JPH0978339A - Biodegradable cellulose acetate fiber and its production - Google Patents

Biodegradable cellulose acetate fiber and its production

Info

Publication number
JPH0978339A
JPH0978339A JP7238448A JP23844895A JPH0978339A JP H0978339 A JPH0978339 A JP H0978339A JP 7238448 A JP7238448 A JP 7238448A JP 23844895 A JP23844895 A JP 23844895A JP H0978339 A JPH0978339 A JP H0978339A
Authority
JP
Japan
Prior art keywords
spinning
cellulose acetate
biodegradable
plasticizer
melt
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7238448A
Other languages
Japanese (ja)
Inventor
Katsuaki Matsubayashi
克明 松林
Naohiko Tsujimoto
直彦 辻本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
New Oji Paper Co Ltd
Original Assignee
Oji Paper Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oji Paper Co Ltd filed Critical Oji Paper Co Ltd
Priority to JP7238448A priority Critical patent/JPH0978339A/en
Publication of JPH0978339A publication Critical patent/JPH0978339A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a cellulose acetate fiber having excellent biodegradability, and to provide a method for producing the same. SOLUTION: A biodegradable cellulose acetate fiber is produced by melt- spinning a biodegradable composition containing a cellulose acetate and a plasticizer as main components. The biodegradable composition comprises 55-70wt.% of a cellulose acetate having a degree of acetylation of <=56% and an average degree of polymerization of >=150 and 30-45wt.% of a bioclegradable polyesterpolyol having an average mol.wt. of 400-2000 or the mixture of the polyesterpolyol with a biodegradable polyetherpolyol having an average mol.wt. of 400-1000 as plasticizers. The biodegradable composition is melt-spun at a spinning temperature of 190-230 deg.C in a spinning draft of >=200.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】 本発明は、生分解性セルロ
ースアセテート系繊維及びその製造方法に関する。さら
に詳しくは、本発明は、セルロースアセテートと可塑剤
を主成分としてなる生分解性セルロースアセテート組成
物を溶融紡糸して得られる生分解性セルロースアセテー
ト系繊維及びその製造方法に関するものである。
TECHNICAL FIELD The present invention relates to a biodegradable cellulose acetate fiber and a method for producing the same. More specifically, the present invention relates to a biodegradable cellulose acetate fiber obtained by melt spinning a biodegradable cellulose acetate composition containing cellulose acetate and a plasticizer as main components, and a method for producing the same.

【0002】[0002]

【従来の技術】 近年、環境保護に向けた認識が深まる
なかでプラスチック廃棄物の処理問題が重要視され、合
成樹脂を原料として溶融紡糸法で繊維化して製造される
不織布の使い捨て用途向けについてはコンポスト化が可
能な生分解性樹脂を原料として使用することを望む気運
が高まっている。こうした状況下、各種の生分解性ポリ
エステル樹脂が溶融紡糸用途としても開発されている
が、価格が高く普及するには至っていない。一方、天然
物を原料とする多糖類系は、生分解性と安全性に加えて
価格が安く、原料が安定供給可能なことから期待されて
いるが、溶融紡糸法が適用可能な生分解性組成物は知ら
れていない。
2. Description of the Related Art In recent years, as the recognition for environmental protection has deepened, the problem of processing plastic waste has been emphasized, and regarding the non-woven fabrics made of synthetic resin as a raw material and made by the melt-spinning method for disposable use, There is a growing desire to use biodegradable resins that can be composted as raw materials. Under these circumstances, various biodegradable polyester resins have been developed for use in melt spinning, but they have not come into widespread use because of their high price. On the other hand, polysaccharides derived from natural products are expected to be biodegradable, safe, inexpensive, and have a stable supply of raw materials. The composition is unknown.

【0003】多糖類系の中でセルロースを原料とし汎用
樹脂として広く使用されているセルロースアセテート
は、セルロースを完全にアセチル化した後部分ケン化す
ることで製造されており、近年酢化度56%以下のもの
は本質的生分解性が有することが知られるようになっ
た。しかしながら、セルロースアセテートは融点と熱分
解温度が近接しているため熱成型加工が困難で、通常可
塑剤を添加した組成物として使用されている。またセル
ロースアセテートの繊維化も上記理由により、一般には
溶剤に溶かす乾式紡糸法によって繊維が製造され、アセ
テート繊維として広く用いられている。乾式紡糸法を用
いない特殊な例として、ポリエチレングリコールのよう
な水溶性可塑剤を配合して溶融紡糸を行い、中空糸用の
繊維を製造することが知られているが、特公昭53−1
1564号公報に開示されている平均分子量200〜1
000のポリエチレングリコールを単独で使用しても紡
糸時の断糸率の点から判断して、紡糸ドラフトを200
以上で紡糸速度を上げて溶融紡糸をすることは困難であ
る。また、ポリエチレングリコールのような吸湿性の強
い可塑剤を単独で使用することは用途の点から制限が大
きい。
Cellulose acetate, which is widely used as a general-purpose resin from cellulose as a raw material in the polysaccharide system, is produced by completely acetylating cellulose and then partially saponifying it, and in recent years, the degree of acetylation is 56%. The following have become known to have intrinsic biodegradability. However, since the cellulose acetate has a melting point and a thermal decomposition temperature that are close to each other, it is difficult to perform thermoforming, and is usually used as a composition to which a plasticizer is added. For the above reason, cellulose acetate is generally made into fibers by the dry spinning method in which it is dissolved in a solvent for the above reason, and is widely used as acetate fibers. As a special example not using the dry spinning method, it is known that a fiber for hollow fiber is produced by blending a water-soluble plasticizer such as polyethylene glycol and performing melt spinning.
No. 1564 discloses an average molecular weight of 200 to 1
Even if 000 polyethylene glycol is used alone, a spinning draft of 200 is judged from the viewpoint of the breakage rate during spinning.
As described above, it is difficult to increase the spinning speed and perform melt spinning. In addition, the use of a highly hygroscopic plasticizer such as polyethylene glycol alone is very limited in terms of application.

【0004】一方、可塑性が高く、押出し射出成型用に
使われているフタル酸エステル系或いは生分解性が知ら
れているトリアセチン、トリエチルサイトレート等の可
塑剤は、押出し射出成型よりも熱成型温度の高い溶融紡
糸に適用すると、揮発成分が多く、かなり低い紡糸ドラ
フトでないと溶融紡糸性は発現せず、生産性が劣る。他
方、セルロースアセテートのこれらの欠点を解決し、溶
剤回収設備が不必要で高速化が可能な溶融紡糸を可能と
するために、セルロースをアセチル化すると同時にプロ
ピオニル化してセルロースアセテートプロピオネート或
いはブチリル化してセルロースアセテートブチレートと
し、融点を下げることで溶融紡糸性をある程度付与する
試みもあるが、この場合繊維の疎水性が強くなり生分解
性が低下、もしくは消失してしまう。そのため、セルロ
ース系樹脂を利用して溶融紡糸法による生分解性繊維の
製造はいまだ具現化していない。
On the other hand, a plasticizer such as triacetin or triethyl citrate, which has a high plasticity and is used for extrusion injection molding or is known for biodegradability, has a thermoforming temperature higher than that of extrusion injection molding. When it is applied to high melt spinning, the amount of volatile components is large, and unless the spinning draft is considerably low, melt spinnability is not exhibited and productivity is poor. On the other hand, in order to solve these drawbacks of cellulose acetate and enable melt spinning that does not require solvent recovery equipment and can be spun at high speed, cellulose is acetylated and simultaneously propionylated to form cellulose acetate propionate or butyryl. Attempts have been made to impart melt spinnability to some extent by lowering the melting point by using cellulose acetate butyrate, but in this case, the hydrophobicity of the fiber becomes strong and the biodegradability decreases or disappears. Therefore, the production of biodegradable fibers by the melt spinning method using a cellulosic resin has not been realized yet.

