JPH0978276A - Refining method of alkali solution - Google Patents

Refining method of alkali solution

Info

Publication number
JPH0978276A
JPH0978276A JP7264904A JP26490495A JPH0978276A JP H0978276 A JPH0978276 A JP H0978276A JP 7264904 A JP7264904 A JP 7264904A JP 26490495 A JP26490495 A JP 26490495A JP H0978276 A JPH0978276 A JP H0978276A
Authority
JP
Japan
Prior art keywords
sodium hydroxide
cathode chamber
hydroxide solution
chamber
cathode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7264904A
Other languages
Japanese (ja)
Other versions
JP3380658B2 (en
Inventor
Masanori Inoko
正憲 猪子
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tsurumi Soda Co Ltd
Original Assignee
Tsurumi Soda Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tsurumi Soda Co Ltd filed Critical Tsurumi Soda Co Ltd
Priority to JP26490495A priority Critical patent/JP3380658B2/en
Publication of JPH0978276A publication Critical patent/JPH0978276A/en
Application granted granted Critical
Publication of JP3380658B2 publication Critical patent/JP3380658B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain refining method of an alkali soln. to obtain an alkali soln. having extremely low impurity concn. SOLUTION: An electrolytic cell 1 is divided into an anode room 11 and a cathode room 12 by an cation exchange membrane 2. An aq. soln. of sodium hydroxide having high impurity concn. is introduced into the anode room 11, while ultrapure water is introduced into the cathode room 12 to perform electrolysis. Na<+> , OH<-> and metals in a hydroxide or anion state as impurities are present in the anode room 11. However, only Na<+> can pass through the cation exchange membrane 2 but impurity metals do not enter the cathode room 12. Therefore, the concn. of impurities in a sodium hydroxide soln. produced by electrolysis in the cathode room 12 is made extremely low.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、アルカリ溶液の精
製方法に関する。
TECHNICAL FIELD The present invention relates to a method for purifying an alkaline solution.

【0002】[0002]

【従来の技術】例えば塩化ナトリウム等の食塩水を電気
分解して水酸化ナトリウム溶液(NaOH)を製造する
方法の1つにイオン交換膜法がある。この方法は、陽極
室と陰極室とを陽イオン交換膜で区画した電解槽内にて
実施される。即ち、pHが2程度の酸性状態にある食塩
水を陽極室に注入し、陽極にて以下の(1)式に示す塩
素(Cl2 )発生反応を進行させると共に、陽極室に存
在するナトリウムイオン(Na+ )を陽イオン交換膜を
介して陽極室から陰極室へ通過させ、陰極室において以
下の(2)式に示す水酸化ナトリウムの生成反応を進行
させるものである。 2Cl- → Cl2 +2e …(1) 2Na+ +2H2 O+2e → 2NaOH+H2 …(2)
2. Description of the Related Art An ion exchange membrane method is one of the methods for producing a sodium hydroxide solution (NaOH) by electrolyzing a saline solution such as sodium chloride. This method is carried out in an electrolytic cell in which the anode chamber and the cathode chamber are partitioned by a cation exchange membrane. That is, a salt solution in an acidic state having a pH of about 2 is injected into the anode chamber, the chlorine (Cl 2 ) generation reaction shown in the following formula (1) is advanced at the anode, and sodium ions existing in the anode chamber are (Na + ) is passed from the anode chamber to the cathode chamber through the cation exchange membrane, and the sodium hydroxide production reaction represented by the following formula (2) is allowed to proceed in the cathode chamber. 2Cl - → Cl 2 + 2e ... (1) 2Na + + 2H 2 O + 2e → 2NaOH + H 2 ... (2)

【0003】[0003]

