JPH09209995A - Suction water passage of drainage pump - Google Patents

Suction water passage of drainage pump

Info

Publication number
JPH09209995A
JPH09209995A JP1916496A JP1916496A JPH09209995A JP H09209995 A JPH09209995 A JP H09209995A JP 1916496 A JP1916496 A JP 1916496A JP 1916496 A JP1916496 A JP 1916496A JP H09209995 A JPH09209995 A JP H09209995A
Authority
JP
Japan
Prior art keywords
suction
ceiling
suction water
pump
water passage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1916496A
Other languages
Japanese (ja)
Inventor
Masahide Konishi
正英 小西
Yukihiro Yamamoto
幸広 山本
Yasuhiro Onishi
泰弘 大西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kubota Corp
Original Assignee
Kubota Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kubota Corp filed Critical Kubota Corp
Priority to JP1916496A priority Critical patent/JPH09209995A/en
Publication of JPH09209995A publication Critical patent/JPH09209995A/en
Pending legal-status Critical Current

Links

Landscapes

  • Structures Of Non-Positive Displacement Pumps (AREA)

Abstract

PROBLEM TO BE SOLVED: To restrain the generation of a surface eddy near both side surfaces of a closed section part in a suction water passage and the generation of an air suction eddy, prevent the suck in of an air to a drainage pump, avoid the generation of vibration and noise, reduce the residual water amount of a pump suction water tank by lowering the lowest water level capable of pumping up to a low level and also miniaturize the pump suction water tank by increasing a flow speed. SOLUTION: The suction water passage 2 from a suction water tank to a drainage pump has a closed section part 7 surrounded by a bottom surface 3, both side surfaces 4, 5 and a ceiling 6. The ceiling 6B on the upperstream side of the closed section part 7 is formed in an uniform section shape provided with a straight line orthogonally crossing to a flow F and a slant surface 8 for restraining the generation of a surface eddy and an air suction eddy following to this by retreating from the upperstream side of the suction water passage 2 toward the downstream side in the width direction both sides of this straight line.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、排水ポンプの吸込
水路に関する。
TECHNICAL FIELD The present invention relates to a suction water passage of a drainage pump.

【0002】[0002]

【従来の技術】図10および図11に示すように、吸水
槽1から排水ポンプPへの吸込水路2に底面3,両側面
4,5および天井6で囲まれた閉断面部7を有する排水
ポンプの吸込水路において、閉断面部7の天井6は、排
水ポンプPの吸込口に近い下流側の低い天井6Aと、こ
の天井6Aに連設された吸水槽1に近い上流側の天井6
Bとを備え、上流側の天井6Bは上流側から下流側に向
かって下向きに傾斜させた縦断面形状を呈しているとと
もに、天井6BのP1位置における断面形状は、図12
に示すように、流れFに直交する直線によって形成され
ている。
2. Description of the Related Art As shown in FIGS. 10 and 11, drainage having a closed cross section 7 surrounded by a bottom surface 3, both side surfaces 4, 5 and a ceiling 6 in a suction water passage 2 from a water absorption tank 1 to a drainage pump P. In the suction water passage of the pump, the ceiling 6 of the closed cross section 7 includes a lower ceiling 6A near the suction port of the drainage pump P and an upper ceiling 6 near the water absorption tank 1 connected to the ceiling 6A.
B, and the ceiling 6B on the upstream side has a vertical sectional shape inclined downward from the upstream side to the downstream side, and the sectional shape at the position P1 of the ceiling 6B is as shown in FIG.
As shown in FIG. 5, it is formed by a straight line orthogonal to the flow F.

【0003】ところで、吸込水路2を流れる水の投影平
面上の速度分布は、大略、矢印群fで示すように、吸込
水路2の幅方向中央部において高く(速く)、吸込水路
2の両側面4,5に近付くにつれて低く(遅く)なる特
性を示す。このような特性の速度分布で水が流れるのに
もかかわらず、天井6Bの断面形状が流れFに直交する
直線によって形成されていると、幅方向中央部の高速域
の表面およびその近傍の流れは、図10の天井6BのP
1位置に衝突することで、図12の矢印Xで示すよう
に、天井6Bに沿って下向きに流れるとともに、両側面
4,5に向かって流れ、図10のP2位置の両側面4,
5の近傍では、図13の矢印Xで示すように、両側面
4,5に沿って逆流し、この逆流部分と矢印X1で示す
幅方向両側部の低速域の表面およびその近傍の順方向流
れ部分が互いに干渉し合うことになり、図13および図
14においてxで示す表面渦が発生する。このような表
面渦xの発生は、吸込水路2を流下する水の流速が高く
なるほど顕著になるり、ついには、図15においてx1
で示すように、排水ポンプP内へ空気を連行する空気吸
込渦へと発達する虞れがある。
By the way, the velocity distribution on the projection plane of the water flowing through the suction water passage 2 is generally high (fast) in the widthwise central portion of the suction water passage 2 as shown by the arrow group f, and both side surfaces of the suction water passage 2 are shown. The characteristic becomes lower (slower) as it approaches 4,5. If the cross-sectional shape of the ceiling 6B is formed by a straight line orthogonal to the flow F, even though water flows with a velocity distribution having such characteristics, the flow in the high-speed region at the center in the width direction and the flow in the vicinity thereof. Is P on the ceiling 6B in FIG.
By colliding with the 1st position, as shown by the arrow X in FIG. 12, it flows downward along the ceiling 6B and flows toward both side faces 4 and 5, and both side faces 4 and 4 at the P2 position in FIG.
In the vicinity of 5, the backflow occurs along both side surfaces 4 and 5 as indicated by the arrow X in FIG. 13, and the reverse flow portion and the forward flow on the surface in the low speed region on both sides in the width direction indicated by the arrow X1 and in the vicinity thereof. The parts interfere with each other, and a surface vortex indicated by x in FIGS. 13 and 14 is generated. The generation of such surface vortices x becomes more remarkable as the flow velocity of water flowing down the suction water passage 2 becomes higher, and finally x1 in FIG.
As shown by, there is a risk that it will develop into an air suction vortex that entrains air into the drainage pump P.

