JPH03290096A - Prerotation type centrifugal pump - Google Patents

Prerotation type centrifugal pump

Info

Publication number
JPH03290096A
JPH03290096A JP9069090A JP9069090A JPH03290096A JP H03290096 A JPH03290096 A JP H03290096A JP 9069090 A JP9069090 A JP 9069090A JP 9069090 A JP9069090 A JP 9069090A JP H03290096 A JPH03290096 A JP H03290096A
Authority
JP
Japan
Prior art keywords
suction port
casing
port part
suction
water flow
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9069090A
Other languages
Japanese (ja)
Inventor
Masaaki Matsuda
政昭 松田
Shozo Takagi
高木 彰造
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kubota Corp
Original Assignee
Kubota Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kubota Corp filed Critical Kubota Corp
Priority to JP9069090A priority Critical patent/JPH03290096A/en
Publication of JPH03290096A publication Critical patent/JPH03290096A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To prevent the generation of cavitation, in a pump etc., by suppressing the exfoliation of the water stream in the vicinity of a suction port part by specifying the shape of the suction port part of the title centrifugal pump by making the flow speed distribution and direction change of the water stream in the whole circumferential part of the suction port part so as to be made uniform in each part. CONSTITUTION:The suction port part 14 of a prerotation type centrifugal pump is formed to a shape similar to a bellmouth, and projected toward a casing inner surface 15b opposed to the suction port part 14 from the inner surface 15a of a casing on the periphery, and the inner peripheral surface ranging from the projecting edge 14b of the suction port part 14 to a basic edge 14c is formed to a bulging-out arcuate curved surface 14d which is smoothly continuous. An annular or arcuate groove part 17 is formed between the suction port part 14 and the casing inner surface 15a on the periphery. Accordingly, the flow speed of the water stream F1 lowers before direction change, and direction change is performed gently during turn, and the water stream is sucked into a blade chamber 12, getting over the suction port part 14, and the generation of exfoliation of water stream from the inner peripheral surface at the suction port part 14 is prevented.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明はプリローテーション形渦巻ポンプ(以下、単に
渦巻ポンプという。)における羽根車室の吸込口部の改
良に係るものである。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to an improvement of the suction port of an impeller chamber in a pre-rotation type centrifugal pump (hereinafter simply referred to as a centrifugal pump).

[従来の技術] 渦巻ポンプは、第7図に示されているように、ケーシン
グlと、ポンプ軸2に設けられた羽根車3などを備え、
ケーシング1はポリエート形の吸込流路11と、それら
の吸込流路11の終端部の相互間に亘って形成された羽
根車室12と、羽根車室12から吸込流路11の間を通
るように延びて吸込流路11の吸込口11aと反対向き
の吐出口13aを形成するボリュート形の吐出流路13
とを形成しており、羽根車室12と吸込流路11との境
界部分、すなわち羽根車室12の入口開口には吸込口部
14が形成されている。この渦巻ポンプの場合、羽根車
3の回転駆動に伴ってポンプ軸2に直交する方向Aから
吸込まれた水は、羽根車目玉付近の流路で旋回流となっ
て羽根車室12に近づいてゆき、吸込口部14を経て羽
根車室12に吸い込まれポンプ軸2に平行する方向に転
向される。このように水流を旋回流にして羽根車室工2
に吸い込ませる形式のものはプリローテーション形と呼
ばれ、それが現在の渦巻ポンプの主流になっていると共
に、これを採用することによって吸込作用の高性能化と
高速化が可能になってきた。
[Prior Art] As shown in FIG. 7, a centrifugal pump includes a casing l, an impeller 3 provided on a pump shaft 2, etc.
The casing 1 has polyate-shaped suction passages 11, an impeller chamber 12 formed between the terminal ends of these suction passages 11, and a passage between the impeller chamber 12 and the suction passage 11. A volute-shaped discharge channel 13 extends to form a discharge port 13a facing opposite to the suction port 11a of the suction channel 11.
A suction port 14 is formed at the boundary between the impeller chamber 12 and the suction flow path 11, that is, at the inlet opening of the impeller chamber 12. In the case of this centrifugal pump, water sucked in from the direction A perpendicular to the pump shaft 2 as the impeller 3 is rotated becomes a swirling flow in the flow path near the impeller center and approaches the impeller chamber 12. Then, it is sucked into the impeller chamber 12 through the suction port 14 and turned in a direction parallel to the pump shaft 2. In this way, the water flow is turned into a swirling flow and the impeller chamber work 2
The pre-rotation type is called the pre-rotation type, which is the mainstream of today's centrifugal pumps, and its adoption has made it possible to achieve higher performance and faster suction action.