【発明が解決しようとする課題】ここで上述の方法で製
造した水酸化ナトリウム溶液には、例えば金属イオンや
水酸化物等の不純物が数ppm程度存在する。この理由
については次のように推察される。即ち原料となる食塩
水には鉄(Fe)、ニッケル(Ni)、マグネシウム
(Mg)やカルシウム(Ca)等の金属が不純物として
含まれており、これらの金属は酸性雰囲気である陽極室
では陽イオンとして存在する。このためこれらの金属も
ナトリウムイオンと共に陽イオン交換膜を通過して陰極
室に侵入し、アルカリ性雰囲気である陰極室にて、金属
は水酸化物として沈殿したり、イオンあるいは酸素と結
びついて陰イオンとして存在する。従って陰極室にて得
られる水酸化ナトリウム溶液にはこれらが不純物として
存在することとなる。
The sodium hydroxide solution produced by the above-mentioned method contains impurities such as metal ions and hydroxide in the order of several ppm. The reason for this is presumed as follows. That is, the salt solution as a raw material contains metals such as iron (Fe), nickel (Ni), magnesium (Mg), and calcium (Ca) as impurities, and these metals are positive in an acidic atmosphere in the anode chamber. It exists as an ion. Therefore, these metals also penetrate into the cathode chamber through the cation exchange membrane along with sodium ions, and in the cathode chamber, which is an alkaline atmosphere, the metal precipitates as hydroxides or combines with ions or oxygen to form anions. Exists as. Therefore, these are present as impurities in the sodium hydroxide solution obtained in the cathode chamber.

【0004】ところで最近産業の高度化やファイン化が
進行しつつあり、これに伴い水酸化ナトリウム溶液の不
純物の許容量が低下し、不純物濃度が50ppb以下程
度の水酸化ナトリウム溶液が要求されつつある。ここで
従来は電気分解を行う前に原料となる食塩を精製するこ
とにより不純物を除去する方法が採られているが、上述
の水酸化ナトリウム溶液の製造方法では食塩に含まれて
いる不純物がそのまま水酸化ナトリウム溶液に存在する
こととなるため、水酸化ナトリウム溶液の不純物濃度に
応じて食塩の精製度を変える必要がある。従って不純物
濃度の極めて低い水酸化ナトリウム溶液を得るために
は、食塩の精製度をかなり高める必要があり、食塩の精
製に時間と手間がかかり面倒であると共に、その分コス
トが高くなるという問題があった。また電解槽や配管か
ら溶出して水酸化ナトリウム溶液中に存在する不純物も
あった。
By the way, recently, the industrialization is becoming more sophisticated and finer, and along with this, the permissible amount of impurities in the sodium hydroxide solution is decreasing, and a sodium hydroxide solution having an impurity concentration of about 50 ppb or less is being demanded. . Here, conventionally, a method of removing impurities by refining salt as a raw material before performing electrolysis has been adopted, but in the above-described method for producing a sodium hydroxide solution, impurities contained in the salt remain unchanged. Since it exists in the sodium hydroxide solution, it is necessary to change the degree of purification of the salt according to the impurity concentration of the sodium hydroxide solution. Therefore, in order to obtain a sodium hydroxide solution having an extremely low impurity concentration, it is necessary to considerably improve the degree of purification of sodium chloride, and it takes time and labor to purify the sodium chloride, which is troublesome, and the cost increases accordingly. there were. In addition, some impurities were eluted from the electrolytic cell or piping and existed in the sodium hydroxide solution.

【0005】本発明はこのような事情の下になされたも
のであり、その目的は、不純物濃度の極めて低いアルカ
リ溶液を得ることができるアルカリ溶液の精製方法を提
供することにある。
The present invention has been made under such circumstances, and an object thereof is to provide a method for purifying an alkaline solution capable of obtaining an alkaline solution having an extremely low impurity concentration.

【0006】[0006]

【課題を解決するための手段】本発明は、陽イオン交換
膜により陽極室と陰極室とに区画された電解槽におい
て、前記陽極室に不純物濃度の高いアルカリ溶液を供給
する工程と、前記陰極室に水を供給する工程と、前記電
解槽において電気分解を行なう工程と、を含み、前記陽
極室から前記陽イオン交換膜を介して金属の陽イオンを
前記陰極室に通過させ、当該陰極室において前記電気分
解反応によりこの金属の陽イオンの水酸化物を生成し、
当該水酸化物を水に溶解させることにより、不純物濃度
の低いアルカリ溶液を生成することを特徴とする。
According to the present invention, in an electrolytic cell divided into an anode chamber and a cathode chamber by a cation exchange membrane, a step of supplying an alkaline solution having a high impurity concentration to the anode chamber, and the cathode. A step of supplying water to the chamber, and a step of performing electrolysis in the electrolytic cell, wherein metal cations are passed from the anode chamber through the cation exchange membrane to the cathode chamber, In the electrolysis reaction to produce a hydroxide of the cation of this metal,
It is characterized in that an alkaline solution having a low impurity concentration is produced by dissolving the hydroxide in water.