【0005】[0005]

【発明が解決しようとする課題】 本発明者等は、かか
る現状に鑑み、生分解性を有し、セルロース系繊維を溶
融紡糸法で得る目的で、まずセルロースアセテートと、
通常使用される相溶性が良好な可塑剤からなる種々の組
成物を用いて種々の条件で紡糸ドラフト200以上での
溶融紡糸の可能性を紡糸時の断糸率の点から検討した。
その結果、紡糸ドラフト200以上で安定した溶融紡糸
を行うためには、可塑剤の揮発性と溶融紡糸中の組成物
の強度が重要な因子であることが判明した。即ち、可塑
剤を配合すると組成物の溶融粘度が低下し、紡糸温度を
下げることができるのでセルロースアセテートを分解さ
せずに紡糸できるが、通常用いられる可塑剤は可塑効果
の点から分子量が小さく、水酸基のような極性基を分子
内に有していないので紡糸温度領域でも蒸気圧があり、
そのためそのような組成物を溶融紡糸すると、揮発性が
高くなり紡糸の際に繊維に気泡が発生し易くなり、更に
可塑剤を添加することによる溶融紡糸中の繊維の強度低
下が加わって、ポリプロピレンやポリエチレンテレフタ
レートのような可塑剤を配合しない樹脂に比べて紡糸時
の断糸率が高いことが判明した。
DISCLOSURE OF THE INVENTION In view of the present situation, the present inventors have firstly prepared cellulose acetate with the purpose of obtaining biodegradable cellulose fibers by a melt spinning method.
The possibility of melt spinning at a spinning draft of 200 or more under various conditions was investigated from the viewpoint of the yarn breakage rate during spinning, using various compositions that are usually used and made of plasticizers having good compatibility.
As a result, it was found that the volatility of the plasticizer and the strength of the composition during melt spinning are important factors for performing stable melt spinning at a spinning draft of 200 or more. That is, when a plasticizer is added, the melt viscosity of the composition is lowered, and the spinning temperature can be lowered, so that spinning can be performed without decomposing the cellulose acetate, but the plasticizer usually used has a small molecular weight from the viewpoint of the plasticizing effect, Since it does not have a polar group such as a hydroxyl group in the molecule, there is vapor pressure even in the spinning temperature range,
Therefore, when such a composition is melt-spun, the volatility becomes high, bubbles are likely to be generated in the fiber during spinning, and the strength of the fiber during melt-spinning is further reduced by adding a plasticizer. It was found that the yarn breakage rate during spinning is higher than that of a resin such as or polyethylene terephthalate in which a plasticizer is not added.

【0006】また可塑剤の配合量に関して、可塑剤の配
合量を増すと、紡糸温度が低下して揮発量が減少する
が、溶融紡糸の際の繊維の強度が低下して紡糸時の断糸
率が上昇し、逆に可塑剤の配合量を減らすと、溶融紡糸
の際の繊維の強度はある程度の水準に維持できるが、可
塑効果が少なくなるので紡糸温度を高くせざるを得ず、
それによって可塑剤に含まれる揮発成分の揮発量は増加
し、しかも可塑剤とセルロースアセテートの熱安定性も
低下して紡糸時の断糸率が逆に増大することが判明し
た。本発明者等は、これらの問題を解決するためにさら
に鋭意検討を重ねた結果、可塑剤として平均分子量が特
定の範囲で末端に水酸基を有し、紡糸温度付近でほとん
ど蒸気圧がないか、もしくは蒸気圧が低い生分解性を有
するポリエステルポリオール、又は前記ポリエステルポ
リオールと平均分子量が特定の範囲のポリエーテルポリ
オールとの特定比率の混合物を、特定量配合して紡糸温
度を低下させ、かつ溶融紡糸の際の繊維の強度低下をセ
ルロースアセテートの平均重合度を特定の範囲とするこ
とで補うことによって、紡糸温度190〜230℃と紡
糸ドラフト200以上においてセルロースアセテートが
優れた溶融紡糸性を発現できること、及び得られるセル
ロースアセテート繊維は優れた生分解性と強度を有する
ことを見出し本発明を完成するに至った。
Regarding the blending amount of the plasticizer, when the blending amount of the plasticizer is increased, the spinning temperature is lowered and the volatilization amount is reduced, but the strength of the fiber at the time of melt spinning is lowered and the fiber is broken during spinning. When the blending amount of the plasticizer is increased, the fiber strength during melt spinning can be maintained at a certain level, but the plasticizing effect decreases, so the spinning temperature must be increased,
As a result, it was found that the volatilization amount of the volatile components contained in the plasticizer was increased, the thermal stability of the plasticizer and cellulose acetate was also decreased, and the yarn breakage rate during spinning was increased. The inventors of the present invention, as a result of further intensive studies to solve these problems, the average molecular weight as a plasticizer has a hydroxyl group at the terminal in a specific range, there is almost no vapor pressure near the spinning temperature, Alternatively, a biodegradable polyester polyol having a low vapor pressure, or a mixture of the polyester polyol and a polyether polyol having an average molecular weight in a specific range in a specific ratio is blended in a specific amount to lower the spinning temperature, and melt spinning is performed. By compensating the decrease in the strength of the fiber at the time of making the average degree of polymerization of cellulose acetate within a specific range, cellulose acetate can exhibit excellent melt spinnability at a spinning temperature of 190 to 230 ° C. and a spinning draft of 200 or more, And it was found that the obtained cellulose acetate fiber has excellent biodegradability and strength. This has led to the formation.

【0007】本発明の目的は、セルロースアセテート
と、可塑剤としてのポリエステルポリオール又は前記ポ
リエステルポリオールとポリエーテルポリオールとの混
合物とを含有する生分解性セルロースアセテート組成物
を使用して溶融紡糸を行い、従来のセルロース系樹脂と
可塑剤を含む組成物を用いて溶融紡糸して繊維を製造す
る際の上記問題点を解消した生分解性セルロースアセテ
ート系繊維及びその製造方法を提供することにある。
The object of the present invention is to perform melt spinning using a biodegradable cellulose acetate composition containing cellulose acetate and a polyester polyol as a plasticizer or a mixture of said polyester polyol and polyether polyol, It is an object of the present invention to provide a biodegradable cellulose acetate-based fiber and a method for producing the same, which solves the above problems when producing fibers by melt spinning using a conventional composition containing a cellulosic resin and a plasticizer.