このような渦巻ポンプにおいて、従来は、羽根車室12
の入口部分を形式している吸込口部14の全円周部分の
断面形状が第8図のようになっていた。
In such a centrifugal pump, conventionally, the impeller chamber 12
The cross-sectional shape of the entire circumference of the suction port 14, which forms the inlet portion of the pump, is as shown in FIG.

すなわち羽根車目玉付近の流路に面した吸込口部14の
表面がその全円周部分において張出状に連続した曲率半
径rの円弧面14aになっており、しかもその円弧面1
4aの吸込流路11側の端部(円弧面14aの始端部)
と吸込口部14の周囲のケーシング内面15aとが、吸
込流路11での水の流れ方向に沿う傾斜面16によって
段差なくほぼ滑らかに連続されていた。言い換えれば、
従来の吸込口部14はケーシング1に形式された吸込流
路11と羽根車室12とを区画する環状の仕切り壁17
の内周部分をその外周部分まりもや\厚肉にし、その厚
肉化された内周部分の内端部に、全円周方向における各
部の曲率半径rが同一の円弧面14aを形成したもので
あった。そして、羽根車端面から円弧面14aの頂点ま
での間隔h、ひいては円弧面14aの頂点から吸込口部
14に対向するケーシング内面15bとの対向間隔が吸
込口部14の全円周上のどの箇所においても同一に設定
されていた。
That is, the surface of the suction port 14 facing the flow path near the impeller center is a circular arc surface 14a with a radius of curvature r that extends over its entire circumference, and the arc surface 1
End of 4a on the side of suction flow path 11 (starting end of arcuate surface 14a)
The inner surface 15a of the casing around the suction port 14 was almost smoothly continuous with no difference in level by the inclined surface 16 along the water flow direction in the suction flow path 11. In other words,
The conventional suction port 14 has an annular partition wall 17 that partitions a suction flow path 11 formed in the casing 1 and an impeller chamber 12.
The inner peripheral part of the outer peripheral part is made thicker, and the inner end of the thickened inner peripheral part is formed with a circular arc surface 14a having the same radius of curvature r in the entire circumferential direction. Met. At what point on the entire circumference of the suction port 14 is the distance h from the end face of the impeller to the apex of the arcuate surface 14a, and furthermore, the opposing distance from the apex of the arcuate surface 14a to the casing inner surface 15b facing the suction port 14? They were also set the same.

このような従来の吸込口部14の形状は、その形状であ
れば羽根車室12に吸い込まれる水流に抗する抵抗が小
さくなり、吸込口部14の直前での流速の低下が生じに
くくなって水の流速分布が吸込口部14の全円周部分の
各部でほぼ均等になるという考え方に基づいて採用され
ていた。
Such a conventional shape of the suction port 14 reduces the resistance against the water flow sucked into the impeller chamber 12, making it difficult for the flow velocity to decrease immediately before the suction port 14. This was adopted based on the idea that the water flow velocity distribution would be approximately uniform throughout the entire circumference of the suction port 14.

[発明が解決しようとする課題1 しかしながら、従来のプリローテーション形の両吸込渦
巻ポンプを可視化し、ピトー管を用いて上記吸込口部の
各部での水の流速を測定したところ次のような事実が判
明した。
[Problem to be solved by the invention 1 However, when we visualized a conventional pre-rotation type double suction centrifugal pump and measured the water flow velocity at each part of the suction port using a pitot tube, we found the following facts. There was found.

従来の渦巻ポンプの場合、吸込性能の高性能化と高速化
に伴ってケーシング内部での水の流れが複雑化しており
、第7図に破線ハツチングで示した部分、つまり吸込口
部14において吸込流路11の上流に位置する部分Xで
は、羽根車室12に吸い込まれる水流が吸込口部14の
円弧面14aに確実に接しながらそれに沿って方向転換
するという理想的な水流移行のなされていないことがあ
り、たとえば第8図に矢符で示唆したように水流が方向
転換するときに上記円弧面14aからの水流の剥離を生
じていることがあり、そのような水流の剥離現象によっ
てキャビテーションが発生し、振動や騒音などの原因と
なるエロージョンを生じてポンプ性能を低下させている
ことが判った。
In the case of conventional centrifugal pumps, the flow of water inside the casing has become more complicated as the suction performance has improved and the speed has increased, and the water flow inside the casing has become complicated. In the portion X located upstream of the flow path 11, the ideal water flow transition in which the water flow sucked into the impeller chamber 12 reliably contacts the circular arc surface 14a of the suction port 14 and changes direction along it is not performed. For example, when the water flow changes direction as indicated by the arrow in FIG. It was found that this caused erosion that caused vibration and noise, reducing pump performance.

