamoto
幸広 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kubota Corp
Original Assignee
Kubota Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kubota Corp filed Critical Kubota Corp
Priority to JP23293995A priority Critical patent/JPH0979198A/en
Publication of JPH0979198A publication Critical patent/JPH0979198A/en
Pending legal-status Critical Current

Links

Landscapes

  • Structures Of Non-Positive Displacement Pumps (AREA)

Abstract

PROBLEM TO BE SOLVED: To prevent air from being sucked in a drainage pump even if a water surface largely waves by flowing down water at high speed, and avoid vibration, a noise and occurrence of a pumping cutoff condition by making roughness of a ceiling part in a closed cross-sectional part of a suction waterway of a large drainage pump roughter than roughness of the other surface. SOLUTION: A suction waterway 2 of a large drainage pump P has a closed cross-sectional part 7 surrounded by both side surfaces and the ceiling 6, and roughness of a ceiling 6 part is formed rougher (a roughness factor is set not less than 0.02) than roghtness of a bottom surface 3 and both side surfaces. Therefore, interfacial resistance between the ceiling 6 and water becomes large, and an interface of water can be restrained from being pulled in the drainage pump P side. Therefore, even if a water surface in a water absorbing tank 1 and a suction waterway 2 largely waves by flowing down water at high speed, air can be prevented from being sucked in a drainage pump P, and therefore, inconvenience such as vibration and a noise are generated and a pumping cutoff condition is incurred can be avoided.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、大型排水ポンプの
吸込水路に関する。
TECHNICAL FIELD The present invention relates to a suction water channel for a large drainage pump.

【0002】[0002]

【従来の技術】図3および図4に示すように、吸水槽1
から排水ポンプPへの吸込水路2に底面3,両側面4,
5および天井6で囲まれた閉断面部7を有する大型排水
ポンプの吸込水路2においては、通常のコンクリート面
によって閉断面部7の底面3,両側面4,5および天井
6が形成されている。ところで、通常のコンクリート面
は、粗度係数が小さい(約0.015)ので、閉断面部
7の底面3,両側面4,5および天井6と、閉断面部7
を流下する水との界面抵抗を小さく抑えて、吸込水路抵
抗を低減することができる。
2. Description of the Related Art As shown in FIG. 3 and FIG.
To the drainage pump P from the bottom surface 3, both side surfaces 4,
In the suction water passage 2 of the large-sized drainage pump having the closed cross-section portion 7 surrounded by 5 and the ceiling 6, the bottom surface 3, the side surfaces 4, 5 and the ceiling 6 of the closed cross-section portion 7 are formed by a normal concrete surface. . By the way, since an ordinary concrete surface has a small roughness coefficient (about 0.015), the bottom surface 3, both side surfaces 4, 5 and the ceiling 6 of the closed cross section 7 and the closed cross section 7 are closed.
It is possible to suppress the interface resistance with the water flowing down to reduce the suction water channel resistance.

【0003】しかし、大型排水ポンプPによる大量の排
水運転によって吸込水路2を流下する水の流速が高くな
ると、水面が大きく上下に変動して波打つ状態になる。
水面が大きく波打つ状態になっても、吸水槽1の水位が
図3の実線で示すように比較的高い場合には悪影響をお
よぼすことはない。ところが、仮想線で示すような低水
位状態で水面に大きい波打ちが生じると、天井6と閉断
面部7を流下する水との界面抵抗が小さいことが起因し
て、水の界面が一点鎖線で示すように排水ポンプP側に
引き込まれる現象を生じて、排水ポンプPにエアーEが
吸込まれる虞れを有し、エアーEの吸込みによって排水
ポンプPに振動や騒音などの弊害を発生させるととも
に、エアーEの吸込量が多くなると、空運転状態(揚水
遮断状態)になる虞れもある。したがって、揚水可能な
最低水位を比較的高いレベルに設定しなけれなならず、
それだけポンプ吸水槽1の残存水量が多くなる欠点を有
している。
However, when the flow velocity of the water flowing down the suction water passage 2 becomes high due to a large amount of drainage operation by the large-scale drainage pump P, the water surface largely fluctuates up and down and becomes wavy.
Even if the water surface is largely wavy, it does not have an adverse effect when the water level in the water absorption tank 1 is relatively high as shown by the solid line in FIG. However, when a large waviness is generated on the water surface in a low water level state as indicated by the phantom line, the interface between the ceiling 6 and the water flowing down the closed cross-section portion 7 is small, so that the water interface is a dashed line. As shown in the drawing, there is a risk that the drain pump P will be drawn into and the air E will be sucked into the drain pump P, and the suction of the air E will cause harmful effects such as vibration and noise in the drain pump P. When the intake amount of the air E is large, there is a possibility that the idling state (pumping off state) may occur. Therefore, the minimum water level that can be pumped must be set to a relatively high level,
As a result, there is a drawback that the amount of residual water in the pump water absorption tank 1 increases.