【0004】一方、閉断面部7の両側面4,5の近傍に
表面渦xが発生しても、吸水槽1の水位が比較的高い場
合には空気吸込渦x1まで発達せず、排水ポンプPに悪
影響をおよぼすことはない。ところが、低水位状態で表
面渦xが発生すると、表面渦xの発生位置が図10のP
2よりも下流側の両側面4,5の近傍に移行することに
なり、排水ポンプPに空気が吸込まれる(空気吸込渦x
1に発達する)虞れを有し、空気の吸込みにより排水ポ
ンプPに振動や騒音などが発生する。したがって、揚水
可能な最低水位を比較的高いレベルに設定しなければな
らず、それだけポンプ吸水槽1の残存水量が多くなる欠
点を有している。
On the other hand, even if the surface vortex x is generated in the vicinity of both side surfaces 4 and 5 of the closed cross section 7, if the water level in the water absorption tank 1 is relatively high, the air suction vortex x1 does not develop and the drainage pump. It does not adversely affect P. However, when the surface vortex x is generated in the low water state, the position where the surface vortex x is generated is P in FIG.
2 will be moved to the vicinity of both side surfaces 4 and 5 on the downstream side of 2 and air will be sucked into the drainage pump P (air suction vortex x
There is a fear that the suction pumping of air causes vibration and noise in the drainage pump P. Therefore, the lowest level of water that can be pumped must be set to a relatively high level, and there is a drawback that the amount of residual water in the pump water absorption tank 1 increases accordingly.

【0005】他方、この種のポンプ吸水槽1では、水の
流速を高めることで小型化を図り、ポンプ吸水槽1の建
設コストを低減することができる。しかし、流速を高め
ると表面渦xが発生し、これが空気吸込渦x1に発達し
やすくなるので吸水槽1の小型化を妨げている。
On the other hand, the pump water absorption tank 1 of this type can be downsized by increasing the flow velocity of water, and the construction cost of the pump water absorption tank 1 can be reduced. However, when the flow velocity is increased, surface vortices x are generated, which easily develop into air suction vortices x1, which hinders downsizing of the water absorption tank 1.

【0006】[0006]

【発明が解決しようとする課題】すなわち、従来の排水
ポンプの吸込水路では、上流側から下流側に向かって下
向きに傾斜させた天井を有する閉断面部では、天井の水
平方向の断面形状が水の流れに直交する直線によって形
成されているので、閉断面部の両側面の近傍に表面渦が
発生し、ポンプ吸水槽の水位の低い状態で表面渦が発生
すると空気吸込渦となって排水ポンプに空気が吸込まれ
る虞れを有し、空気の吸込みによって排水ポンプに振動
や騒音などが発生する。したがって、揚水可能な最低水
位を比較的高いレベルに設定しなけれならず、それだけ
ポンプ吸水槽の残存水量が多くなる。また、流速を高め
ると表面渦が発生し、これが空気吸込渦に発達しやすく
なるので吸水槽の小型化を妨げている。そこで、本発明
は、吸込水路における閉断面部の両側面の近傍での表面
渦の発生を抑えて、空気吸込渦が発生するのを抑制し、
排水ポンプに空気が吸込まれるのを防止して、振動や騒
音の発生を避け、揚水可能な最低水位を低いレベルまで
下げてポンプ吸水槽の残存水量を少なくするとともに、
流速を高めてポンプ吸水槽の小型化を図ることのできる
排水ポンプの吸込水路を提供することを目的としたもの
である。
That is, in the suction water passage of the conventional drainage pump, in the closed cross-section portion having the ceiling inclined downward from the upstream side to the downstream side, the horizontal cross-sectional shape of the ceiling is water. Since it is formed by a straight line that is orthogonal to the flow of water, surface vortices are generated near both sides of the closed cross section, and when surface vortices are generated when the water level in the pump absorption tank is low, it becomes an air suction vortex and becomes a drainage pump. There is a risk that air will be sucked into the drain pump, and vibration and noise will occur in the drain pump. Therefore, the lowest water level that can be pumped must be set to a relatively high level, and the amount of residual water in the pump water absorption tank increases accordingly. Further, when the flow velocity is increased, surface vortices are generated, which easily develop into air suction vortices, which hinders downsizing of the water absorption tank. Therefore, the present invention suppresses the generation of surface vortices in the vicinity of both side surfaces of the closed cross section in the suction water passage, and suppresses the generation of air suction vortices,
Preventing air from being sucked into the drainage pump, avoiding vibration and noise, lowering the lowest pumpable water level to a low level, and reducing the amount of water remaining in the pump water absorption tank.
It is an object of the present invention to provide a suction water passage for a drainage pump, which can increase the flow velocity to reduce the size of the pump water absorption tank.