また、従来の渦巻ポンプは、先に述べたように吸込口部
14での水の流速分布がほぼ均等になるという考え方に
立っているけれども、第7図に示すように吸込口部14
に対する旋回流の上流側である始点から下流側である終
点までをそれぞれBa、Bb。
Furthermore, although the conventional centrifugal pump is based on the idea that the water flow velocity distribution at the suction port 14 is almost uniform as described above, as shown in FIG.
From the starting point on the upstream side of the swirling flow to the ending point on the downstream side are Ba and Bb, respectively.

Bc、Bdの各点に分けた場合、各点で実測した流速V
Ba、 VBb、 VBc、 VBdは吸込口部14の
全円周部分の各部で不均等であるという事実が判明した
。同時に、Ba点付近では水流が十分に旋回せず、Ba
点から離れてBb点、Bc点、Bd点に至るに従って旋
回の程度が大きくなっており、Ba、 Bb、 Bc、
 Bdの各点での旋回流の強さが大きく異なっているた
め、Ba、 Bb、 Bc。
When divided into points Bc and Bd, the flow velocity V actually measured at each point
It has been found that Ba, VBb, VBc, and VBd are not uniform at each part of the entire circumference of the suction port 14. At the same time, the water flow does not swirl sufficiently near point Ba, and
The degree of turning increases as you move away from the point and reach points Bb, Bc, and Bd, and Ba, Bb, Bc,
Since the strength of the swirling flow at each point of Bd is significantly different, Ba, Bb, and Bc.

Bdの各点に面した吸込口部14の断面形状が上述のよ
うに全円周部分に亘って均等であれば、その断面形状が
水流の方向転換に与える影響も各点においてそれぞれに
異なるという事実が判明した。
If the cross-sectional shape of the suction port 14 facing each point of Bd is uniform over the entire circumference as described above, the influence of the cross-sectional shape on the direction change of the water flow will be different at each point. The facts have been revealed.

そして、これらのことが相乗して上述した水流の剥離現
象に結びつき、キャビテーションやエロージョンの発生
、ポンプ性能の低下につながっていることが判った。
It has been found that these factors combine to cause the water flow separation phenomenon described above, leading to the occurrence of cavitation and erosion, and a decrease in pump performance.

この発明は従来のこのような事実に鑑みて吸込口部の適
切な形状を案出し、それによって吸込口部の全円周部分
での水流の流速分布や方向転換の態様が各部で可及的均
等化されるようにし、もって、吸込口部付近での水流の
剥離が生しにくく、キャビテーションやエロージョンの
発生に伴う性能低下を生しにくい渦巻ポンプを提供する
ことを目的とする。
This invention takes these conventional facts into account and devises an appropriate shape for the suction port, thereby making it possible to make the flow velocity distribution and direction change of the water flow as wide as possible in each part around the entire circumference of the suction port. It is an object of the present invention to provide a centrifugal pump in which separation of water flow near a suction port is less likely to occur, and performance deterioration due to occurrence of cavitation or erosion is less likely to occur.

[課題を解決するための手段1 本発明の渦巻ポンプは、水流を羽根車へ流れ込ませる吸
込口部がその周囲のケーシング内面からその吸込口部に
対向するケーシング内面に向けて突出され、吸込口部の
突出端から基端に至る内周表面が滑らかに連続した張出
状の曲面に形成されていると共に、吸込口部とその周囲
のケーシング内面との間に溝部または段付部が形成され
ているものである。
[Means for Solving the Problems 1] In the centrifugal pump of the present invention, the suction port through which water flows into the impeller is protruded from the inner surface of the casing surrounding the suction port toward the inner surface of the casing opposite to the suction port. The inner circumferential surface from the protruding end to the base end of the part is formed into a smoothly continuous protruding curved surface, and a groove or stepped part is formed between the suction port part and the inner surface of the casing around it. It is something that

[作 用1 この構成によれば、吸込口部における吸込流路の上流に
位置する部分(第7図の符号Xで示した部分)では、吸
込流路をポンプ軸に直行する方向に流れてきた水流がケ
ーシング内面から突出している上記吸込口部に直角に近
いような流入角度で衝突し、それに伴って水流の流速が
低下すると同時に、吸込口部とその周囲のケーシング内
面との間の溝部または段付部の水流誘導作用により吸込
流路の下流側に向かう水流の旋回成分が大きくなり、も
って水流が上記溝部または段付部に沿って吸込口部の周
りを旋回しながら吸込口部を乗り越えてポンプ軸に平行
する方向に緩やかに方向転換し、水流の急速な方向転換
がなされなくなる。しかも吸込口部の内周表面が滑らか
に連続する張出状の曲面に形成されていることから、そ
れらの作用が相乗して水流の剥離現象が抑制される。
[Function 1] According to this configuration, in the portion of the suction port located upstream of the suction flow path (the portion indicated by the symbol X in FIG. The water flow collides with the suction port protruding from the inner surface of the casing at an inflow angle close to a right angle, and the flow velocity of the water flow decreases accordingly.At the same time, the groove between the suction port and the surrounding inner surface of the casing Alternatively, due to the water flow guiding action of the stepped portion, the swirling component of the water flow toward the downstream side of the suction flow path increases, and the water flow swirls around the suction port along the groove or stepped portion and moves around the suction port. It crosses over and gently changes direction parallel to the pump shaft, preventing the water flow from rapidly changing direction. Moreover, since the inner circumferential surface of the suction port is formed into a smoothly continuous protruding curved surface, these effects are synergized to suppress the separation phenomenon of the water flow.