【0007】例えばアルカリ溶液として水酸化ナトリウ
ム溶液を精製する場合には、陽極室に不純物濃度の高い
水酸化ナトリウム溶液を供給し、陰極室に水を供給して
電気分解を行う。ここで陽極室には金属の陽イオンであ
るナトリウムイオン(Na)と、水酸化物イオン(O
)と、不純物である金属が存在するが、不純物であ
る金属はアルカリ性雰囲気中では陰イオンとして存在す
るか水酸化物となって沈殿する。このため陽極室におけ
る陽イオンはナトリウムイオンのみであり、このナトリ
ウムイオンのみが陽イオン交換膜を介して陰極室に通過
する。陰極室では電気分解によりナトリウムの水酸化物
である水酸化ナトリウムが生成され、この水酸化ナトリ
ウムが水に溶解して水酸化ナトリウム溶液が生成される
が、陰極室には不純物が入り込まないので得られる水酸
化ナトリウム溶液は不純物濃度の極めて低いものとな
る。
For example, when a sodium hydroxide solution is purified as an alkaline solution, a sodium hydroxide solution having a high impurity concentration is supplied to the anode chamber and water is supplied to the cathode chamber to perform electrolysis. Here, in the anode chamber, sodium ions (Na + ) which are metal cations and hydroxide ions (O 2
H ) and a metal as an impurity exist, but the metal as an impurity exists as an anion or precipitates as a hydroxide in an alkaline atmosphere. Therefore, the cations in the anode chamber are only sodium ions, and only these sodium ions pass through the cation exchange membrane to the cathode chamber. In the cathode chamber, sodium hydroxide, which is a hydroxide of sodium, is generated by electrolysis, and this sodium hydroxide is dissolved in water to form a sodium hydroxide solution, but it is obtained because impurities do not enter the cathode chamber. The sodium hydroxide solution obtained has an extremely low impurity concentration.

【0008】[0008]

【発明の実施の形態】次に本発明方法の実施の形態につ
いて説明する。図1は本発明方法を実施する電解槽1を
示すものである。図中11は陽極室、12は陰極室であ
り、両者は陽イオン交換膜2により区画されている。3
1は例えば白金ネットからなる陽極、32は同じく白金
ネットからなる陰極であり、両者は直流電源4に接続さ
れている。電極としては、この他にニッケル板等を用い
ることができる。
BEST MODE FOR CARRYING OUT THE INVENTION Next, an embodiment of the method of the present invention will be described. FIG. 1 shows an electrolytic cell 1 for carrying out the method of the present invention. In the figure, 11 is an anode chamber and 12 is a cathode chamber, both of which are partitioned by the cation exchange membrane 2. 3
Reference numeral 1 is an anode made of, for example, a platinum net, and 32 is a cathode made of a platinum net, both of which are connected to a DC power supply 4. In addition to this, a nickel plate or the like can be used as the electrode.

【0009】また図中11aは不純物を含む粗製水酸化
ナトリウム溶液を陽極室11に注入するための供給管、
11bは陽極室11内の溶液を排出するための排出管、
11cは陽極31での電極反応により発生する酸素(O
2 )ガスを排気するための排気管であり、12aは陰極
室12に水を注入するための供給管、12bは陰極室1
2内にて生成された高純度水酸化ナトリウム溶液を排出
するための排出管、12cは陰極32での電極反応によ
り発生する水素(H2 )ガスを排気するための排気管で
ある。V1〜V4はバルブである。
In the figure, 11a is a supply pipe for injecting a crude sodium hydroxide solution containing impurities into the anode chamber 11.
11b is a discharge pipe for discharging the solution in the anode chamber 11,
11c is oxygen (O) generated by the electrode reaction at the anode 31.
2 ) An exhaust pipe for exhausting gas, 12a is a supply pipe for injecting water into the cathode chamber 12, and 12b is a cathode chamber 1.
An exhaust pipe for exhausting the high-purity sodium hydroxide solution generated in 2 and an exhaust pipe 12c for exhausting hydrogen (H 2 ) gas generated by the electrode reaction at the cathode 32. V1 to V4 are valves.