【0008】[0008]

【課題を解決するための手段】 本発明の第一は、セル
ロースアセテートと可塑剤を主成分とする生分解性組成
物を溶融紡糸してなる生分解性セルロースアセテート系
繊維において、該生分解性組成物が酢化度56%以下、
平均重合度150以上のセルロースアセテート55〜7
0重量%と、可塑剤として平均分子量400〜2000
の生分解性ポリエステルポリオール、又は前記ポリエス
テルポリオールと平均分子量400〜1000の生分解
性ポリエーテルポリオールとの混合物30〜45重量%
を含むことを特徴とする生分解性セルロースアセテート
系繊維である。本発明の第二は、本発明第一に記載の生
分解性組成物を紡糸ドラフト200以上において紡糸温
度190〜230℃で溶融紡糸することを特徴とする生
分解性セルロースアセテート系繊維の製造方法である。
Means for Solving the Problems The first aspect of the present invention is a biodegradable cellulose acetate fiber obtained by melt spinning a biodegradable composition containing cellulose acetate and a plasticizer as main components. The composition has an acetylation degree of 56% or less,
Cellulose acetate having an average degree of polymerization of 150 or more 55 to 7
0% by weight and an average molecular weight of 400 to 2000 as a plasticizer
30 to 45% by weight of a biodegradable polyester polyol, or a mixture of the polyester polyol and a biodegradable polyether polyol having an average molecular weight of 400 to 1000
It is a biodegradable cellulose acetate fiber characterized by containing. A second aspect of the present invention is a method for producing a biodegradable cellulose acetate fiber, which comprises melt-spinning the biodegradable composition according to the first aspect of the present invention in a spinning draft of 200 or more at a spinning temperature of 190 to 230 ° C. Is.

【0009】[0009]

【発明の実施の形態】 本発明において用いられる生分
解性樹脂組成物は、紡糸速度と紡糸口金孔吐出速度との
比(紡糸速度/紡糸口金孔吐出速度)で示される紡糸ド
ラフトが200以上で溶融紡糸して生分解性セルロース
アセテート繊維を製造するもので、この組成物は、セル
ロースアセテートと可塑剤を主成分として構成される。
本発明で用いられるセルロースアセテートは、針葉樹晒
クラフトパルプや溶解パルプのようなセルロースパルプ
或いはリンターを酢酸や硫酸によって予備処理した後、
無水酢酸を用いて酢化し、次いで中和と熟成を行うとい
う公知の方法で得られ、酢化度56%以下、平均重合度
150以上の本質的に生分解性を十分に有するものであ
る。セルロースアセテートの酢化度は51%を下まわる
と易分解性となり、生分解がさらに容易となるが、可塑
剤に平均分子量400〜2000の生分解性のポリエス
テルポリオールのような化合物を使用する限りにおいて
は酢化度51〜56%のセルロースアセテートを用いて
も生分解は容易に発現する。しかしながら、酢化度が3
0%未満のセルロースアセテートは、耐水性が低下し、
実用に適さないので、本発明では酢化度は30〜56%
の範囲で用いられる。また、生分解性を調整する目的で
前記の範囲内で酢化度の異なる2種類以上のセルロース
アセテートを混合して使用してもよい。平均酢化度の測
定は、公知の中和滴定法に従いNaOH量から求められ
る。
BEST MODE FOR CARRYING OUT THE INVENTION The biodegradable resin composition used in the present invention has a spinning draft of 200 or more, which is represented by a ratio of a spinning speed and a spinneret hole discharge speed (spinning speed / spinneret hole discharge speed). This is a method for producing a biodegradable cellulose acetate fiber by melt spinning, and this composition is composed mainly of cellulose acetate and a plasticizer.
Cellulose acetate used in the present invention, after pretreatment of cellulose pulp or linter such as softwood bleached kraft pulp or dissolving pulp with acetic acid or sulfuric acid,
It is obtained by a known method in which acetic anhydride is used for acetylation, followed by neutralization and aging, and the acetylation degree is 56% or less and the average degree of polymerization is 150 or more, which has essentially sufficient biodegradability. If the degree of acetylation of cellulose acetate is less than 51%, it becomes easily degradable and biodegradable further easily, but as long as a compound such as a biodegradable polyester polyol having an average molecular weight of 400 to 2000 is used as a plasticizer. In the above, biodegradation easily occurs even when cellulose acetate having an acetylation degree of 51 to 56% is used. However, the degree of acetylation is 3
If the cellulose acetate content is less than 0%, the water resistance is lowered,
Since it is not suitable for practical use, the degree of acetylation is 30 to 56% in the present invention.
Used in the range. Further, for the purpose of adjusting the biodegradability, two or more kinds of cellulose acetates having different degrees of acetylation may be mixed and used within the above range. The average degree of acetylation is measured from the amount of NaOH according to a known neutralization titration method.

【0010】セルロースアセテートに可塑剤を添加する
と、この組成物を溶融紡糸する際に強度低下を伴うが、
この可塑剤の配合による強度低下を補うために可塑剤と
の混練や溶融紡糸が可能な範囲でセルロースアセテート
の平均重合度は高い程好ましいが、150以上であれば
所望の溶融紡糸性は得られる。但し、平均重合度が25
0を越えると、混練性が低下するので好ましくない。本
発明の平均重合度(DP)は公知の測定方法に従い、セ
ルロースアセテートをアセトン溶媒に溶かし、オストワ
ルド粘度計より求めた相対粘度から得られる極限粘度
[η]を用いて、[η]=0.009×DPの式により
求められる。
When a plasticizer is added to cellulose acetate, the composition is accompanied by a decrease in strength during melt spinning,
The higher the average degree of polymerization of cellulose acetate is, the more preferable it is within the range where kneading with a plasticizer and melt spinning are possible in order to compensate for the decrease in strength due to the blending of the plasticizer, but if it is 150 or more, the desired melt spinnability is obtained. . However, the average degree of polymerization is 25
When it exceeds 0, the kneading property is deteriorated, which is not preferable. The average degree of polymerization (DP) of the present invention is obtained by dissolving cellulose acetate in an acetone solvent according to a known measurement method, and using an intrinsic viscosity [η] obtained from a relative viscosity obtained by an Ostwald viscometer, [η] = 0. It is obtained by the formula of 009 × DP.

【0011】セルロースアセテートの配合量は、セルロ
ースアセテートと可塑剤の合計重量当り55〜70重量
%の範囲である。この配合量が55重量%未満では、溶
融紡糸する生分解性樹脂組成物の強度が低下し、また7
0重量%を越えて多くなると紡糸温度を高くせざるを得
なくなり、そうすると可塑剤の揮発量が増加し、かつ可
塑剤とセルロースアセテートの熱安定性も低下して紡糸
時の断糸率が増え好ましくない。また、生分解性組成物
の物性を調節するために他の高分子量化合物をセルロー
スアセテートに一部置き換えて配合することもできる。
この目的で使用される高分子量化合物としては、本質的
に生分解性が知られている変性ポバール、変性澱粉、セ
ルロースプロピオネート、ヒドロキシエチルセルロー
ス、ヒドロキシプロピルセルロース等が挙げられる。
The blending amount of cellulose acetate is in the range of 55 to 70% by weight based on the total weight of cellulose acetate and plasticizer. If the blending amount is less than 55% by weight, the strength of the biodegradable resin composition to be melt-spun decreases, and
If the amount exceeds 0% by weight, the spinning temperature will have to be raised, which will increase the volatilization amount of the plasticizer and also reduce the thermal stability of the plasticizer and cellulose acetate, increasing the yarn breakage rate during spinning. Not preferable. Further, in order to adjust the physical properties of the biodegradable composition, other high molecular weight compounds may be partially replaced with cellulose acetate and blended.
Examples of the high molecular weight compound used for this purpose include modified poval, modified starch, cellulose propionate, hydroxyethyl cellulose, hydroxypropyl cellulose and the like, which are essentially known to be biodegradable.