【0007】[0007]

【課題を解決するための手段】前記目的を達成するため
に、請求項1記載の発明は、吸水槽から排水ポンプへの
吸込水路に底面、両側面および天井で囲まれた閉断面部
を有し、この閉断面部の天井を上流側から下流側に向か
って下向きに傾斜させたポンプの吸込水路において、前
記天井の幅方向両側に吸込水路の上流側から下流側に向
けて後退して空気吸込渦の発生を抑制する傾斜面が形成
されていることを特徴としたものである。また、請求項
2記載の発明は、吸水槽から排水ポンプへの吸込水路に
底面、両側面および天井で囲まれた閉断面部を有し、こ
の閉断面部の天井を上流側から下流側に向かって下向き
に傾斜させたポンプの吸込水路において、前記天井の幅
方向両側に吸込水路の上流側から下流側に向けて後退し
て空気吸込渦の発生を抑制する円弧面が形成されている
ことを特徴としたものである。さらに、請求項3記載の
発明は、前記傾斜面および円弧面における前記吸込水路
の上流側起点から前記両側面までの幅方向の寸法を吸込
水路の全幅の1/2ないし1/15の範囲に設定されて
いることを特徴としたものである。請求項1記載の発明
によれば、幅方向中央部の高速域の表面およびその近傍
の流れは、閉断面部の天井と衝突したのち、天井に沿っ
て下向きに流れるとともに、両側面に向かって流れ、衝
突した位置より下流の両側面近傍では、傾斜面に沿って
下流側に向かって流れる。つまり、幅方向両側部の低速
域の表面およびその近傍の順方向流れに対して逆向きに
干渉する流れは発生しなくなるので、両側面近傍におけ
る表面渦の発生を抑えて、空気吸込渦が発生するのを抑
制することができる。また、請求項2記載の発明によれ
ば、幅方向中央部の高速域の表面およびその近傍の流れ
は、閉断面部の天井と衝突したのち、天井に沿って下向
きに流れるとともに、両側面に向かって流れ、衝突した
位置より下流の両側面近傍では、円弧面に沿って下流側
に向かって流れる。つまり、幅方向両側部の低速域の表
面およびその近傍の順方向流れに対して逆向きに干渉す
る流れは発生しなくなるので、両側面近傍における表面
渦の発生を抑えて、空気吸込渦が発生するのを抑制する
ことができる。さらに、請求項3記載の発明によれば、
傾斜面および円弧面における前記吸込水路の上流側起点
から前記両側面までの幅方向の寸法を吸込水路の全幅の
1/2ないし1/15の範囲に設定することにより、有
効に表面渦の発生を抑えて、空気吸込渦の発生を抑制す
ることができるとともに、吸込水路の幅方向の速度分布
の変動を避けて、排水ポンプにおける吸込口の円周方向
全周から水を吸い上げることができるようにする。
In order to achieve the above object, the invention according to claim 1 has a closed cross section surrounded by a bottom surface, both side surfaces and a ceiling in a suction water passage from a water absorption tank to a drainage pump. However, in the suction water channel of the pump in which the ceiling of this closed cross section is inclined downward from the upstream side to the downstream side, the air retreats from the upstream side to the downstream side of the suction water channel on both sides in the width direction of the ceiling. It is characterized in that an inclined surface for suppressing the generation of suction vortices is formed. Further, the invention according to claim 2 has a closed cross section surrounded by a bottom surface, both side surfaces and a ceiling in the suction water passage from the water absorption tank to the drainage pump, and the ceiling of the closed cross section is arranged from the upstream side to the downstream side. In the suction water channel of the pump that is inclined downward, arc-shaped surfaces that retreat from the upstream side to the downstream side of the suction water channel to suppress the generation of air suction vortices are formed on both sides in the width direction of the ceiling. It is characterized by. Further, in the invention according to claim 3, the dimension in the width direction from the upstream side starting point of the suction water channel on the inclined surface and the arc surface to the both side surfaces is within a range of 1/2 to 1/15 of the entire width of the suction water channel. It is characterized by being set. According to the invention of claim 1, the flow in the surface in the high speed region in the widthwise center and in the vicinity thereof flows downward along the ceiling after colliding with the ceiling of the closed cross section, and toward the both side surfaces. In the vicinity of both side surfaces downstream of the flow and collision position, the current flows toward the downstream side along the inclined surface. In other words, the flow that interferes in the opposite direction to the forward flow on the surface in the low speed region on both sides in the width direction and in the vicinity thereof will not occur, so that the generation of surface vortices in the vicinity of both side surfaces will be suppressed and air suction vortices will be generated. Can be suppressed. According to the second aspect of the present invention, the flow of the surface in the high speed region in the widthwise central portion and the flow in the vicinity thereof collide with the ceiling of the closed cross section and then flow downward along the ceiling, and on both side surfaces. In the vicinity of both side surfaces downstream of the collision position, the current flows toward the downstream side along the arc surface. In other words, the flow that interferes in the opposite direction to the forward flow on the surface in the low speed region on both sides in the width direction and in the vicinity thereof will not occur, so that the generation of surface vortices in the vicinity of both side surfaces will be suppressed and air suction vortices will be generated. Can be suppressed. Further, according to the invention described in claim 3,
Effective generation of surface vortices by setting the dimension in the width direction from the upstream side starting point of the suction water channel on the inclined surface and the arc surface to the range of 1/2 to 1/15 of the total width of the suction water channel. It is possible to suppress the occurrence of air suction vortices and to avoid fluctuations in the velocity distribution in the width direction of the suction water channel, and to suck up water from the entire circumference of the suction port of the drainage pump in the circumferential direction. To