【0004】一方、この種のポンプ吸水槽1では、水の
流速を高めることで小型化を図り、ポンプ吸水槽1の構
築コストを低減することができる。しかし、流速を高め
ると前述の波打ちが大きくなるので吸水槽1の小型化を
妨げている。
On the other hand, the pump water absorption tank 1 of this type can be downsized by increasing the flow velocity of water, and the construction cost of the pump water absorption tank 1 can be reduced. However, if the flow velocity is increased, the above-mentioned waviness becomes large, which hinders downsizing of the water absorption tank 1.

【0005】[0005]

【発明が解決しようとする課題】すなわち、通常のコン
クリート面によって吸込水路の閉断面部の底面,両側面
および天井を形成した従来の大型排水ポンプの吸込水路
では、閉断面部を流下する水との界面抵抗を小さく抑え
て、吸込水路抵抗を低減することができる反面、天井と
水との界面抵抗が小さくなるため、水の界面が排水ポン
プ側に引き込まれる現象を生じる。したがって、ポンプ
吸水槽の水位が低い状態で大型排水ポンプを運転して、
水を高速で流下させることにより水面が大きく波打つ
と、排水ポンプにエアーが吸込まれる虞れを有し、エア
ーの吸込みによって排水ポンプに振動や騒音などを発生
させ、延いては揚水遮断状態になる虞れが有る。したが
って、揚水可能な最低水位を比較的高いレベルに設定し
なけれならず、それだけポンプ吸水槽の残存水量が多く
なる。また、流速を高めると前述の波打ちが大きくなる
ので吸水槽の小型化を妨げている。そこで、請求項1記
載の発明は、吸込水路における閉断面部の天井部分の粗
度を他の面の粗度よりも大きくすることで、天井と水と
の界面抵抗を大きくして水の界面が排水ポンプ側に引き
込まれるのを抑え、水を高速で流下させることにより水
面が大きく波打っても、排水ポンプにエアーが吸込まれ
るのを防止して、振動や騒音、延いては揚水遮断状態の
発生を避け、揚水可能な最低水位を低いレベルまで下げ
てポンプ吸水槽の残存水量を少なくするとともに、流速
を高めてポンプ吸水槽の小型化を図ることのできる大型
排水ポンプの吸込水路を提供することを目的としたもの
である。また、請求項2記載の発明は、水の界面が排水
ポンプ側に引き込まれるのを抑えるのに十分な粗度を天
井部分に付与できるようにした。
That is, in the suction water passage of the conventional large-sized drainage pump in which the bottom surface, both side surfaces and the ceiling of the closed cross-section portion of the suction water passage are formed by the normal concrete surface, the water flowing down the closed cross-section portion is While the interface resistance between the ceiling and the water can be reduced by suppressing the interface resistance of the water to a small value, the interface between the water and the ceiling is decreased, so that the water interface is drawn into the drain pump side. Therefore, run a large drainage pump with the water level in the pump water absorption tank low,
If the water surface undulates due to high-speed flow of water, there is a risk that air will be sucked into the drainage pump, which will cause vibrations and noise in the drainage pump, and eventually cut off the pumping water. There is a risk of becoming. Therefore, the lowest water level that can be pumped must be set to a relatively high level, and the amount of residual water in the pump water absorption tank increases accordingly. Further, increasing the flow velocity increases the above-mentioned waviness, which hinders downsizing of the water absorption tank. Therefore, in the invention according to claim 1, the roughness of the ceiling portion of the closed cross-section portion in the suction water channel is made larger than the roughness of the other surface, thereby increasing the interface resistance between the ceiling and water to increase the water interface. The water is prevented from being drawn into the drainage pump side, and the water is allowed to flow down at a high speed to prevent air from being sucked into the drainage pump even if the water surface undulates significantly, thus preventing vibration, noise, and eventually pumping up. Avoiding the occurrence of conditions, lowering the lowest water level that can be pumped to a low level to reduce the amount of residual water in the pump water absorption tank, and increasing the flow velocity to reduce the size of the pump water absorption tank. It is intended to be provided. Further, in the invention according to claim 2, the roughness can be imparted to the ceiling portion enough to prevent the interface of water from being drawn into the drainage pump side.