【0012】本発明に用いられる可塑剤は、分子量が4
00〜2000の範囲で末端に水酸基を有し、紡糸温度
190〜230℃の範囲で殆ど蒸気圧がないか、もしく
は蒸気圧があっても極めて低い生分解性を有するポリエ
ステルポリオール、又は前記ポリエステルポリオールと
分子量が400〜1000の範囲のポリエーテルポリオ
ールとの混合物であり、この可塑剤の配合量は、セルロ
ースアセテートと可塑剤の合計重量当り30〜45重量
%の範囲である。この配合量が45重量%以上では溶融
紡糸する生分解性組成物の強度が低下し、30重量%未
満では紡糸温度を高くせざるを得ず、そうすると可塑剤
の揮発量が増加し、かつ可塑剤とセルロースアセテート
の熱安定性が低下して紡糸時の断糸率が増え、溶融紡糸
性は悪化する。
The plasticizer used in the present invention has a molecular weight of 4
A polyester polyol having a hydroxyl group at the terminal in the range of 00 to 2000 and having almost no vapor pressure in the spinning temperature range of 190 to 230 ° C., or having extremely low biodegradability even if there is vapor pressure, or the above polyester polyol And a polyether polyol having a molecular weight in the range of 400 to 1000, and the compounding amount of the plasticizer is in the range of 30 to 45% by weight based on the total weight of the cellulose acetate and the plasticizer. When the content is 45% by weight or more, the strength of the biodegradable composition to be melt-spun decreases, and when the content is less than 30% by weight, the spinning temperature must be increased. The thermal stability of the agent and cellulose acetate decreases, the yarn breakage rate during spinning increases, and melt spinnability deteriorates.

【0013】前記ポリエステルポリオールは、生分解性
を有しセルロースアセテートと相溶性が良好であれば化
学構造に関する制限は特にないが、平均分子量400〜
2000のポリエチレンサクシネート、ポリカプロラク
トン、ポリエチレンアジペート等を挙げることができ、
これらの中から単独で或いは2種類以上を選択して混合
して用いることができる。平均分子量が400未満で
は、可塑化の効果は良好であるが、紡糸温度190〜2
30℃において、ポリエステルポリオール中の低分子量
成分の揮発性が高くなり、また熱安定性が低くなって紡
糸の際に繊維に気泡が発生し易いのに加えて、溶融紡糸
する生分解性樹脂組成物の強度の低下が大きくなる。逆
に、平均分子量が2000を越えると、可塑化効果が小
さく混練性の低下に加え、溶融紡糸が可能な温度範囲が
230℃を越えて高くなり、可塑剤とセルロースアセテ
ートの熱安定性が低下する。
The polyester polyol is not particularly limited in terms of its chemical structure as long as it has biodegradability and good compatibility with cellulose acetate, but has an average molecular weight of 400-400.
2000 polyethylene succinate, polycaprolactone, polyethylene adipate, etc. can be mentioned,
These can be used alone or in combination of two or more selected. When the average molecular weight is less than 400, the plasticizing effect is good, but the spinning temperature is 190 to 2
At 30 ° C., the volatility of low molecular weight components in the polyester polyol is high, and the thermal stability is low, and bubbles are easily generated in the fiber during spinning, and in addition, melt-spinning biodegradable resin composition The strength of the product is greatly reduced. On the other hand, when the average molecular weight exceeds 2000, the plasticizing effect is small and the kneading property is deteriorated. In addition, the temperature range in which melt spinning is possible becomes higher than 230 ° C, and the thermal stability of the plasticizer and cellulose acetate is decreased. To do.

【0014】前記のポリエステルポリオールと組み合わ
せて溶融粘度、物性等の調製目的で、生分解性があり、
かつセルロースアセテートと良好な相溶性を示す平均分
子量400〜1000の範囲のポリエチレングリコール
のようなポリエーテルポリオールを所望の溶融紡糸性を
損なわない範囲内で使用することができる。この場合の
許容されるポリエステルポリオールとポリエーテルポリ
オールの重量比は、1:1未満である。この比が1:1
を越えてポリエーテルポリオールの量が多くなると、ポ
リエーテルポリオール中に含有される揮発性が高い低分
子量の成分が紡糸の際に揮発して気泡となるので断糸回
数が増加し適さない。
In combination with the above polyester polyol, it has biodegradability for the purpose of preparing melt viscosity, physical properties and the like,
In addition, a polyether polyol such as polyethylene glycol having an average molecular weight of 400 to 1000, which shows good compatibility with cellulose acetate, can be used within a range that does not impair the desired melt spinnability. The acceptable weight ratio of polyester polyol to polyether polyol in this case is less than 1: 1. This ratio is 1: 1
If the amount of the polyether polyol exceeds the above range, the low-molecular-weight component having a high volatility contained in the polyether polyol is volatilized during spinning to form bubbles, which is not suitable because the number of yarn breakage increases.

【0015】本発明の生分解性樹脂組成物の主成分は、
セルロースアセテートと可塑剤であるが、その他に必要
に応じて要求される性能を損なわない範囲内で熱劣化防
止と熱着色防止のための安定剤として弱有機酸、エポキ
シ化合物、金属石鹸、フォスフェイト、チオフォスフェ
イト等を単独または2種類以上混合して添加してもよ
い。また、その他有機酸系の生分解促進剤、滑剤、帯電
防止剤、染料、顔料、潤滑剤等の添加剤を配合すること
は何らさしつかえない。本発明で用いられる生分解性
は、土壌中に一定期間埋設した後の重量減少又はJIS
K 6950に準拠した重量減少等から評価すること
ができる。また、本質的な生分解性はASTM−D−5
338又はセルロースアセテートや可塑剤に馴化した微
生物を含む土壌や活性汚泥で制御された環境を用いて生
分解性を評価することができる。
The main component of the biodegradable resin composition of the present invention is
Cellulose acetate and a plasticizer, but other weak organic acids, epoxy compounds, metal soaps, phosphates as stabilizers for preventing thermal deterioration and thermal discoloration within the range that does not impair the required performance as required. , Thiophosphate, etc. may be added alone or in admixture of two or more. Further, other additives such as organic acid-based biodegradation accelerators, lubricants, antistatic agents, dyes, pigments and lubricants may be blended. The biodegradability used in the present invention is the weight loss after being buried in the soil for a certain period of time or JIS.
It can be evaluated from the weight reduction according to K 6950. Also, the essential biodegradability is ASTM-D-5.
Biodegradability can be assessed using soil or activated sludge-controlled environments containing 338 or microorganisms acclimatized to cellulose acetate or plasticizers.

【0016】本発明で用いられるセルロースアセテー
ト、可塑剤及び助剤の混合に際しては、公知のニーダ
ー、ロールミル、バンバリーミキサー等が用いられる。
なお、混合を容易にするために粉砕機により予めセルロ
ースアセテートの粒子を50メッシュ以上に細かく粉砕
しておくことが好ましい。また、混合物は気泡の混入を
できるだけ少なくするために、溶融紡糸機に供給する前
にエクストルーダーを用いてペレット化しておくことが
望ましい。また、ペレット化した生分解性樹脂組成物
は、溶融紡糸に先立ち溶融時の加水分解や熱劣化を防止
するために加熱乾燥して含水率を0.1%以下としてお
くことが好ましい。
When the cellulose acetate, the plasticizer and the auxiliary agent used in the present invention are mixed, a known kneader, roll mill, Banbury mixer or the like is used.
In addition, in order to facilitate mixing, it is preferable that the particles of cellulose acetate be finely pulverized to 50 mesh or more in advance by a pulverizer. In addition, it is desirable that the mixture be pelletized by using an extruder before being supplied to the melt spinning machine in order to reduce inclusion of air bubbles as much as possible. Further, the pelletized biodegradable resin composition is preferably dried by heating to prevent hydrolysis or thermal deterioration at the time of melting prior to melt spinning to have a water content of 0.1% or less.