また、第7図の符号Xで示した部分よりも下流側の部分
、すなわち吸込流路をポンプ軸に直行する方向に流れて
きた水流が吸込口部に対して小さな流入角度で衝突する
部分では、水流の方向が吸込口部の接線方向に近くなる
ためにそれほど大きな流速低下を生じない。したがって
、この部分での流速が、上記X部分での流速に相対的に
近づく。
In addition, in the downstream part of the part indicated by the symbol X in Fig. 7, that is, in the part where the water flow flowing through the suction channel in the direction perpendicular to the pump shaft collides with the suction port at a small inflow angle. , since the direction of the water flow is close to the tangential direction of the suction port, the flow velocity does not decrease so much. Therefore, the flow velocity in this portion is relatively close to the flow velocity in the X portion.

そして、衝突に伴う流速低下の程度は、吸込口部におけ
る吸込流路の下流に位置する部分はど小さくなるため、
吸込口部の全円周部分での流速が均等化され、それに伴
って接続口部を乗り越えるときの水流の方向転換の態様
も接続口部の全円周部分において均等化される。
The degree of decrease in flow velocity due to collision is smaller in the downstream part of the suction flow path at the suction port, so
The flow velocity over the entire circumference of the suction port is equalized, and accordingly, the direction change of the water flow when passing over the connection port is also equalized over the entire circumference of the connection port.

[実施例] 以下、本発明に係る渦巻ポンプの一実施例を詳細に説明
する。
[Example] Hereinafter, an example of the centrifugal pump according to the present invention will be described in detail.

第1図および第2図はブリローテンション形の渦巻ポン
プの吸込口部14の付近を示したもので、第1図は既に
説明した第8図に対応する部分の断面図である。これら
の各図中、同一符号は同一または相当部分を表している
1 and 2 show the vicinity of the suction port 14 of a Brillo tension type centrifugal pump, and FIG. 1 is a sectional view of a portion corresponding to FIG. 8 already explained. In each of these figures, the same reference numerals represent the same or corresponding parts.

この実施例においては、水流を羽根車へ流れ込ませる吸
込口部14がベルマウスに類似する形状に作られている
。すなわち、吸込口部14はその周囲のケーシング内面
15aからその吸込口部14に対向するケーシング内面
15bに向けて突出され、吸込口部14の突出端14b
から基端14cに至る内周表面が滑らかに連続した張出
円弧状の曲面14dに形成されている。また、吸込口部
14とその周囲のケーシング内面15aとの間に環状ま
たは弧状の溝部17が形成されている。14eは吸込口
部I4の外周表面である。°こ\で、環状の溝部17が
形成されるのは吸込口部14が環状に形成されている場
合であり、円弧状の溝部17が形成されるのは第2図の
ようにケーシング1に形成された舌部18が吸込口部1
4の開口縁から上流側(紙面の手前側)に迫り出してい
るために吸込口部14の一部がその舌部18によって欠
除されているような場合である。なお、この舌部18は
吸込口部14の周囲に生じる旋回流をその最も下流側の
部分で羽根車室12の内部に誘導する働きを持っている
In this embodiment, the suction port 14 through which the water stream flows into the impeller is shaped similar to a bell mouth. That is, the suction port 14 protrudes from the surrounding casing inner surface 15a toward the casing inner surface 15b facing the suction port 14, and the protruding end 14b of the suction port 14
The inner peripheral surface from the base end 14c to the base end 14c is formed into a smoothly continuous overhanging arc-shaped curved surface 14d. Further, an annular or arcuate groove portion 17 is formed between the suction port portion 14 and the casing inner surface 15a surrounding the suction port portion 14. 14e is the outer peripheral surface of the suction port I4. Here, the annular groove 17 is formed when the suction port 14 is annular, and the arcuate groove 17 is formed in the casing 1 as shown in FIG. The formed tongue portion 18 is the suction port portion 1
This is a case where a part of the suction port 14 is removed by the tongue 18 because the suction port 14 protrudes upstream from the opening edge of the opening 4 (toward the front side of the page). Note that this tongue portion 18 has the function of guiding the swirling flow generated around the suction port portion 14 into the interior of the impeller chamber 12 at its most downstream portion.