【0006】[0006]

【課題を解決するための手段】前記目的を達成するため
に、請求項1記載の発明は、吸水槽から排水ポンプへの
吸込水路に底面、両側面および天井で囲まれた閉断面部
を有する大型排水ポンプの吸込水路において、該吸込水
路の閉断面部における天井部分の粗度を他の面の粗度よ
りも大きくしたことを特徴としたものである。請求項1
記載の発明によれば、閉断面部における天井部分の粗度
を閉断面部の底面および両側面の粗度よりも大きくする
ことで、天井と水との界面抵抗を大きくして水の界面が
排水ポンプ側に引き込まれるのを抑えることができる。
これにより、水を高速で流下させることで水面が大きく
波打っても、排水ポンプにエアーが吸込まれるのを防止
できる。また、請求項2記載の発明は、前記吸込水路の
閉断面部の天井部分の粗度を粗度係数0.02以上に設
定したことを特徴としたものである。請求項2記載の発
明によれば、天井部分の粗度を粗度係数0.02以上に
設定することで、水の界面が排水ポンプ側に引き込まれ
るのを確実に抑えることができる。
In order to achieve the above object, the invention according to claim 1 has a closed cross section surrounded by a bottom surface, both side surfaces and a ceiling in a suction water passage from a water absorption tank to a drainage pump. In the suction water channel of the large-sized drainage pump, the roughness of the ceiling portion in the closed cross section of the suction water channel is made larger than the roughness of other surfaces. Claim 1
According to the invention described above, the roughness of the ceiling portion in the closed cross section is made larger than the roughness of the bottom surface and both side surfaces of the closed cross section, so that the interface resistance between the ceiling and water is increased and the water interface is It can be restrained from being drawn into the drain pump side.
As a result, it is possible to prevent air from being sucked into the drainage pump even if the water surface undulates by flowing water at a high speed. The invention according to claim 2 is characterized in that the roughness of the ceiling portion of the closed cross section of the suction water channel is set to a roughness coefficient of 0.02 or more. According to the second aspect of the invention, by setting the roughness of the ceiling portion to a roughness coefficient of 0.02 or more, it is possible to reliably prevent the water interface from being drawn into the drainage pump side.

【0007】[0007]

【発明の実施の形態】以下、本発明の実施の形態を図面
に基づいて説明する。図1は本発明を適用した大型排水
ポンプの吸込水路の縦断側面図、図2は図1のA−A線
断面図である。なお、前記図3および図4で説明した従
来の大型排水ポンプの吸込水路と同一もしくは相当部分
には、同一符号を付して説明する。図1および図2にお
いて、大型排水ポンプの吸込水路は、吸水槽1から排水
ポンプPへの吸込水路2に底面3,両側面4,5および
天井6で囲まれた閉断面部7を有しており、該閉断面部
7の底面3および両側面4,5は、通常のコンクリート
面(粗度係数=約0.015)によって形成され、天井
6部分の粗度は底面3および両側面4,5の粗度よりも
粗め(粗度係数=0.02以上)に形成されている。
Embodiments of the present invention will be described below with reference to the drawings. 1 is a vertical sectional side view of a suction water passage of a large-sized drainage pump to which the present invention is applied, and FIG. 2 is a sectional view taken along the line AA of FIG. It should be noted that the same or corresponding portions as the suction water passage of the conventional large-sized drainage pump described with reference to FIGS. 1 and 2, the suction water passage of the large-sized drainage pump has a closed cross-section portion 7 surrounded by a bottom surface 3, both side surfaces 4, 5 and a ceiling 6 in a suction water passage 2 from the water absorption tank 1 to the drainage pump P. The bottom surface 3 and both side surfaces 4 and 5 of the closed cross-section portion 7 are formed by an ordinary concrete surface (coefficient of roughness = about 0.015), and the roughness of the ceiling 6 portion is the bottom surface 3 and both side surfaces 4. , 5 (roughness coefficient = 0.02 or more).