【0010】本発明方法はこのような電解槽1におい
て、先ず陽極室11に例えばFe、Ni、Mg、Ca等
の不純物を含む粗製水酸化ナトリウム溶液を供給管11
aを介して注入すると共に、陰極室12に水例えば超純
水を供給管12aを介して注入して電気分解を行うこと
により実施される。
In the electrolytic cell 1 according to the method of the present invention, a crude sodium hydroxide solution containing impurities such as Fe, Ni, Mg, and Ca is first supplied to an anode chamber 11 in a supply pipe 11.
It is carried out by injecting water through a and simultaneously injecting water, for example, ultrapure water into the cathode chamber 12 through the supply pipe 12a to perform electrolysis.

【0011】即ち陽極室11では、水酸化ナトリウム溶
液はNa+ とOH- (水酸化物イオン)の状態で存在
し、このうちNa+ は陽イオン交換膜2を通過して陰極
室12に浸入していく。一方OH- は陽イオン交換膜2
を通過できないため陽極室11に存在し、陽極室11に
て進行する以下の(3)式に示す電解反応に用いられ
る。そしてこの反応により発生する酸素ガスは排気管1
1cを介して排気される。 4OH- → 2H2 O+O2 +4e …(3)
That is, in the anode chamber 11, the sodium hydroxide solution exists in the state of Na + and OH (hydroxide ion), of which Na + enters the cathode chamber 12 through the cation exchange membrane 2. I will do it. On the other hand, OH - is a cation exchange membrane 2
Is used in the electrolytic reaction shown in the following formula (3), which is present in the anode chamber 11 because it cannot pass through. The oxygen gas generated by this reaction is exhaust pipe 1
Exhausted via 1c. 4OH - → 2H 2 O + O 2 + 4e ... (3)

【0012】一方陰極室12では以下の(4)式に示す
電解反応が進行し、この反応によって水酸化ナトリウム
が生成する。そしてこのように生成された水酸化ナトリ
ウムは超純水に溶解されて高純度水酸化ナトリウム溶液
が生成され、この水酸化ナトリウム溶液は排出管12b
を介して取り出される。また電解反応により発生した水
素ガスは排気管12cを介して排気される。 4Na+ +4H2 O+4e → 2H2 +4NaOH …(4)
On the other hand, in the cathode chamber 12, an electrolytic reaction represented by the following equation (4) proceeds, and this reaction produces sodium hydroxide. The sodium hydroxide produced in this way is dissolved in ultrapure water to produce a high-purity sodium hydroxide solution, and the sodium hydroxide solution is discharged from the discharge pipe 12b.
Is taken out through. The hydrogen gas generated by the electrolytic reaction is exhausted through the exhaust pipe 12c. 4Na + + 4H 2 O + 4e → 2H 2 + 4NaOH (4)