【0017】本発明で用いる溶融紡糸法は、前記した生
分解性樹脂組成物を公知の押出し紡糸機において加熱溶
融した後口金から押出し紡糸し、紡出された連続長繊維
フィラメント群をエジェクターにより高速高圧エアーで
延伸しながら引いて巻取るか、或いは引き取って開繊
し、捕集用の支持体面上に捕集してウェブを形成する方
法であるが、溶融紡糸の際の紡糸温度190〜230℃
は、紡糸口金の内部温度をいう。紡糸温度が230℃を
越えると、可塑剤の揮発量が増加し、かつ可塑剤とセル
ロースアセテートの熱安定性が低下して熱分解や加水分
解が顕著に生じるので好ましくない。逆に、紡糸温度が
190℃未満では、生分解性樹脂組成物の溶融粘度が高
くなって、紡糸ドラフトを上げるのが難しくなる。本発
明でいう紡糸ドラフトとは、紡糸速度と紡糸口金孔吐出
速度の比(紡糸速度/紡糸口金孔吐出速度)のことをい
う。
In the melt spinning method used in the present invention, the above-mentioned biodegradable resin composition is heated and melted in a known extrusion spinning machine, then extruded from a spinneret and spun, and a continuous continuous fiber filament group spun at high speed by an ejector. It is a method of forming a web by drawing while drawing with high-pressure air and winding, or by drawing and opening, and forming a web on the surface of a support for collection. The spinning temperature during melt spinning is 190 to 230. ℃
Is the internal temperature of the spinneret. If the spinning temperature exceeds 230 ° C., the volatilization amount of the plasticizer increases, and the thermal stability of the plasticizer and cellulose acetate decreases, resulting in significant thermal decomposition or hydrolysis, which is not preferable. On the contrary, when the spinning temperature is lower than 190 ° C., the melt viscosity of the biodegradable resin composition becomes high and it becomes difficult to raise the spinning draft. The spinning draft as referred to in the present invention refers to the ratio of the spinning speed to the spinneret hole discharge speed (spinning speed / spinneret hole discharge speed).

【0018】溶融紡糸法では現在ポリエチレン、ポリプ
ロピレン、ポリエチレンテレフタレート等の樹脂組成物
を用いて200を越える紡糸ドラフトで実用化されてお
り、溶媒を必要とする乾式又は湿式紡糸法に比べ生産性
が極めて高い方法である。本発明において紡糸ドラフト
は、200以上で溶融紡糸され、紡糸ドラフトは高けれ
ば高い程生産効率は向上するが、強度の点から制限さ
れ、その上限は400程度である。又、紡糸速度は、紡
糸ドラフトの場合と同様、高ければ高い程生産効率は向
上するが、強度の点からの制限を含めて1000〜40
00m/分が実用的な範囲である。本発明では生分解性
のセルロースアセテート系長繊維を紡糸時の断糸率を極
めて少ない状態で得ることができ、得られた長繊維を紡
糸して織布としたり、スパンボンド法で不織布を得る等
の用途に適応できる。
In the melt spinning method, a resin composition such as polyethylene, polypropylene or polyethylene terephthalate is currently used in more than 200 spinning drafts, and the productivity is extremely higher than that of the dry or wet spinning method which requires a solvent. It's an expensive method. In the present invention, the spinning draft is melt-spun at 200 or more, and the higher the spinning draft is, the higher the production efficiency is, but it is limited in terms of strength, and the upper limit is about 400. Further, as in the case of the spinning draft, the higher the spinning speed is, the higher the production efficiency is. However, the spinning speed is 1000 to 40 including the limitation in terms of strength.
00 m / min is a practical range. In the present invention, biodegradable cellulose acetate long fibers can be obtained with a very low yarn breakage rate during spinning, and the obtained long fibers are spun into a woven fabric or a nonwoven fabric is obtained by a spunbond method. It can be used for various purposes.

【0019】[0019]

【実施例】 以下に実施例を挙げて本発明をより具体的
に説明するが、本発明は勿論これらに限定されるもので
はない。なお、以下の実施例において、%はすべて重量
%である。
[Examples] The present invention will be described in more detail with reference to the following examples, but the present invention is not limited thereto. In the following examples, all percentages are by weight.

【0020】実施例1 絶乾重量当り針葉樹材からの溶解パルプ13%、硫酸2
%、無水酢酸35%及び氷酢酸50%からなる混合物
を、36℃で3時間アセチル化を行い、反応後反応物を
酢酸カリウムで中和し、その後60℃で3時間加水分解
し、精製、乾燥して酢化度54%、平均重合度180の
セルロースアセテートフレークを得た。次に、このセル
ロースアセテートフレークを粉砕機で微粉末にし、セル
ロースアセテートのセルロースアセテートと可塑剤の全
重量当り(以下単に全重量当りという))60%と、可
塑剤として平均分子量550のカプロラクトントリオー
ル(ダイセル化学製、商標:プラクセル305)の全重
量当り30%及び平均分子量1000のポリエチレンア
ジペート(日本ポリウレタン製、商標:ニッポラン40
02)の全重量当り10%とをヘンシェルミキサーで混
合した後、ニーダーで160℃、30回転で30分間混
練した。混練物はその後、エクストルーダーに供給し1
80℃〜210℃で溶融し、押出し、ストランドとして
冷却した後、3mmに切断しペレットとした。このペレ
ットは80℃に加熱した熱風乾燥機中で17時間乾燥さ
せ、その後エクストルーダー型溶融紡糸機に供給し、紡
糸温度210℃で溶融紡糸し、孔径0.3mmの口金を
通して吐出させ、紡糸速度1850m/分、紡糸ドラフ
ト350で溶融紡糸を行ない、紡出された長繊維フィラ
メント群をエジェクターにより引いて巻取った。長繊維
の繊度は2.2デニールであった。
Example 1 13% dissolved pulp from softwood wood per absolute dry weight, sulfuric acid 2
%, Acetic anhydride 35% and glacial acetic acid 50% were acetylated at 36 ° C. for 3 hours, the reaction product was neutralized with potassium acetate after the reaction, and then hydrolyzed at 60 ° C. for 3 hours to purify, After drying, cellulose acetate flakes having an acetylation degree of 54% and an average polymerization degree of 180 were obtained. Next, the cellulose acetate flakes were made into a fine powder by a pulverizer, and 60% of the total weight of cellulose acetate and the plasticizer of cellulose acetate (hereinafter simply referred to as the total weight) and 60% of caprolactone triol having an average molecular weight of 550 as a plasticizer ( Daicel Chemical Co., Ltd., Trademark: Praxel 305) 30% based on the total weight, and polyethylene adipate having an average molecular weight of 1000 (Nippon Polyurethane, Trademark: Nipporan 40)
10% based on the total weight of 02) was mixed with a Henschel mixer, and then kneaded with a kneader at 160 ° C. for 30 minutes at 30 revolutions. The kneaded material is then fed to the extruder 1
It was melted at 80 ° C to 210 ° C, extruded, cooled as a strand, and then cut into 3 mm to obtain pellets. The pellets were dried in a hot air dryer heated to 80 ° C for 17 hours, then fed to an extruder-type melt spinning machine, melt-spun at a spinning temperature of 210 ° C, discharged through a spinneret with a hole diameter of 0.3 mm, and spun at a spinning speed. Melt spinning was performed with a spinning draft 350 at 1850 m / min, and a spun long fiber filament group was drawn by an ejector and wound. The fineness of the long fibers was 2.2 denier.