【0008】このように、閉断面部7における天井6部
分の粗度をの底面3および両側面4,5の粗度よりも大
きくすることで、天井6と水との界面抵抗を大きくして
水の界面が排水ポンプP側に引き込まれるのを抑えるこ
とができる。これにより、水を高速で流下させることで
水面が大きく波打っても、排水ポンプにエアーが吸込ま
れるのを防止できる。したがって、図1の仮想線で示す
低水位状態で水面に大きい波打ちが生じても水の界面が
排水ポンプP側に引き込まれる現象(図3の一点鎖線参
照)を抑えることができる。つまり、水を高速で流下さ
せることにより水面が大きく波打っても、排水ポンプP
にエアーが吸込まれるのを防止して、振動や騒音、延い
ては揚水遮断状態の発生を避け、揚水可能な最低水位を
低いレベルまで下げてポンプ吸水槽の残存水量を少なく
するとともに、流速を高めてポンプ吸水槽1の小型化を
図ることができる。
In this way, by making the roughness of the ceiling 6 portion in the closed cross section 7 larger than the roughness of the bottom surface 3 and both side surfaces 4 and 5, the interface resistance between the ceiling 6 and water is increased. It is possible to prevent the water interface from being drawn into the drainage pump P side. As a result, it is possible to prevent air from being sucked into the drainage pump even if the water surface undulates by flowing water at a high speed. Therefore, it is possible to suppress the phenomenon in which the interface of the water is drawn to the drainage pump P side (see the alternate long and short dash line in FIG. 3) even if a large undulation occurs on the water surface in the low water level state shown by the phantom line in FIG. In other words, even if the water surface undulates by flowing water at a high speed, the drainage pump P
To prevent air from being sucked into the pump, avoid vibration and noise, and eventually prevent pumping interruptions, lower the lowest pumpable water level to a low level, and reduce the amount of water remaining in the pump water absorption tank. Therefore, the pump water absorption tank 1 can be downsized.

【0009】しかも、天井6部分の粗度を粗度係数0.
02以上に設定してあるので、水の界面が排水ポンプP
側に引き込まれるのを確実に抑えることが可能である。
すなわち、天井6部分の粗度が粗度係数0.02未満で
あれば、図1の仮想線で示す低水位状態で水面に大きい
波打ちが生じると、図3の一点鎖線で示すように、水の
界面が排水ポンプP側に引き込まれ、天井7部分の粗度
が粗度係数0.02以上であれば、図1の仮想線で示す
低水位状態で水面に大きい波打ちが生じても、水の界面
が排水ポンプP側に引き込まれない結果を実験により確
認している。
Moreover, the roughness of the ceiling 6 portion is set to a roughness coefficient of 0.
Since it is set to 02 or more, the water interface is
It is possible to reliably suppress the pulling to the side.
That is, if the roughness of the ceiling 6 portion is less than 0.02, a large waviness occurs on the water surface in the low water level state shown by the phantom line in FIG. 1, and as shown by the alternate long and short dash line in FIG. If the interface of is drawn toward the drainage pump P and the roughness of the ceiling 7 portion is not less than 0.02, even if a large undulation occurs on the water surface in the low water level state shown by the phantom line in FIG. The result that the interface of No. is not drawn to the drainage pump P side is confirmed by the experiment.

【0010】[0010]

【発明の効果】以上説明したように、請求項1記載の発
明は、閉断面部における天井部分の粗度を閉断面部の底
面および両側面の粗度よりも大きくすることで、天井と
水との界面抵抗を大きくして水の界面が排水ポンプ側に
引き込まれるのを抑えることができる。これにより、水
を高速で流下させることで水面が大きく波打っても、排
水ポンプにエアーが吸込まれるのを防止できるから、振
動や騒音などを生じ、延いては揚水遮断の状態を招く不
都合の発生を避けることができる。これにより、揚水可
能な最低水位を低いレベルまで下げてポンプ吸水槽の残
存水量を少なくすることが可能になるとともに、流速を
高めてポンプ吸水槽の小型化を図ることが可能になる。
請求項2記載の発明は、天井部分の粗度を粗度係数0.
02以上に設定することで、水の界面が排水ポンプ側に
引き込まれるのを確実に抑えることができる。
As described above, according to the first aspect of the present invention, the roughness of the ceiling portion in the closed cross section is made larger than the roughness of the bottom surface and both side surfaces of the closed cross section, so that the ceiling and the water can be removed. It is possible to increase the interface resistance with and to prevent the water interface from being drawn into the drain pump side. This prevents air from being sucked into the drainage pump even when the water surface undulates by allowing water to flow down at a high speed, resulting in vibration and noise, which in turn results in a pumping interruption condition. Can be avoided. As a result, the lowest water level that can be pumped can be lowered to a low level to reduce the amount of residual water in the pump water absorption tank, and the flow velocity can be increased to reduce the size of the pump water absorption tank.
According to a second aspect of the present invention, the roughness of the ceiling portion is set to a roughness coefficient of 0.
By setting it to 02 or more, it is possible to reliably prevent the interface of water from being drawn into the drain pump side.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施の形態を示す縦断側面図である。FIG. 1 is a vertical sectional side view showing an embodiment of the present invention.