【0013】このような方法では、Fe、Ni、Mg、
Ca等の不純物を含む水酸化ナトリウム溶液を陽極室1
1に注入すると、水酸化ナトリウム溶液はアルカリ性で
あるため、陽極室11内では上記不純物である金属は陰
イオンの状態で存在するか、水酸化物の状態で存在す
る。例えばFeの場合では、アルカリ性雰囲気では水酸
化ナトリウム溶液中にHFeO2 - 、FeO4 2-として
存在するか、Fe(OH)2 、Fe(OH)3 として沈
殿する。従ってこれら不純物である金属は陽イオン交換
膜2を通過できず、陽極室11に留まることになる。こ
の結果陰極室12には不純物は入り込まないので、陰極
室12にて生成される水酸化ナトリウム溶液は不純物濃
度が極めて低いものとなる。
In such a method, Fe, Ni, Mg,
Anode chamber 1 containing sodium hydroxide solution containing impurities such as Ca
When injected into No. 1, since the sodium hydroxide solution is alkaline, the metal that is the impurity exists in the anode chamber 11 in the anion state or in the hydroxide state. For example, in the case of Fe, it exists as HFeO 2 , FeO 4 2− in the sodium hydroxide solution in an alkaline atmosphere, or precipitates as Fe (OH) 2 or Fe (OH) 3 . Therefore, these impurities metals cannot pass through the cation exchange membrane 2 and remain in the anode chamber 11. As a result, impurities do not enter the cathode chamber 12, so that the sodium hydroxide solution produced in the cathode chamber 12 has an extremely low impurity concentration.

【0014】またこの方法では、得ようとする水酸化ナ
トリウム溶液の濃度は電解反応で生成する水酸化ナトリ
ウム溶液の量と、陰極室11に供給される超純水の量と
により決定される。従って電流値と電解時間とにより水
酸化ナトリウムの生成量を制御し、一方陰極室11に供
給する超純水の注入速度の制御により超純水の陰極室1
1内の滞留時間を制御すれば所望の濃度の水酸化ナトリ
ウム溶液を得ることができる。
In this method, the concentration of the sodium hydroxide solution to be obtained is determined by the amount of sodium hydroxide solution produced by the electrolytic reaction and the amount of ultrapure water supplied to the cathode chamber 11. Therefore, the production amount of sodium hydroxide is controlled by the current value and the electrolysis time, while the injection rate of the ultrapure water supplied to the cathode chamber 11 is controlled so that the cathode chamber 1 for the ultrapure water is generated.
If the residence time in 1 is controlled, a sodium hydroxide solution having a desired concentration can be obtained.

【0015】従ってこのようなアルカリ溶液の精製方法
によれば不純物濃度の高い水酸化ナトリウム溶液を精製
して極めて不純物濃度の低い水酸化ナトリウム溶液を得
ることを簡単な手法で確実に行うことができる。従って
精製度が低い食塩を原料として製造した粗製水酸化ナト
リウム溶液を本発明方法によって精製することにより、
不純物濃度を極めて低くすることができる。
Therefore, according to such a method for purifying an alkaline solution, it is possible to surely purify a sodium hydroxide solution having a high impurity concentration to obtain a sodium hydroxide solution having an extremely low impurity concentration by a simple method. . Therefore, by refining the crude sodium hydroxide solution produced using low-purity sodium chloride as a raw material by the method of the present invention,
The impurity concentration can be made extremely low.

【0016】また電解槽等から溶出する不純物について
は、陽極室にて溶出する不純物は上述のように、陽極室
内に陰イオン又は水酸化物の状態で残存するため、精製
後の水酸化ナトリウム溶液に含まれる不純物は陰極室に
て溶出する分のみとなる。従って陰極室にて溶出する量
は電解槽全体から溶出する場合と比べて少なくなるた
め、この点においても不純物濃度は低くなる。
Regarding the impurities eluted from the electrolytic cell or the like, the impurities eluted in the anode chamber remain in the anode chamber in the state of anions or hydroxides as described above, so that the purified sodium hydroxide solution is used. The impurities contained in are only the amount eluted in the cathode chamber. Therefore, the amount of elution in the cathode chamber is smaller than that in the case of elution from the entire electrolytic cell, and the impurity concentration is also low in this respect.