【0008】[0008]

【発明の実施の形態】以下、本発明の一実施の形態を図
面に基づいて説明する。図1は請求項1記載の発明を適
用した排水ポンプの吸込水路の縦断側面図、図2は図1
のA−A線断面図である。なお、前記図10ないし図1
5で説明した従来例と同一もしくは相当部分には、同一
符号を付して説明する。図1および図2において、排水
ポンプの吸込水路は、吸水槽1から排水ポンプPへの吸
込水路2に底面3,両側面4,5および天井6で囲まれ
た閉断面部7を有しており、この閉断面部7の天井6
は、排水ポンプPの吸込口に近い下流側でほぼ水平にの
びる低い天井6Aと、この天井6Aに連設された吸水槽
1に近い上流側の天井6Bとを備え、上流側の天井6B
は上流側から下流側に向かって下向きに傾斜させた縦断
面形状を呈している。なお、天井6Bの傾斜角θ1は、
45゜以上90゜未満の範囲に設定されている。
BEST MODE FOR CARRYING OUT THE INVENTION An embodiment of the present invention will be described below with reference to the drawings. 1 is a vertical sectional side view of a suction water passage of a drainage pump to which the invention according to claim 1 is applied, and FIG.
FIG. 4 is a sectional view taken along line AA of FIG. In addition, FIG.
The same or corresponding parts as those of the conventional example described in 5 will be described with the same reference numerals. 1 and 2, the suction water passage of the drainage pump has a closed cross-section portion 7 surrounded by a bottom surface 3, both side surfaces 4, 5 and a ceiling 6 in a suction water passage 2 from the water absorption tank 1 to the drainage pump P. The ceiling 6 of the closed section 7
Comprises a low ceiling 6A extending substantially horizontally on the downstream side near the suction port of the drainage pump P, and an upstream ceiling 6B near the water absorption tank 1 connected to this ceiling 6A. The upstream ceiling 6B
Has a vertical cross-sectional shape inclined downward from the upstream side to the downstream side. The inclination angle θ1 of the ceiling 6B is
It is set in the range of 45 ° or more and less than 90 °.

【0009】上流側の天井6Bは、図3に示すように、
流れFに直交する直線と、この直線の幅方向両側に形成
された傾斜面8、つまり、吸込水路2の上流側から下流
側に向けて後退して空気吸込渦の発生を抑制する傾斜面
8を備えた一様な断面形状に形成してある。この傾斜面
8と吸込水路2の両側面4,5との交差角θ2は、15
゜〜60゜の範囲に設定され、図示例では45゜に設定
してある。また、傾斜面8における吸込水路2の上流側
起点p1から両側面4,5までの幅方向の寸法wを吸込
水路2の全幅Wの1/10に設定してある。
The ceiling 6B on the upstream side, as shown in FIG.
A straight line orthogonal to the flow F and inclined surfaces 8 formed on both sides in the width direction of this straight line, that is, an inclined surface 8 that retreats from the upstream side to the downstream side of the suction water passage 2 to suppress the generation of air suction vortices. With a uniform cross-sectional shape. The intersection angle θ2 between the inclined surface 8 and the side surfaces 4 and 5 of the suction water passage 2 is 15
It is set in the range of 60 to 60 degrees, and in the illustrated example, it is set to 45 degrees. In addition, the dimension w in the width direction from the upstream side start point p1 of the suction water channel 2 on the inclined surface 8 to both side surfaces 4 and 5 is set to 1/10 of the total width W of the suction water channel 2.