【0021】紡糸時の断糸率、得られた長繊維の糸強度
と生分解性を以下に示す方法で評価した。 評価方法(1)紡糸断糸率 生分解性樹脂組成物を紡糸機で溶融紡糸する際に、1時
間当りに発生した断糸回数を計測し、断糸回数が10回
以下を紡糸性が良好と評価した。(2)糸強度 JIS L 1013に記載されている方法に準じて実
施した。(3)生分解性 溶融紡糸して得られた長繊維は、形状が保持できるよう
にエンボスロールで部分的に熱圧着させた後、20cm
×20cmの大きさに裁断し、東京都江東区の野外の土
中(東京都江東区東雲1丁目10番6号、新王子製紙株
式会社、中央研究所敷地内)25cmの深さに埋設し、
6ヶ月経過後に取り出し、形態変化と重量変化から次の
3段階で評価した。 ○:形態変化と重量減少とも著しい。 △:形態変化と重量変化が認められる。 ×:形態変化と重量変化が認められない。
The yarn breakage ratio during spinning, the yarn strength and biodegradability of the obtained long fibers were evaluated by the following methods. Evaluation method (1) Spinning breakage rate When the biodegradable resin composition was melt-spun by a spinning machine, the number of breakages per hour was measured, and if the number of breaks was 10 or less, the spinnability was good. It was evaluated. (2) Yarn strength It was carried out according to the method described in JIS L 1013. (3) The long fibers obtained by biodegradable melt spinning were partially thermocompressed with an embossing roll so that the shape could be maintained, and then 20 cm.
Cut to a size of 20 cm and buried in the open soil in Koto-ku, Tokyo (1-10-6 Shinonome, Koto-ku, Tokyo, Shin-Oji Paper Co., Ltd., Central Research Institute) at a depth of 25 cm. ,
After 6 months, it was taken out and evaluated based on the following three grades from the change in shape and the change in weight. ◯: Both morphological change and weight reduction are remarkable. Δ: Change in morphology and change in weight are observed. X: No morphological change and weight change are observed.

【0022】実施例2 加水分解の時間を変えたこと以外は、実施例1と同様に
して酢化度45%で平均重合度160のセルロースアセ
テートを作製し、このセルロースアセテートの全重量当
り60%と、可塑剤として平均分子量1000のポリエ
チレンアジペート(日本ポリウレタン製、商標:ニッポ
ラン4002)の全重量当り25%及び平均分子量60
0のポリエチレングリコール(三洋化成製、商標:PE
G600)全重量当り15%とを混合して用いて、21
5℃で溶融紡糸したこと以外は、実施例1と同様にして
長繊維を製造し、巻取り、得られた長繊維を試験した。
長繊維の繊度は2.0デニールであった。
Example 2 Cellulose acetate having an acetylation degree of 45% and an average degree of polymerization of 160 was prepared in the same manner as in Example 1 except that the hydrolysis time was changed, and 60% of the total weight of the cellulose acetate was used. And, as a plasticizer, polyethylene adipate having an average molecular weight of 1000 (product name: Nippon Polyurethane 4002) having an average molecular weight of 25% based on the total weight of 25% and an average molecular weight of 60.
Polyethylene glycol of 0 (manufactured by Sanyo Kasei, trademark: PE
G600) mixed with 15% based on the total weight of 21
Long fibers were produced and wound in the same manner as in Example 1 except that melt spinning was performed at 5 ° C., and the obtained long fibers were tested.
The fineness of the long fibers was 2.0 denier.

【0023】比較例1 実施例1で得られた酢化度54%、平均重合度180の
セルロースアセテートの全重量当り65%と、可塑剤と
してトリアセチン(分子量218、沸点260℃、和光
純薬工業製、試薬特級)の全重量当り35%とを混合し
て用いて、215℃で溶融紡糸したこと以外は、実施例
1と同様にして長繊維を製造し、生分解性試験を行っ
た。
Comparative Example 1 65% by weight based on the total weight of cellulose acetate having an acetylation degree of 54% and an average degree of polymerization of 180 obtained in Example 1, and triacetin (molecular weight 218, boiling point 260 ° C., Wako Pure Chemical Industries, Ltd.) as a plasticizer. A long fiber was produced in the same manner as in Example 1 except that it was melt-spun at 215 ° C. using 35% by weight of the total weight of the reagent (special grade) manufactured by mixing, and a biodegradability test was conducted.

【0024】比較例2 実施例2で得られた酢化度45%、平均重合度160の
セルロースアセテートの全重量当り70%と、可塑剤と
して平均分子量400のポリエチレングリコール(三洋
化成製、商標:PEG400)の全重量当り30%とを
混合して用いて、210℃で溶融紡糸したこと以外は、
実施例1と同様にして長繊維を製造し、生分解性試験を
行った。
Comparative Example 2 70% based on the total weight of cellulose acetate having an acetylation degree of 45% and an average degree of polymerization of 160 obtained in Example 2, and polyethylene glycol having an average molecular weight of 400 as a plasticizer (manufactured by Sanyo Kasei, trademark: Except that it was melt-spun at 210 ° C. using a mixture of PEG 400) and 30% based on the total weight.
Long fibers were produced in the same manner as in Example 1, and a biodegradability test was conducted.

【0025】比較例3 溶解パルプの種類を変えたこと以外は実施例1と同様に
して酢化度54%、平均重合度80のセルロースアセテ
ートを作製し、このセルロースアセテートの全重量当り
60%と、可塑剤として平均分子量550のカプロラク
トントリオール(ダイセル化学製、商標:プラクセル3
05)の全重量当り30%及び平均分子量1000のポ
リエチレンアジペート(日本ポリウレタン製、商標:ニ
ッポラン4002)の全重量当り10%とを混合してを
用いて、205℃で溶融紡糸したこと以外は、実施例1
と同様にして長繊維を製造し、試験した。長繊維の繊度
は2.4デニールであった。
Comparative Example 3 Cellulose acetate having a degree of acetylation of 54% and an average degree of polymerization of 80 was prepared in the same manner as in Example 1 except that the type of dissolving pulp was changed. , A caprolactone triol having an average molecular weight of 550 as a plasticizer (trade name: Praxel 3 manufactured by Daicel Chemical)
30% by total weight of 05) and polyethylene adipate having an average molecular weight of 1000 (manufactured by Nippon Polyurethane, trademark: Nipporan 4002) mixed with 10% by total weight, and melt-spun at 205 ° C. Example 1
Long fibers were prepared and tested in the same manner as in. The fineness of the long fibers was 2.4 denier.

【0026】比較例4 実施例1で得られた酢化度54%、平均重合度180の
セルロースアセテートの全重量当り60%と、可塑剤と
して平均分子量300のカプロラクトントリオール(ダ
イセル化学製、商標:プラクセル303)の全重量当り
30%及び平均分子量1000のポリエチレンアジペー
ト(日本ポリウレタン製、商標:ニッポラン4002)
の10%とを混合して用いて、205℃で溶融紡糸した
こと以外は、実施例1と同様にして長繊維を製造し、試
験した。長繊維の繊度は2.1デニールであった。
Comparative Example 4 60% based on the total weight of cellulose acetate having an acetylation degree of 54% and an average degree of polymerization of 180 obtained in Example 1 and caprolactone triol having an average molecular weight of 300 as a plasticizer (trade name: manufactured by Daicel Chemical Co., Ltd .: trade name: 30% of the total weight of Praxel 303) and polyethylene adipate having an average molecular weight of 1000 (trademark: Nippon Polyurethane 4002)
A long fiber was produced and tested in the same manner as in Example 1 except that the melt spinning was performed at 205 ° C. using 10% of the above. The fineness of the long fibers was 2.1 denier.