この構成によれば、第2図に符号Xで示した部分、すな
わち吸込口部14における吸込流路11の上流に位置す
る部分では、吸込流路11をポンプ軸(不図示)に直行
する方向に流れてきた水流F1が吸込口部14の溝部1
7に入り、その吸込口部14の外周表面14eに衝突し
てその流速を低下させた後、その溝部17の水流誘導作
用により水流の旋回成分が大きくなり溝部17に沿って
吸込流路11の下流側に向かって流れ、衝突箇所よりも
下流側の箇所で旋回しながら吸込口部14を乗り越えポ
ンプ軸に平行する方向に緩やかに方向転換し、羽根車室
12に吸い込まれる。
According to this configuration, in the portion indicated by the symbol X in FIG. The water flow F1 flowing into the groove 1 of the suction port 14
7 and collides with the outer circumferential surface 14e of the suction port 14 to reduce the flow velocity, and then the swirling component of the water flow increases due to the water flow guiding action of the groove 17, and the water flow flows along the suction channel 11 along the groove 17. It flows toward the downstream side, crosses the suction port 14 while turning at a point downstream from the collision point, changes direction gently in a direction parallel to the pump shaft, and is sucked into the impeller chamber 12.

このように水流F、の流速が方向転換する前に低下し、
かつ旋回しながら緩やかに方向転換して吸込口部14を
乗り越え羽根車室12に吸い込まれると、吸込口部14
の内周表面からの水流の剥離が生じにくい。そして水流
F1が吸込口部14を乗り越える段階ではその水流F1
の中に吸込口部14の滑らかに連続する張出状の曲面1
4dが迫り出している状態になっているため、上述のよ
うに水流F、の流速が遅くしかも方向転換が緩やかにな
されていることと相まって水流F、が吸込口部14から
剥離しにくくなる。特に、上記X部分では吸込口部14
の溝部17に直角に近いような大きな流入角度で水流F
、が衝突しても、それに伴う流速と旋回成分の増大とに
よって緩やかな方向転換がなされるのである。
In this way, the flow velocity of the water flow F decreases before changing direction,
Then, while turning, the direction is changed gently, and when the suction port 14 is sucked into the impeller chamber 12, the suction port 14 is sucked into the impeller chamber 12.
The water flow is less likely to separate from the inner peripheral surface. At the stage where the water flow F1 crosses the suction port 14, the water flow F1
A smoothly continuous protruding curved surface 1 of the suction port 14 in the
4d is in a state where it is protruding, and as mentioned above, the flow velocity of the water flow F is slow and the direction change is gradual, making it difficult for the water flow F to separate from the suction port 14. In particular, in the X portion, the suction port 14
Water flow F at a large inflow angle almost perpendicular to the groove 17 of
, even if they collide, a gradual change in direction is achieved due to the accompanying increase in flow velocity and swirling component.

また、X部分よりも下流側の部分、すなわち吸込流路1
1をポンプ軸に直行する方向に流れてきた水流F2. 
F3が吸込口部14の溝部17に対して小さな流入角度
で衝突する部分では、水流Fz、 F3の方向が吸込口
部14の接線方向に近くなるためにそれほど大きな流速
低下を生じない。このため、上述したX部分での流速低
下が顕著に起こることとの相対関係により、この下流側
部分での流速とX部分での流速とが均等化される。そし
て、衝突に伴う流速低下の程度は、吸込口部14におけ
る吸込流路11の下流に位置する部分はど小さくなるた
め、吸込口部14の全円周部分での流速が均等化され、
それに伴って接続口部を乗り越えるときの水流の方向転
換の態様も接続口部の全円周部分において均等化される
。このような作用により、従来構成に伴って生していた
水流の剥離現象が効果的に抑制され、キャビテーション
やエロージョンの発生が抑えられてポンプ性能(吸込性
能など)を向上させ得るようになるのである。
In addition, the part downstream of the X part, that is, the suction flow path 1
The water flow F2.1 is flowing in the direction perpendicular to the pump shaft.
In the portion where F3 collides with the groove 17 of the suction port 14 at a small inflow angle, the direction of the water flows Fz and F3 is close to the tangential direction of the suction port 14, so that the flow velocity does not decrease so much. Therefore, due to the relative relationship with the fact that the flow velocity decreases significantly in the X portion described above, the flow velocity in this downstream portion and the flow velocity in the X portion are equalized. Then, the degree of decrease in flow velocity due to collision is smaller in the portion of the suction port 14 located downstream of the suction flow path 11, so the flow speed in the entire circumferential portion of the suction port 14 is equalized,
Accordingly, the manner in which the water flow changes direction when passing over the connection port is also equalized over the entire circumference of the connection port. This action effectively suppresses the water flow separation phenomenon that occurs with conventional configurations, suppresses cavitation and erosion, and improves pump performance (suction performance, etc.). be.