【0010】このような構成であれば、吸込水路2の幅
方向中央部の高速域の表面およびその近傍の流れは、図
1の閉断面部7の天井6BのP1位置に衝突したのち、
図3の矢印Xで示すように、天井6Bに沿って下向きに
流れるとともに、両側面4,5に向かって流れ、図1の
P2位置の両側面4,5の近傍では、図4の矢印Xで示
すように、傾斜面8に沿って下流側に向かって流れる。
つまり、幅方向両側部の低速域の表面およびその近傍の
順方向流れX1に対して逆向きに干渉する流れは発生し
なくなるので、両側面4,5近傍における表面渦の発生
を抑えて、空気吸込渦が発生するのを抑制することがで
きる。その結果、排水ポンプPに空気が吸込まれるのを
防止して、振動や騒音の発生を避け、揚水可能な最低水
位を低いレベルまで下げてポンプ吸水槽1の残存水量を
少なくするとともに、流速を高めてポンプ吸水槽1の小
型化を図ることが可能になる。
With such a structure, the flow in the high speed region at the center in the width direction of the suction water passage 2 and the flow in the vicinity thereof collide with the position P1 of the ceiling 6B of the closed cross section 7 in FIG.
As shown by the arrow X in FIG. 3, it flows downward along the ceiling 6B and toward both side surfaces 4 and 5, and in the vicinity of the side surfaces 4 and 5 at the position P2 in FIG. As shown by, the current flows toward the downstream side along the inclined surface 8.
In other words, a flow that interferes in the opposite direction with the forward flow X1 on the surface in the low speed region on both sides in the width direction and in the vicinity thereof does not occur. It is possible to suppress the generation of suction vortices. As a result, it is possible to prevent air from being sucked into the drainage pump P, avoid generation of vibrations and noise, reduce the lowest water level that can be pumped to a low level, and reduce the amount of water remaining in the pump water absorption tank 1, and the flow velocity. Therefore, the pump water absorption tank 1 can be downsized.

【0011】前記傾斜面8における吸込水路2の上流側
起点p1から両側面4,5までの幅方向の寸法wは、前
述の吸込水路2の全幅Wの1/10のみに設定されるも
のではなく、全幅Wの1/2(図5参照)から1/15
の範囲であればよい。すなわち、幅方向の寸法wが1/
15未満であれば、表面渦およびこれに伴う空気吸込渦
発生の抑制効果が小さく、1/2を超えると、傾斜面8
の形成状態が吸込水路2の幅方向において非対称にな
り、幅方向の速度分布が変動して、排水ポンプPにおけ
る吸込口の円周方向全周から均等に水を吸上げる機能が
低下し、ポンプ効率を低下させることになる。また、傾
斜面8と吸込水路2の両側面4,5との交差角θ2が1
5゜よりも小さく、もしくは60゜を超えると、表面渦
およびこれに伴う空気吸込渦の発生を抑制する効果が低
下することを実験により確認している。
The dimension w in the width direction from the upstream side start point p1 of the suction water passage 2 on the inclined surface 8 to both side surfaces 4 and 5 is not set to only 1/10 of the total width W of the suction water passage 2 described above. Not from 1/2 (see FIG. 5) to 1/15 of full width W
It is sufficient if it is within the range. That is, the dimension w in the width direction is 1 /
If it is less than 15, the effect of suppressing the generation of surface vortices and the accompanying air suction vortices is small.
Is asymmetric in the width direction of the suction water passage 2, the velocity distribution in the width direction fluctuates, and the function of sucking water evenly from the entire circumference in the circumferential direction of the suction port in the drainage pump P is reduced. It will reduce efficiency. Further, the intersection angle θ2 between the inclined surface 8 and both side surfaces 4 and 5 of the suction water passage 2 is 1
It has been confirmed by experiments that when the angle is smaller than 5 ° or exceeds 60 °, the effect of suppressing the generation of surface vortices and the accompanying air suction vortices decreases.

【0012】図6は請求項2記載の発明を適用した排水
ポンプの吸込水路の縦断側面図、図7は図6のD−D線
断面図である。なお、前記請求項1記載の発明と同一も
しくは相当部分には、同一符号を付して詳しい説明は省
略する。図6および図7において、上流側の天井6B
は、流れFに直交する直線と、この直線の幅方向両側に
形成された円弧面9、つまり、吸込水路2の上流側から
下流側に向けて後退して空気吸込渦の発生を抑制する円
弧面9を備えた一様な断面形状に形成してある。この円
弧面9の上流側の起点p1と吸込水路2の両側面4,5
との交点p2を結ぶ直線10と両側面4,5との交差角
θ2は、15゜〜60゜の範囲に設定され、図示例では
45゜に設定してある。また、円弧面8における吸込水
路2の上流側起点p1から両側面4,5までの幅方向の
寸法wを吸込水路2の全幅Wの1/10に設定してあ
る。
FIG. 6 is a vertical sectional side view of a suction water passage of a drainage pump to which the invention according to claim 2 is applied, and FIG. 7 is a sectional view taken along line D-D of FIG. The same or corresponding parts as those of the invention according to claim 1 are designated by the same reference numerals, and detailed description thereof will be omitted. 6 and 7, the ceiling 6B on the upstream side
Is a straight line orthogonal to the flow F and arcuate surfaces 9 formed on both sides of this straight line in the width direction, that is, an arc that retreats from the upstream side to the downstream side of the suction water passage 2 to suppress the generation of air suction vortices. It has a uniform cross-sectional shape with a surface 9. The starting point p1 on the upstream side of the circular arc surface 9 and both side surfaces 4, 5 of the suction water passage 2
The intersection angle θ2 between the straight line 10 connecting the intersection point p2 with and the side surfaces 4 and 5 is set in the range of 15 ° to 60 °, and is set to 45 ° in the illustrated example. In addition, the dimension w in the width direction from the upstream side start point p1 of the suction water passage 2 on the arc surface 8 to both side surfaces 4 and 5 is set to 1/10 of the total width W of the suction water passage 2.