【0027】比較例5 実施例1で得られた酢化度54%、平均重合度180の
セルロースアセテートの全重量当り50%と、可塑剤と
して平均分子量550のカプロラクトントリオール(ダ
イセル化学製、商標:プラクセル305)の全重量当り
40%及び平均分子量1000のポリエチレンアジペー
ト(日本ポリウレタン製、商標:ニッポラン4002)
の全重量当り10%とを混合して用いて、200℃で溶
融紡糸したこと以外は、実施例1と同様にして長繊維を
製造し、生分解性試験を行った。
Comparative Example 5 50% based on the total weight of cellulose acetate having an acetylation degree of 54% and an average degree of polymerization of 180 obtained in Example 1, and caprolactone triol having an average molecular weight of 550 as a plasticizer (trade name: manufactured by Daicel Chemical Co., Ltd .: trademark). 40% based on the total weight of Praxel 305) and polyethylene adipate having an average molecular weight of 1000 (trademark: Nippon Polyurethane 4002)
A long fiber was produced in the same manner as in Example 1 except that melt-spinning was performed at 200 ° C. by using 10% by weight based on the total weight of, and a biodegradability test was performed.

【0028】比較例6 実施例1で得られた酢化度54%、平均重合度180の
セルロースアセテートの全重量当り75%と、可塑剤と
して平均分子量550のカプロラクトントリオール(ダ
イセル化学製、商標:プラクセル305)の全重量当り
20%及び平均分子量1000のポリエチレンアジペー
ト(日本ポリウレタン製、商標:ニッポラン4002)
の全重量当り5%とを混合して用いて、230℃で溶融
紡糸したこと以外は、実施例1と同様にして長繊維を製
造し、生分解性試験を行った。
Comparative Example 6 75% based on the total weight of cellulose acetate having an acetylation degree of 54% and an average polymerization degree of 180 obtained in Example 1 and a caprolactone triol having an average molecular weight of 550 as a plasticizer (trade name: manufactured by DAICEL CHEMICAL CO., LTD. 20% of the total weight of Praxel 305) and polyethylene adipate having an average molecular weight of 1000 (trademark: Nippon Polyurethane 4002, manufactured by Nippon Polyurethane Industry Co., Ltd.)
5% based on the total weight of the above was mixed and used, and long fibers were produced in the same manner as in Example 1 except that melt spinning was performed at 230 ° C., and a biodegradability test was performed.

【0029】比較例7 185℃で溶融紡糸したこと以外は、実施例1と同様に
して長繊維を製造し、生分解性試験を行った。
Comparative Example 7 Long fibers were produced in the same manner as in Example 1 except that melt spinning was performed at 185 ° C., and a biodegradability test was conducted.

【0030】比較例8 235℃で溶融紡糸したこと以外は、実施例1と同様に
して長繊維を製造し、生分解性試験を行った。
Comparative Example 8 A long fiber was produced in the same manner as in Example 1 except that melt spinning was performed at 235 ° C., and a biodegradability test was conducted.

【0031】実施例と比較例において用いられたセルロ
ースアセテートの酢化度、平均重合度(DP)、配合
量、可塑剤の種類、平均分子量及び配合量を表1に示し
た。
Table 1 shows the acetylation degree, average degree of polymerization (DP), blending amount, type of plasticizer, average molecular weight and blending amount of the cellulose acetate used in Examples and Comparative Examples.

【0032】[0032]

【表1】 [Table 1]

【0033】また、同じく実施例と比較例において用い
た紡糸条件と得られた結果を表2に示した。
Table 2 also shows the spinning conditions used in Examples and Comparative Examples and the results obtained.

【0034】[0034]

【表2】 [Table 2]

【0035】表1と表2から分かるように、本発明は、
紡糸ドラフトが350以上の高い時でも紡糸時に断糸が
殆どなく、効率よくセルロースアセテート系繊維を製造
することができ、得られた繊維は糸強度が高く、生分解
性に優れている(実施例1〜2)。これに対し、通常用
いられているトリアセチンのように平均分子量が低く
(218)、紡糸温度付近に沸点を有する低分子量化合
物の可塑剤(比較例1)や、同様に、ポリエチレングリ
コールのように平均分子量が低く(400)、揮発性が
高い低分子量成分を含むポリエーテルポリオールのよう
な可塑剤(比較例2)を単独で使用すると、紡糸の間に
繊維に気泡が発生し易くなり、紡糸ドラフトの低い領域
(230〜250)でも断糸が多発し、生産性と繊維品
質が極めて劣悪なものとなる。
As can be seen from Tables 1 and 2, the present invention is
Even when the spinning draft is as high as 350 or more, there is almost no yarn breakage during spinning, the cellulose acetate fiber can be efficiently produced, and the obtained fiber has high yarn strength and excellent biodegradability (Examples). 1-2). On the other hand, a plasticizer of a low molecular weight compound having a low average molecular weight (218) such as triacetin which is usually used and having a boiling point near the spinning temperature (Comparative Example 1), or similarly, an average molecular weight such as polyethylene glycol When a plasticizer such as a polyether polyol (Comparative Example 2) having a low molecular weight (400) and a low molecular weight component having high volatility is used alone, bubbles are easily generated in the fiber during spinning, resulting in a spinning draft. In the low area (230 to 250), yarn breakage occurs frequently, resulting in extremely poor productivity and fiber quality.

【0036】セルロースアセテートの平均重合度が低い
場合(比較例3)や、用いた可塑剤のポリエステルポリ
オールの平均分子量が低いものを用いると(比較例
4)、溶融紡糸の際に繊維の強度が低下して断糸回数が
増加し、安定した溶融紡糸が行えない。可塑剤の配合量
を多く(50重量%)すると(比較例5)、溶融紡糸の
際の繊維強度が低下して断糸回数が増加し、逆に、可塑
剤の配合量を少なく(30重量%)すると(比較例
6)、溶融粘度が低くなるので紡糸温度を高くせざるを
得ず、そうすると可塑剤の揮発量が増加し、可塑剤とセ
ルロースアセテートの熱安定性も低下するので断糸回数
が増加し、共に溶融紡糸が悪化する。溶融紡糸の際の紡
糸温度が低いと(比較例7)、溶融粘度が高くなり、紡
糸温度が高いと(比較例8)、セルロースアセテートと
可塑剤の熱安定性が低下して、共に断糸回数が増加する
ので不適である。
When the average degree of polymerization of cellulose acetate is low (Comparative Example 3), or when the plasticizer used has a low average molecular weight of polyester polyol (Comparative Example 4), the strength of the fiber during melt spinning is increased. As a result, the number of yarn breaks increases and stable melt spinning cannot be performed. When the compounding amount of the plasticizer is increased (50% by weight) (Comparative Example 5), the fiber strength during melt spinning is decreased and the number of yarn breakages is increased, while the compounding amount of the plasticizer is decreased (30% by weight). %) (Comparative Example 6), the melt viscosity becomes low, so that the spinning temperature must be increased, which increases the volatilization amount of the plasticizer and also reduces the thermal stability of the plasticizer and cellulose acetate. The number of times increases, and melt spinning deteriorates. When the spinning temperature during melt spinning is low (Comparative Example 7), the melt viscosity is high, and when the spinning temperature is high (Comparative Example 8), the thermal stability of the cellulose acetate and the plasticizer is low, and both are broken. It is not suitable because the number of times increases.