【0017】なお本発明方法を実施するにあたっては、
図1に示す単極式の電解槽1のみならず、例えば図2に
示すような複極式の電解槽5を用いるようにしてもよ
い。この電解槽5は例えば2枚の陽イオン交換膜51、
52により槽5を陰極室53と、この両側に設けられた
陽極室54、55との3つの室に区画して構成される。
またこの図において、56は陰極、57、58は陽極で
あり、供給管、排気管、排出管は省略して示してある。
このような電解槽5では、陽極室54、55に不純物濃
度が高い粗製水酸化ナトリウム溶液が注入され、陰極室
53にて不純物濃度が低い高純度水酸化ナトリウム溶液
が生成されるが、1回の電気分解により濃度の高い水酸
化ナトリウム溶液を得ることができ、電解槽の設置に要
する面積の有効利用を図ることができる。
In carrying out the method of the present invention,
In addition to the monopolar electrolytic cell 1 shown in FIG. 1, for example, a bipolar electrolytic cell 5 as shown in FIG. 2 may be used. The electrolytic cell 5 includes, for example, two cation exchange membranes 51,
The tank 5 is divided by 52 into three chambers, that is, a cathode chamber 53 and anode chambers 54 and 55 provided on both sides of the cathode chamber 53.
Further, in this figure, 56 is a cathode, 57 and 58 are anodes, and supply pipes, exhaust pipes, and discharge pipes are omitted.
In such an electrolytic cell 5, a crude sodium hydroxide solution having a high impurity concentration is injected into the anode chambers 54 and 55, and a high-purity sodium hydroxide solution having a low impurity concentration is generated in the cathode chamber 53. A highly concentrated sodium hydroxide solution can be obtained by the electrolysis of, and the area required for the installation of the electrolytic cell can be effectively utilized.

【0018】さらに本発明方法は、上述の単極式の電解
槽1や複極式の電解槽5を複数連結した電解槽において
実施してもよいし、その他各種の電解槽において実施す
ることができる。
Further, the method of the present invention may be carried out in an electrolytic cell in which a plurality of the above-mentioned single-electrode type electrolytic cell 1 and multiple-electrode type electrolytic cell 5 are connected, or in various other electrolytic cells. it can.

【0019】さらにまた本発明方法は、水酸化ナトリウ
ム溶液の他、水酸化カリウム溶液、水酸化バリウム溶液
等のアルカリ金属あるいはアルカリ土類金属の水酸化物
からなるアリカリであって可溶性のものの精製に適用す
ることができる。
Furthermore, the method of the present invention is applicable to the purification of soluble alkalinity potassium hydroxide solutions, barium hydroxide solutions, and other alkali metal or alkaline earth metal hydroxides in addition to sodium hydroxide solutions. Can be applied.

【0020】[0020]

【実施例】 (実施例1) 上述の図1に示す電解槽1の陽極室11
に、不純物として鉄を1.7ppm含む30〜40%水
酸化ナトリウム溶液を注入し、陰極室12に超純水を1
0リットル/時の速度で注入しながら、10アンペアの
電流を通じて1時間電気分解を行った。電圧は水酸化ナ
トリウム生成に必要な理論分解電圧1.3ボルトの2倍
以上の値を用いた。陰極室12にて得られた水酸化ナト
リウム溶液は濃度が13%、不純物濃度が30ppb以
下であった。 (実施例2) 実施例1と同様の操作を、陰極室12に
て得られる水酸化ナトリウム溶液の1部例えば4/5量
を循環させながら行ったところ、濃度が37%、不純物
濃度が30ppb以下の水酸化ナトリウム溶液が得られ
た。 (実施例3) 実施例1の操作を、陰極室12への超純
水の注入速度を3リットル/時に設定し、1000アン
ペアの電流を通じて行ったところ、濃度が39%、不純
物濃度が30ppb以下の水酸化ナトリウム溶液が得ら
れた。
EXAMPLES Example 1 Anode chamber 11 of electrolytic cell 1 shown in FIG. 1 described above.
A 30 to 40% sodium hydroxide solution containing 1.7 ppm of iron as an impurity is injected into the cathode chamber, and ultrapure water is added to the cathode chamber 12 in an amount of 1%.
Electrolysis was carried out for 1 hour with a current of 10 amps while injecting at a rate of 0 liters / hour. As the voltage, a value twice or more of the theoretical decomposition voltage of 1.3 V required for producing sodium hydroxide was used. The sodium hydroxide solution obtained in the cathode chamber 12 had a concentration of 13% and an impurity concentration of 30 ppb or less. (Example 2) The same operation as in Example 1 was performed while circulating 1 part of the sodium hydroxide solution obtained in the cathode chamber 12, for example, 4/5, and the concentration was 37% and the impurity concentration was 30 ppb. The following sodium hydroxide solution was obtained. (Example 3) The operation of Example 1 was carried out while setting the injection rate of ultrapure water into the cathode chamber 12 at 3 liters / hour and applying a current of 1000 amperes. To give a sodium hydroxide solution.