【0013】このような構成であれば、吸込水路2の幅
方向中央部の高速域の表面およびその近傍の流れは、図
6の閉断面部7の天井6BのP1位置に衝突したのち、
図7の矢印Xで示すように、天井6Bに沿って下向きに
流れるとともに、両側面4,5に向かって流れ、図6の
P2位置の両側面4,5の近傍では、図8の矢印Xで示
すように、円弧斜面9に沿って下流側に向かって流れ
る。つまり、幅方向両側部の低速域の表面およびその近
傍の順方向流れX1に対して逆向きに干渉する流れは発
生しなくなるので、両側面4,5近傍における表面渦の
発生を抑えて、空気吸込渦が発生するのを抑制すること
ができる。その結果、排水ポンプPに空気が吸込まれる
のを防止して、振動や騒音の発生を避け、揚水可能な最
低水位を低いレベルまで下げてポンプ吸水槽1の残存水
量を少なくするとともに、流速を高めてポンプ吸水槽1
の小型化を図ることが可能になる。
With such a structure, the flow in the surface of the high speed region in the central portion in the width direction of the suction water passage 2 and the flow in the vicinity thereof collide with the position P1 of the ceiling 6B of the closed cross section 7 in FIG.
As shown by the arrow X in FIG. 7, it flows downward along the ceiling 6B and toward both side surfaces 4 and 5, and in the vicinity of the side surfaces 4 and 5 at the position P2 in FIG. As shown by, the current flows toward the downstream side along the arc slope 9. In other words, a flow that interferes in the opposite direction with the forward flow X1 on the surface in the low speed region on both sides in the width direction and in the vicinity thereof does not occur. It is possible to suppress the generation of suction vortices. As a result, it is possible to prevent air from being sucked into the drainage pump P, avoid generation of vibrations and noise, reduce the lowest water level that can be pumped to a low level, and reduce the amount of water remaining in the pump water absorption tank 1, and the flow velocity. Pump water tank 1
It is possible to reduce the size.

【0014】前記円弧面9における吸込水路2の上流側
起点p1から両側面4,5までの幅方向の寸法wは、前
述の吸込水路2の全幅Wの1/10のみに設定されるも
のではなく、全幅Wの1/2(図9参照)から1/15
の範囲であればよい。すなわち、幅方向の寸法wが1/
15未満であれば、表面渦およびこれに伴う空気吸込渦
発生の抑制効果が小さく、1/2を超えると、円弧面9
の形成状態が吸込水路2の幅方向において非対称にな
り、幅方向の速度分布が変動して、排水ポンプPにおけ
る吸込口の円周方向全周から均等に水を吸上げる機能が
低下し、ポンプ効率を低下させることになる。また、円
弧面9の上流側の起点p1と吸込水路2の両側面4,5
との交点p2を結ぶ直線10と両側面4,5との交差角
θ2が15゜よりも小さく、もしくは60゜を超える
と、表面渦およびこれに伴う空気吸込渦の発生を抑制す
る効果が低下することを実験により確認している。
The dimension w in the width direction from the upstream side start point p1 of the suction water passage 2 on the arc surface 9 to both side surfaces 4 and 5 is set only to 1/10 of the total width W of the suction water passage 2 described above. Not from 1/2 (see FIG. 9) to 1/15 of full width W
It is sufficient if it is within the range. That is, the dimension w in the width direction is 1 /
If it is less than 15, the effect of suppressing the generation of surface vortices and the resulting air suction vortices is small.
Is asymmetric in the width direction of the suction water passage 2, the velocity distribution in the width direction fluctuates, and the function of sucking water evenly from the entire circumference in the circumferential direction of the suction port in the drainage pump P is reduced. It will reduce efficiency. In addition, the starting point p1 on the upstream side of the arc surface 9 and both side surfaces 4, 5 of the suction water passage 2
If the angle of intersection θ2 between the straight line 10 connecting the intersection point p2 with and the side surfaces 4 and 5 is smaller than 15 ° or exceeds 60 °, the effect of suppressing the generation of surface vortices and the accompanying air suction vortex is reduced. It has been confirmed by experiments that this is done.