【0037】[0037]

【発明の効果】 本発明は、優れた生分解性と繊維強度
を有するセルロースアセテート系繊維及び紡糸温度19
0〜230℃と紡糸ドラフト200以上において溶融紡
糸性が極めて優れるセルロースアセテート系繊維の製造
方法を提供するという効果を奏する。
EFFECTS OF THE INVENTION The present invention provides a cellulose acetate fiber having excellent biodegradability and fiber strength, and a spinning temperature of 19
The effect of providing a method for producing a cellulose acetate fiber having an extremely excellent melt spinnability at 0 to 230 ° C. and a spinning draft of 200 or more is exhibited.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 セルロースアセテートと可塑剤を主成分
とする生分解性組成物を溶融紡糸してなる生分解性セル
ロースアセテート系繊維において、該生分解性組成物が
酢化度56%以下、平均重合度150以上のセルロース
アセテート55〜70重量%と、可塑剤として平均分子
量400〜2000の生分解性ポリエステルポリオー
ル、又は前記ポリエステルポリオールと平均分子量40
0〜1000の生分解性ポリエーテルポリオールとの混
合物30〜45重量%を含むことを特徴とする生分解性
セルロースアセテート系繊維。
1. A biodegradable cellulose acetate fiber obtained by melt-spinning a biodegradable composition containing cellulose acetate and a plasticizer as main components, wherein the biodegradable composition has an acetylation degree of 56% or less and an average value. 55 to 70% by weight of cellulose acetate having a degree of polymerization of 150 or more and a biodegradable polyester polyol having an average molecular weight of 400 to 2000 as a plasticizer, or the polyester polyol and an average molecular weight of 40.
A biodegradable cellulose acetate fiber, comprising 30 to 45% by weight of a mixture with 0 to 1000 biodegradable polyether polyol.
【請求項2】 請求項1記載の生分解性組成物を紡糸ド
ラフト200以上において紡糸温度190〜230℃で
溶融紡糸することを特徴とする生分解性セルロースアセ
テート系繊維の製造方法。
2. A method for producing a biodegradable cellulose acetate fiber, which comprises melt-spinning the biodegradable composition according to claim 1 in a spinning draft of 200 or more at a spinning temperature of 190 to 230 ° C.
JP7238448A 1995-09-18 1995-09-18 Biodegradable cellulose acetate fiber and its production Pending JPH0978339A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7238448A JPH0978339A (en) 1995-09-18 1995-09-18 Biodegradable cellulose acetate fiber and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7238448A JPH0978339A (en) 1995-09-18 1995-09-18 Biodegradable cellulose acetate fiber and its production

Publications (1)

Publication Number Publication Date
JPH0978339A true JPH0978339A (en) 1997-03-25

Family

ID=17030376

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7238448A Pending JPH0978339A (en) 1995-09-18 1995-09-18 Biodegradable cellulose acetate fiber and its production

Country Status (1)

Country Link
JP (1) JPH0978339A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6984631B2 (en) 2001-06-26 2006-01-10 Toray Industries, Inc. Thermoplastic cellulose derivative composition and fiber comprising the same
WO2009041719A1 (en) * 2007-09-26 2009-04-02 Fujifilm Corporation Cellulose acylate film, optical film, polarizing plate, and liquid crystal display apparatus
JP2012077388A (en) * 2010-09-30 2012-04-19 Toray Ind Inc Nonwoven fabric and method for producing the same
KR20140010739A (en) * 2012-07-16 2014-01-27 웅진케미칼 주식회사 Manufacturing method of thermoplastic cellulose derivative composite fiber
CN104831395A (en) * 2014-12-16 2015-08-12 广东中烟工业有限责任公司 Application of PEO-PPO-PEO segmented ternary copolymer in preparation of cellulose acetate tow
WO2021014561A1 (en) * 2019-07-23 2021-01-28 株式会社ダイセル Cellulose acetate fiber production method and cellulose acetate fiber
KR102551493B1 (en) * 2023-04-27 2023-07-06 (주)웨어콤 Manufacturing method of eco-friendly nonwoven fabric with excellent biodegradability

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6984631B2 (en) 2001-06-26 2006-01-10 Toray Industries, Inc. Thermoplastic cellulose derivative composition and fiber comprising the same
WO2009041719A1 (en) * 2007-09-26 2009-04-02 Fujifilm Corporation Cellulose acylate film, optical film, polarizing plate, and liquid crystal display apparatus
US8313574B2 (en) 2007-09-26 2012-11-20 Fujifilm Corporation Cellulose acylate film, optical film, polarizing plate, and liquid crystal display apparatus
JP2012077388A (en) * 2010-09-30 2012-04-19 Toray Ind Inc Nonwoven fabric and method for producing the same
KR20140010739A (en) * 2012-07-16 2014-01-27 웅진케미칼 주식회사 Manufacturing method of thermoplastic cellulose derivative composite fiber
CN104831395A (en) * 2014-12-16 2015-08-12 广东中烟工业有限责任公司 Application of PEO-PPO-PEO segmented ternary copolymer in preparation of cellulose acetate tow
WO2021014561A1 (en) * 2019-07-23 2021-01-28 株式会社ダイセル Cellulose acetate fiber production method and cellulose acetate fiber
KR102551493B1 (en) * 2023-04-27 2023-07-06 (주)웨어콤 Manufacturing method of eco-friendly nonwoven fabric with excellent biodegradability

Similar Documents

Publication Publication Date Title
US5540874A (en) Cellulose solution for shaping and method of shaping the same
JP4613575B2 (en) Cellulose ester short fiber and method for producing the same
US5446140A (en) Polymer blend composed of cellulose acetate and starch acetate and starch used to form fibers, films and plastic materials and a process to prepare said blend
KR20170112525A (en) Synthetic paper including cellulose acetate and method of manufacturing
CN106012088A (en) Biodegradable fiber and manufacturing method thereof
KR101427226B1 (en) Environmental-friendly Biodegradable Conjugate Fiber and Method of Preparing Same
CN102277655A (en) Manufacturing method of biodegradable starch-based fiber
JPH0978339A (en) Biodegradable cellulose acetate fiber and its production
JP3870944B2 (en) Thermoplastic cellulose acetate propionate composition and fibers comprising the same
JPH06298999A (en) Solution for casting cellulose and method for casting using the same
JPH09291414A (en) Biodegradable cellulose acetate-based fiber and its production
JP2000219777A (en) Thermoplastic cellulose derivative composition and molding prepared therefrom
JP2004010844A (en) Thermoplastic cellulose ester composition and fiber made of it
JP4093048B2 (en) Thermoplastic cellulose ester composition excellent in molding processability and fiber obtained therefrom
JP2003238669A (en) Thermoplastic cellulose acetate and fiber made thereof
JP2007039862A (en) Cellulose fatty acid ester composition for melt spinning and fiber comprising the same and method for producing the same
JPH10317228A (en) Biodegradable cellulose acetate-based and its production
JPH11209482A (en) Biodegradable film and sheet
JP2004131670A (en) Thermoplastic cellulose acetate propionate composition for melt-molding and fiber made thereof
JP2000314092A (en) Biodegradable composite sheet and formed body
JP2000219776A (en) Weak-alkali-degradable resin composition
JP2007100260A (en) Cellulose fatty acid ester composition, fiber consisting of the same and method for producing the same
JP2008174869A (en) Fiber composed of hydrophobic cellulose derivative
JP2021102824A (en) Poly(vinyl alcohol)-based fiber and fiber structure
JP2003082160A (en) Thermally plasticized cellulose ester composition and fiber composed of the same