【0021】[0021]

【発明の効果】 陽イオン交換膜により陽極室と陰極室
とに区画された電解槽において、陽極室に不純物濃度の
高いアルカリ溶液を供給し、陰極室に水を供給して電気
分解を行なうと、陽極室に存在する不純物は陽イオン交
換膜を通過できないため、陰極室において極めて不純物
濃度の低いアルカリ溶液を生成することができる。
EFFECT OF THE INVENTION In an electrolytic cell divided into an anode chamber and a cathode chamber by a cation exchange membrane, an alkaline solution having a high impurity concentration is supplied to the anode chamber and water is supplied to the cathode chamber to perform electrolysis. Since impurities existing in the anode chamber cannot pass through the cation exchange membrane, it is possible to generate an alkaline solution having an extremely low impurity concentration in the cathode chamber.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明方法を実施するための電解槽を示す断面
図である。
FIG. 1 is a cross-sectional view showing an electrolytic cell for carrying out the method of the present invention.

【図2】本発明方法を実施するための電解槽の他の例を
示す断面図である。
FIG. 2 is a sectional view showing another example of an electrolytic cell for carrying out the method of the present invention.

【符号の説明】[Explanation of symbols]

1、5 電解槽 11、54、55 陽極室 12、53 陰極室 2、51、52 陽イオン交換膜 31、57、58 陽極 32、56 陰極 1, 5 Electrolyzer 11, 54, 55 Anode chamber 12, 53 Cathode chamber 2, 51, 52 Cation exchange membrane 31, 57, 58 Anode 32, 56 Cathode

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 陽イオン交換膜により陽極室と陰極室と
に区画された電解槽において、前記陽極室に不純物濃度
の高いアルカリ溶液を供給する工程と、 前記陰極室に水を供給する工程と、 前記電解槽において電気分解を行なう工程と、を含み、 前記陽極室から前記陽イオン交換膜を介して金属の陽イ
オンを前記陰極室に通過させ、当該陰極室において前記
電気分解反応によりこの金属の陽イオンの水酸化物を生
成し、当該水酸化物を水に溶解させることにより、不純
物濃度の低いアルカリ溶液を生成することを特徴とする
アルカリ溶液の精製方法。
1. A step of supplying an alkaline solution having a high impurity concentration to the anode chamber and a step of supplying water to the cathode chamber in an electrolytic cell divided into an anode chamber and a cathode chamber by a cation exchange membrane. And a step of performing electrolysis in the electrolytic cell, wherein cations of the metal are passed from the anode chamber to the cathode chamber through the cation exchange membrane, and the metal is formed by the electrolysis reaction in the cathode chamber. A method for purifying an alkaline solution, which comprises producing a hydroxide of a cation and dissolving the hydroxide in water to produce an alkaline solution having a low impurity concentration.
JP26490495A 1995-09-19 1995-09-19 Purification method of alkaline solution Expired - Lifetime JP3380658B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26490495A JP3380658B2 (en) 1995-09-19 1995-09-19 Purification method of alkaline solution

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26490495A JP3380658B2 (en) 1995-09-19 1995-09-19 Purification method of alkaline solution

Publications (2)

Publication Number Publication Date
JPH0978276A true JPH0978276A (en) 1997-03-25
JP3380658B2 JP3380658B2 (en) 2003-02-24

Family

ID=17409837

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26490495A Expired - Lifetime JP3380658B2 (en) 1995-09-19 1995-09-19 Purification method of alkaline solution

Country Status (1)