【0015】[0015]

【発明の効果】以上説明したように、請求項1記載の発
明は、吸込水路における閉断面部の両側面の近傍では、
幅方向中央部の高速域の表面およびその近傍の流れが傾
斜面に沿って下流側に向かって流れ、幅方向両側部の低
速域の表面およびその近傍の順方向流れに対して逆向き
に干渉しなくなるので、両側面近傍における表面渦の発
生を抑えて、空気吸込渦が発生するのを抑制することが
でき、排水ポンプに空気が吸込まれるのを防止して、振
動や騒音の発生を避け、揚水可能な最低水位を低いレベ
ルまで下げてポンプ吸水槽の残存水量を少なくするとと
もに、流速を高めてポンプ吸水槽の小型化を図ることが
可能になる。また、請求項2記載の発明は、吸込水路に
おける閉断面部の両側面の近傍では、幅方向中央部の高
速域の表面およびその近傍の流れが円弧面に沿って下流
側に向かって流れ、幅方向両側部の低速域の表面および
その近傍の順方向流れに対して逆向きに干渉しなくなる
ので、両側面近傍における表面渦の発生を抑えて、空気
吸込渦が発生するのを抑制することができ、排水ポンプ
に空気が吸込まれるのを防止して、振動や騒音の発生を
避け、揚水可能な最低水位を低いレベルまで下げてポン
プ吸水槽の残存水量を少なくするとともに、流速を高め
てポンプ吸水槽の小型化を図ることが可能になる。さら
に、請求項3記載の発明は、表面渦および空気吸込渦発
生の抑制効果を高めるとともに、幅方向の速度分布の変
動を避けることで、排水ポンプにおける吸込口の円周方
向全周から均等に水を吸上げる機能を保持し、ポンプ効
率の低下を回避することができる。
As described above, according to the invention of claim 1, in the vicinity of both side surfaces of the closed cross section of the suction water passage,
The flow in the high-speed region in the widthwise center and in the vicinity thereof flows toward the downstream side along the inclined surface, and interferes in the opposite direction with the forward flow in the low-speed region on both sides in the widthwise direction and in the vicinity. Since it does not occur, it is possible to suppress the generation of surface vortices in the vicinity of both sides and suppress the generation of air suction vortices, prevent the suction of air into the drain pump, and prevent the generation of vibration and noise. Avoiding this, it is possible to reduce the minimum pumpable water level to a low level to reduce the amount of residual water in the pump water absorption tank, and to increase the flow velocity to reduce the size of the pump water absorption tank. Further, in the invention according to claim 2, in the vicinity of both side surfaces of the closed cross-section portion in the suction water passage, the flow in the surface of the high speed region in the widthwise central portion and in the vicinity thereof flows toward the downstream side along the arc surface, Since it does not interfere in the opposite direction with the forward flow on the surface in the low speed region on both sides in the width direction and in the vicinity thereof, it suppresses the generation of surface vortices near both sides and suppresses the generation of air suction vortices. It prevents the intake of air into the drainage pump, avoids vibration and noise, lowers the lowest water level that can be pumped to a low level, reduces the amount of water remaining in the pump water absorption tank, and increases the flow velocity. It is possible to reduce the size of the pump water absorption tank. Furthermore, the invention according to claim 3 enhances the effect of suppressing the generation of surface vortices and air suction vortices, and avoids fluctuations in the velocity distribution in the width direction, so that the suction ports of the drainage pump are evenly distributed from the entire circumference in the circumferential direction. The function of sucking up water can be maintained, and the reduction in pump efficiency can be avoided.

【図面の簡単な説明】[Brief description of drawings]

【図1】請求項1記載の発明の一実施の形態を示す縦断
側面図である。
FIG. 1 is a vertical cross-sectional side view showing an embodiment of the invention according to claim 1.

【図2】図1のA−A線断面図である。FIG. 2 is a sectional view taken along line AA of FIG.

【図3】図1のB−B線断面図である。FIG. 3 is a sectional view taken along line BB of FIG. 1;

【図4】図1のC−C線断面図である。FIG. 4 is a sectional view taken along line CC of FIG. 1;

【図5】傾斜面の他の実施の形態を示す図4相当図であ
る。
FIG. 5 is a view corresponding to FIG. 4 showing another embodiment of the inclined surface.

【図6】請求項2記載の発明の一実施の形態を示す縦断
側面図である。
FIG. 6 is a vertical sectional side view showing an embodiment of the invention according to claim 2;

【図7】図6のD−D線断面図である。FIG. 7 is a sectional view taken along line DD of FIG. 6;

【図8】図6のE−E線断面図である。FIG. 8 is a sectional view taken along line EE of FIG. 6;

【図9】円弧面の他の実施の形態を示す図6相当図であ
る。
9 is a view corresponding to FIG. 6 showing another embodiment of the arc surface.

【図10】従来のポンプ吸水槽を示す縦断側面図であ
る。
FIG. 10 is a vertical sectional side view showing a conventional pump water absorption tank.

【図11】図10のG−G線断面図である。FIG. 11 is a sectional view taken along line GG of FIG. 10;

【図12】図10のH−H線断面図である。12 is a sectional view taken along line HH of FIG.

【図13】図10のI−I線断面図である。13 is a cross-sectional view taken along the line I-I of FIG.

【図14】表面渦の発生状況を示す縦断側面図である。FIG. 14 is a vertical cross-sectional side view showing a generation state of surface vortices.

【図15】空気吸込渦の発生状況を示す縦断側面図であ
る。
FIG. 15 is a vertical cross-sectional side view showing how air suction vortices are generated.