【図2】図1のA−A線断面図である。FIG. 2 is a sectional view taken along line AA of FIG.

【図3】従来のポンプ吸水槽を示す縦断側面図である。FIG. 3 is a vertical cross-sectional side view showing a conventional pump water absorption tank.

【図4】図3のB−B線断面図である。4 is a sectional view taken along line BB of FIG.

【符号の説明】[Explanation of symbols]

1 吸水槽 2 吸込水路 3 閉断面部の底面 4 閉断面部の一側面 5 閉断面部の他側面 6 閉断面部の天井 7 閉断面部 P ポンプ 1 Water absorption tank 2 Suction water channel 3 Bottom of closed cross section 4 One side of closed cross section 5 Other side of closed cross section 6 Ceiling of closed cross section 7 Closed cross section P Pump

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 吸水槽から排水ポンプへの吸込水路に底
面、両側面および天井で囲まれた閉断面部を有する大型
排水ポンプの吸込水路において、該吸込水路の閉断面部
における天井部分の粗度を他の面の粗度よりも大きくし
たことを特徴とする大型排水ポンプの吸込水路。
1. In a suction water channel of a large-sized drainage pump having a closed cross section surrounded by a bottom surface, both side surfaces and a ceiling in a suction water channel from a water absorption tank to a drain pump, a ceiling portion at a closed cross section of the suction water channel is rough. Suction channel for large drainage pumps, characterized in that the degree of roughness is greater than the roughness of other surfaces.
【請求項2】 前記吸込水路の閉断面部の天井部分の粗
度を粗度係数0.02以上に設定したことを特徴とする
請求項1記載の大型排水ポンプの吸込水路。
2. The suction water channel for a large-sized drainage pump according to claim 1, wherein the roughness of the ceiling portion of the closed cross section of the suction water channel is set to a roughness coefficient of 0.02 or more.
JP23293995A 1995-09-11 1995-09-11 Suction waterway of large drainage pump Pending JPH0979198A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23293995A JPH0979198A (en) 1995-09-11 1995-09-11 Suction waterway of large drainage pump

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23293995A JPH0979198A (en) 1995-09-11 1995-09-11 Suction waterway of large drainage pump

Publications (1)

Publication Number Publication Date
JPH0979198A true JPH0979198A (en) 1997-03-25

Family

ID=16947224

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23293995A Pending JPH0979198A (en) 1995-09-11 1995-09-11 Suction waterway of large drainage pump

Country Status (1)

Country Link
JP (1) JPH0979198A (en)

Similar Documents

Publication Publication Date Title
JPWO2016178387A1 (en) Horizontal axis submersible pump and suction cover used for horizontal axis submersible pump
JPH0979198A (en) Suction waterway of large drainage pump
JP3749456B2 (en) Pump gate
JP2947087B2 (en) Anti-vibration device for preceding standby pump
JP3624043B2 (en) Drain pump suction channel
JP3998148B2 (en) Suction cover structure of horizontal shaft pump
JP2889306B2 (en) Vertical pump
JP4116228B2 (en) Pump water intake path
JPH09209977A (en) Suction water passage for drain pump
JPH09209995A (en) Suction water passage of drainage pump
JP2881197B2 (en) Vertical pump
KR950009353B1 (en) Vertical type pump
JP3341240B2 (en) Vertical pump
JP3275199B2 (en) Partition wall of pump water absorption tank
JP2020159285A (en) Suction cover, horizontal shaft pump, pump gate and operation method for pump gate
JP2899873B2 (en) Vertical pump
JP2977948B2 (en) Vertical pump
JP2997874B2 (en) Vertical pump
JPH0278791A (en) Vertical shaft pump
JP3306469B2 (en) Vertical pump
JP2909497B2 (en) Pump station
JPH1077984A (en) Preceeding standby type vertical shaft pump
JP3191099B2 (en) Vertical pump and pumping station
JP3331515B2 (en) Floating drainage station and vibration damping method of drainage station
JPH0579000U (en) Vortex prevention device for pump water absorption tank