吸込口部14は羽根車室12と吸込流路11との連通部
すなわち羽根車室12の入口開口の一部に形成してもよ
い。この場合、羽根車室12の入口開口における吸込流
路11の上流に位置する部分(たとえばX部分)を含む
ように形成しておく。これは、通常の場合、水流の剥離
現象を生しる箇所が上記X部分付近に限定されているた
め、そのX部分での水流F、の流速低下と旋回しながら
の緩やかな方向転換とを促すようにすれば吸込口部14
の全体での水流の剥離現象を有効に抑制できるからであ
る。
The suction port portion 14 may be formed in a communication portion between the impeller chamber 12 and the suction flow path 11, that is, in a part of the inlet opening of the impeller chamber 12. In this case, it is formed to include a portion located upstream of the suction flow path 11 at the inlet opening of the impeller chamber 12 (for example, the X portion). This is because, in normal cases, the part where the separation phenomenon of water flow occurs is limited to the vicinity of the above-mentioned X part, so the flow velocity of the water flow F in that X part decreases and the direction changes slowly while swirling. If you push it, the suction port 14
This is because it is possible to effectively suppress the separation phenomenon of water flow throughout the entire area.

そして、そのように羽根車室12の入口開口の一部に吸
込口部14を形成する場合、第4図に示した吸込口部1
4の山幅Hや拡がり幅Vや曲面14dの沿面長さしを水
流の上流側から下流側に向けて漸次連続的に小さくし、
吸込口部14の溝部17が上記入口開口の周縁部イに滑
らかに連続して消滅するようにすることが望まれる。こ
うしておけば、吸込口部14の溝部17の作用により流
速低下と緩やかな方向転換とを促される水流と、溝部1
7に衝突ないし接触せずに羽根車室12に吸い込まれる
旋回流とのそれぞれの態様が、羽根車室12の入口開口
の全周部分で均等化され、その態様が極端に変化する箇
所がなくなる。
When the suction port 14 is formed in a part of the inlet opening of the impeller chamber 12, the suction port 14 shown in FIG.
Gradually and continuously reduce the peak width H, spread width V, and creepage length of the curved surface 14d in 4 from the upstream side to the downstream side of the water flow,
It is desirable that the groove portion 17 of the suction port portion 14 be smoothly continuous with the peripheral edge portion A of the inlet opening. By doing so, the water flow that is encouraged to reduce the flow velocity and gently change direction due to the action of the groove 17 of the suction port 14, and the groove 1
The respective aspects of the swirling flow sucked into the impeller chamber 12 without colliding with or contacting the impeller chamber 12 are equalized over the entire circumference of the inlet opening of the impeller chamber 12, and there are no places where the aspect changes drastically. .

ちなみに、吸込口部が羽根車室の入口開口の全周に形成
され、かつ吸込口部の山幅や拡がり幅や曲面の沿面長さ
を水流の上流側から下流側に向けて漸次連続的に小さく
し、吸込口部の溝部が上記入口開口の周縁部に滑らかに
連続して消滅するように構成した実施例と第8図の従来
例との吸込性能を通常の条件により比較実験した場合、
従来例では吸込性能NPSH(rq)が8.1mであり
、実施例ではそれが7.1mとなって従来例よりも約1
111向上した。
Incidentally, the suction port is formed around the entire circumference of the inlet opening of the impeller chamber, and the width of the peak, the width of the spread, and the creepage length of the curved surface of the suction port are gradually and continuously formed from the upstream side of the water flow toward the downstream side. A comparison experiment was conducted under normal conditions to compare the suction performance of an embodiment in which the groove of the suction port smoothly disappears into the periphery of the inlet opening and the conventional example shown in FIG. 8.
In the conventional example, the suction performance NPSH (rq) was 8.1 m, and in the example, it was 7.1 m, which is approximately 1 m lower than the conventional example.
Improved by 111.

こ\で従来例のものも相当程度まで吸込性能が高いので
あり、これをさらに1mも向上させるのは容易なことで
ない。
The suction performance of the conventional example is also quite high, and it is not easy to further improve this by 1 m.

上述した実施例は吸込口部14とその周囲のケーシング
内面との間に溝部17が形成され、かつ吸込口部14の
外周表面14eが内周表面の曲面14dと平行またはほ
ぼ平行になるように形成されているものを説明したが、
溝部17の形状を第5図のように角溝形に形成しておい
ても同様の作用が奏される。
In the embodiment described above, the groove 17 is formed between the suction port 14 and the inner surface of the casing around it, and the outer peripheral surface 14e of the suction port 14 is parallel or almost parallel to the curved surface 14d of the inner peripheral surface. I explained what was formed,
The same effect can be achieved even if the groove portion 17 is formed into a rectangular groove shape as shown in FIG.