【符号の説明】[Explanation of symbols]

1 吸水槽 2 吸込水路 3 閉断面部の底面 4 閉断面部の一側面 5 閉断面部の他側面 6 閉断面部の天井 7 閉断面部 8 傾斜面 9 円弧面 P 排水ポンプ x 表面渦 x1 空気吸込渦 1 Water absorption tank 2 Suction water channel 3 Bottom of closed cross section 4 One side of closed cross section 5 Other side of closed cross section 6 Ceiling of closed cross section 7 Closed cross section 8 Inclined surface 9 Arc surface P Drain pump x Surface vortex x1 Air Suction vortex

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 吸水槽から排水ポンプへの吸込水路に底
面、両側面および天井で囲まれた閉断面部を有し、この
閉断面部の天井を上流側から下流側に向かって下向きに
傾斜させたポンプの吸込水路において、前記天井の幅方
向両側に吸込水路の上流側から下流側に向けて後退して
空気吸込渦の発生を抑制する傾斜面が形成されているこ
とを特徴とする排水ポンプの吸込水路。
1. A suction water passage from a water absorption tank to a drainage pump has a closed cross section surrounded by a bottom surface, both side surfaces and a ceiling, and the ceiling of the closed cross section is inclined downward from upstream to downstream. In the suction water passage of the pump, the drainage is characterized in that inclined surfaces are formed on both sides of the ceiling in the width direction to retreat from the upstream side to the downstream side of the suction water passage to suppress the generation of air suction vortices. Pump suction channel.
【請求項2】 吸水槽から排水ポンプへの吸込水路に底
面、両側面および天井で囲まれた閉断面部を有し、この
閉断面部の天井を上流側から下流側に向かって下向きに
傾斜させたポンプの吸込水路において、前記天井の幅方
向両側に吸込水路の上流側から下流側に向けて後退して
空気吸込渦の発生を抑制する円弧面が形成されているこ
とを特徴とする排水ポンプの吸込水路。
2. The suction water passage from the water absorption tank to the drainage pump has a closed cross section surrounded by a bottom surface, both side surfaces and a ceiling, and the ceiling of the closed cross section is inclined downward from the upstream side to the downstream side. In the suction water passage of the pump, the drainage characterized in that arc-shaped surfaces are formed on both sides of the ceiling in the width direction to retreat from the upstream side to the downstream side of the suction water passage to suppress the generation of air suction vortices. Pump suction channel.
【請求項3】 前記傾斜面および円弧面における前記吸
込水路の上流側起点から前記両側面までの幅方向の寸法
を吸込水路の全幅の1/2ないし1/15の範囲に設定
されていることを特徴とする請求項1または請求項2記
載の排水ポンプの吸込水路。
3. The dimension in the width direction from the upstream side start point of the suction water channel on the inclined surface and the arc surface to the both side surfaces is set within a range of 1/2 to 1/15 of the total width of the suction water channel. The suction water channel of the drainage pump according to claim 1 or 2.
JP1916496A 1996-02-05 1996-02-05 Suction water passage of drainage pump Pending JPH09209995A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1916496A JPH09209995A (en) 1996-02-05 1996-02-05 Suction water passage of drainage pump

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1916496A JPH09209995A (en) 1996-02-05 1996-02-05 Suction water passage of drainage pump

Publications (1)

Publication Number Publication Date
JPH09209995A true JPH09209995A (en) 1997-08-12

Family

ID=11991750

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1916496A Pending JPH09209995A (en) 1996-02-05 1996-02-05 Suction water passage of drainage pump

Country Status (1)

Country Link
JP (1) JPH09209995A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105508308A (en) * 2016-01-28 2016-04-20 扬州大学 Novel pumping station water pump beam anti-vortex device and method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105508308A (en) * 2016-01-28 2016-04-20 扬州大学 Novel pumping station water pump beam anti-vortex device and method

Similar Documents

Publication Publication Date Title
KR100420518B1 (en) A fan housing
KR101811779B1 (en) Anti-vortex device and double-suction vertical pump provided with the anti-vortex device
US7802969B2 (en) Fan and impeller thereof
JP4573020B2 (en) Suction casing, suction flow path structure and fluid machine
JPH05296194A (en) Multiblade blower
US7220101B2 (en) Centrifugal fan and fan frame thereof
JPH09209995A (en) Suction water passage of drainage pump
JP3995245B2 (en) Suction cover structure of horizontal shaft pump
JP3998148B2 (en) Suction cover structure of horizontal shaft pump
JP3569616B2 (en) Vertical pump suction channel
JP2003201994A (en) Centrifugal pump
US20200116151A1 (en) Impeller for electric water pump
JPH09209996A (en) Suction channel of drainage pump
JP3168313B2 (en) Vertical pump suction channel
JP3275199B2 (en) Partition wall of pump water absorption tank
KR0129269B1 (en) Fluid structure of wesco pump
JPH08159099A (en) Axial flow fan
JPS6344960B2 (en)
JPH09264296A (en) Impeller for eccentric fluid machinery
JP3716183B2 (en) Suction pipeline and flash water jet ship in flash water jet ship
JPH09209977A (en) Suction water passage for drain pump
KR100253006B1 (en) Turbo-fan
JPH08109892A (en) Partition wall for pump water suction tank
JPH03290096A (en) Prerotation type centrifugal pump
JPH03271599A (en) Vertical shaft pump