さらに、溝部を形成せず、第6図のように吸込口部14
とその周囲のケーシング内面15a との間にポンプ軸
(不図示)に対して平行な段付部14fを形成してもよ
い。このものによっても上述したところと略同様の作用
により水流の剥離現象を有効に防止することができるの
である。
Furthermore, the suction port 14 is not formed with a groove as shown in FIG.
A stepped portion 14f parallel to the pump shaft (not shown) may be formed between the casing inner surface 15a and the surrounding casing inner surface 15a. This can also effectively prevent the separation phenomenon of the water flow due to substantially the same effect as described above.

なお、前記実施例においては、吸込口部14をケ−シン
グ1と一体構造のものとして説明したが、羽根車室12
の入口開口に装着される吸込リングとして槽底しておい
てもよいことは勿論である。
In the above embodiment, the suction port 14 was explained as having an integral structure with the casing 1, but the impeller chamber 12
Of course, the bottom of the tank may be used as a suction ring attached to the inlet opening of the tank.

[発明の効果1 以上詳述したようにこの発明によると、形渦巻ポンプに
おいて、ケーシングの吸込流路を流れてきた水流が吸込
口部を乗り越えて羽根車室に吸い込まれるときの流速や
方向転換の態様が吸込口部の全円周部分において相対的
に均等化され、しかも吸込口部の内周表面が張出状の円
弧面に形成されているため、従来構成で生じていた接続
口部付近での水流の剥離現象が生じにくくなり、そのこ
とがキャビテーションやエロージョンの発生を抑制する
ことにつながってポンプ性能の向上に役立つという効果
がある。しかも単なる吸込口部の形状を改良するだけで
済むので実施が極めて容易であるなどの特長を有するも
のである。
[Effects of the Invention 1] As detailed above, according to the present invention, in a centrifugal pump, the flow velocity and direction change when the water flow flowing through the suction channel of the casing crosses over the suction port and is sucked into the impeller chamber. The aspect is relatively equalized over the entire circumference of the suction port, and the inner circumferential surface of the suction port is formed into an overhanging arcuate surface, so that the connection port that occurs in conventional configurations is reduced. This has the effect that separation of water flow in the vicinity is less likely to occur, which leads to suppressing the occurrence of cavitation and erosion, which helps improve pump performance. Moreover, it has the advantage that it is extremely easy to implement since it is sufficient to simply improve the shape of the suction port.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明に係る渦巻ポンプの一実施例を示す吸
込口部付近の縦断側面図、第2図はポンプ軸の軸心方向
に見た吸込口部付近の縦断正面図、第3図は吸込口部の
変形例を示す縦断正面図、第4図は第1図の要部を拡大
した縦断側面図、第5図は吸込口部の他の変形例を示す
要部拡大縦断側面図、第6図は吸込口部のさらに他の変
形例を示す要部拡大縦断側面図、第7図は一般的な渦巻
ポンプの概要構成を示す縦断正面図、第8図は従来の渦
巻ポンプの吸込口部付近の縦断側面図である。 1・・・ケーシング、2・・・ポンプ軸、3・・・羽根
車、12・・・羽根車室、14・・・吸込口部、14b
・・・吸込口部の突出端、14c・・・吸込口部の基端
、14d・・・曲面、工4e・・・溝形面、14f・・
・ストレート面、15a・・・吸込口部の周囲のケーシ
ング内面、15b・・・吸込口部に対向するケーシング
内面、Fl+ Fz、h・・・水流。
FIG. 1 is a longitudinal sectional side view of the vicinity of the suction port showing an embodiment of the centrifugal pump according to the present invention, FIG. 2 is a longitudinal sectional front view of the vicinity of the suction port as seen in the axial direction of the pump shaft, and FIG. 3 4 is an enlarged vertical sectional side view of the main part of FIG. 1, and FIG. 5 is an enlarged longitudinal sectional side view of the main part showing another modification of the suction port. , Fig. 6 is an enlarged longitudinal sectional side view of the main part showing still another modification of the suction port, Fig. 7 is a longitudinal sectional front view showing the general configuration of a general centrifugal pump, and Fig. 8 is a longitudinal sectional view of a conventional centrifugal pump. FIG. 3 is a longitudinal side view of the vicinity of the suction port. DESCRIPTION OF SYMBOLS 1... Casing, 2... Pump shaft, 3... Impeller, 12... Impeller chamber, 14... Suction port part, 14b
...Protruding end of the suction port, 14c...Base end of the suction port, 14d...Curved surface, 4e...Groove-shaped surface, 14f...
- Straight surface, 15a...Inner surface of the casing around the suction port, 15b...Inner surface of the casing facing the suction port, Fl+Fz, h...Water flow.

Claims (1)

【特許請求の範囲】 1、羽根車と、この羽根車を固定したポンプ軸と、これ
らを覆うケーシングとを有し、羽根車の回転駆動により
、ケーシング内でポンプ軸に直交する方向から吸込まれ
てきた水を羽根車目玉付近の吸込口部でポンプ軸に平行
する方向に転換させて上記羽根車室へ流れ込ませるよう
にしたプリローテーション形渦巻ポンプにおいて、 水流を羽根車室へ流れ込ませる吸込口部がその周囲のケ
ーシング内面からその吸込口部に対向するケーシング内
面に向けて突出され、吸込口部の突出端から基端に至る
内周表面が滑らかに連続した張出状の曲面に形成されて
いると共に、吸込口部とその周囲のケーシング内面との
間に溝部または段付部が形成されていることを特徴とす
るプリローテーション形渦巻ポンプ。
[Scope of Claims] 1. It has an impeller, a pump shaft to which the impeller is fixed, and a casing that covers these, and by the rotational drive of the impeller, suction is caused in the casing from a direction perpendicular to the pump shaft. In a pre-rotation type centrifugal pump in which water is diverted in a direction parallel to the pump shaft at a suction port near the impeller center and flows into the impeller chamber, the suction port allows water to flow into the impeller chamber. The inner surface of the casing protrudes from the surrounding inner surface of the casing toward the inner surface of the casing facing the suction port, and the inner circumferential surface from the protruding end of the suction port to the base end is formed into a smoothly continuous overhang-like curved surface. A pre-rotation type centrifugal pump characterized in that a groove or a stepped portion is formed between the suction port and the inner surface of the casing surrounding the suction port.
JP9069090A 1990-04-05 1990-04-05 Prerotation type centrifugal pump Pending JPH03290096A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9069090A JPH03290096A (en) 1990-04-05 1990-04-05 Prerotation type centrifugal pump

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9069090A JPH03290096A (en) 1990-04-05 1990-04-05 Prerotation type centrifugal pump

Publications (1)

Publication Number Publication Date
JPH03290096A true JPH03290096A (en) 1991-12-19

Family

ID=14005527

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9069090A Pending JPH03290096A (en) 1990-04-05 1990-04-05 Prerotation type centrifugal pump

Country Status (1)

Country Link
JP (1) JPH03290096A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0561497U (en) * 1992-01-31 1993-08-13 三菱マテリアル株式会社 Fluid booster with sleeve
JP2002235693A (en) * 2001-01-05 2002-08-23 Dr Ing H C F Porsche Ag Water pump for transferring coolant in internal combustion engine
JP2010121542A (en) * 2008-11-20 2010-06-03 Kubota Corp Centrifugal pump
CN102667176A (en) * 2009-11-26 2012-09-12 株式会社久保田 Centrifugal pump

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57195899A (en) * 1981-05-27 1982-12-01 Hitachi Ltd Suction casing

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57195899A (en) * 1981-05-27 1982-12-01 Hitachi Ltd Suction casing

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0561497U (en) * 1992-01-31 1993-08-13 三菱マテリアル株式会社 Fluid booster with sleeve
JP2002235693A (en) * 2001-01-05 2002-08-23 Dr Ing H C F Porsche Ag Water pump for transferring coolant in internal combustion engine
JP2010121542A (en) * 2008-11-20 2010-06-03 Kubota Corp Centrifugal pump
CN102667176A (en) * 2009-11-26 2012-09-12 株式会社久保田 Centrifugal pump

Similar Documents

Publication Publication Date Title
JP3491342B2 (en) Axial fan
EP1593854B1 (en) Inlet casing and suction passage structure
JP4831811B2 (en) Centrifugal blower
JP3872966B2 (en) Axial fluid machine
JP2004332734A (en) Compressor
JP2003106299A (en) Fluid machinery
JPH09310699A (en) Centrifugal compressor
JP3841391B2 (en) Turbo machine
JP7157155B2 (en) Centrifugal compressor and turbocharger
JP2007247622A (en) Centrifugal turbo machine
JPH03290096A (en) Prerotation type centrifugal pump
US11407272B2 (en) Blower apparatus and automotive air conditioner
JPH0727097A (en) Multiblade blower
JPH04334798A (en) Diffuser for centrifugal fluid machine
JPH03290098A (en) Prerotation type centrifugal pump
JPS6344960B2 (en)
JPH03290097A (en) Prerotation type centrifugal pump
JPH01318790A (en) Flashing vane of multistage pump
JPH08159099A (en) Axial flow fan
JPH03290099A (en) Prerotation type centrifugal pump
JP3771794B2 (en) Centrifugal pump
JP2001336499A (en) Double volute type casing
JP6932295B1 (en) Blower
JPH102300A (en) Turbo-fluid machine
KR20060129699A (en) Centrifugal blower