Country Link
JP (1) JP3380658B2 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1168423A1 (en) * 1999-12-28 2002-01-02 Shin-Etsu Handotai Co., Ltd Etching solution, etching method, and semiconductor silicon wafer
DE10217096B4 (en) * 2001-04-18 2006-03-09 Tsurumi Soda Co., Ltd., Yokohama Apparatus and method for purifying alkaline solution
JP2007138233A (en) * 2005-11-17 2007-06-07 Toagosei Co Ltd Method of manufacturing high purity alkaline metal hydroxide
US7288206B2 (en) 2003-12-22 2007-10-30 Siltronic Ag High-purity alkali etching solution for silicon wafers and use thereof
JP2010234297A (en) * 2009-03-31 2010-10-21 Kurita Water Ind Ltd Method of regenerating ion exchange resin and ultrapure water producing apparatus
JP2010260758A (en) * 2009-05-01 2010-11-18 Tsurumi Soda Co Ltd Sodium hydroxide aqueous solution reduced in potassium content, solid-shaped sodium hydroxide and method for producing them
JP2014121709A (en) * 2014-03-31 2014-07-03 Kurita Water Ind Ltd Method for preventing ion exchange resin from being contaminated with boron
CZ305048B6 (en) * 2014-01-21 2015-04-08 Vysoká škola chemicko- technologická v Praze Refining hydroxides using membrane electrolysis method with iron electrode
KR102025559B1 (en) * 2018-12-20 2019-09-26 (주) 테크로스 Method for treating ballast water and marine exhaust gas using electrolysis
CN114008848A (en) * 2019-06-14 2022-02-01 罗兰大学 Polypropylene-or polyethylene-based separator for use in electrochemical cells for the production of alkali metal ferrate

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1168423A1 (en) * 1999-12-28 2002-01-02 Shin-Etsu Handotai Co., Ltd Etching solution, etching method, and semiconductor silicon wafer
EP1168423A4 (en) * 1999-12-28 2007-01-24 Shinetsu Handotai Kk Etching solution, etching method, and semiconductor silicon wafer
DE10217096B4 (en) * 2001-04-18 2006-03-09 Tsurumi Soda Co., Ltd., Yokohama Apparatus and method for purifying alkaline solution
US7288206B2 (en) 2003-12-22 2007-10-30 Siltronic Ag High-purity alkali etching solution for silicon wafers and use thereof
JP2007138233A (en) * 2005-11-17 2007-06-07 Toagosei Co Ltd Method of manufacturing high purity alkaline metal hydroxide
JP2010234297A (en) * 2009-03-31 2010-10-21 Kurita Water Ind Ltd Method of regenerating ion exchange resin and ultrapure water producing apparatus
JP2010260758A (en) * 2009-05-01 2010-11-18 Tsurumi Soda Co Ltd Sodium hydroxide aqueous solution reduced in potassium content, solid-shaped sodium hydroxide and method for producing them
CZ305048B6 (en) * 2014-01-21 2015-04-08 Vysoká škola chemicko- technologická v Praze Refining hydroxides using membrane electrolysis method with iron electrode
JP2014121709A (en) * 2014-03-31 2014-07-03 Kurita Water Ind Ltd Method for preventing ion exchange resin from being contaminated with boron
KR102025559B1 (en) * 2018-12-20 2019-09-26 (주) 테크로스 Method for treating ballast water and marine exhaust gas using electrolysis
WO2020130222A1 (en) * 2018-12-20 2020-06-25 (주) 테크로스 Method for treating ship ballast water and ship exhaust gas by using electrolysis
CN114008848A (en) * 2019-06-14 2022-02-01 罗兰大学 Polypropylene-or polyethylene-based separator for use in electrochemical cells for the production of alkali metal ferrate

Also Published As

Publication number Publication date
JP3380658B2 (en) 2003-02-24

Similar Documents

Publication Publication Date Title
US5198080A (en) Electrochemical processing of aqueous solutions
EP2625316A2 (en) Chemical systems and methods for operating an electrochemical cell with an acidic anolyte
JPH05509281A (en) Production of chlorine dioxide from chloric acid
GB2316091A (en) Electrolytic treatment of aqueous salt solutions
JP3380658B2 (en) Purification method of alkaline solution
JPS6039757B2 (en) Hydrochloric acid electrolysis method
JPH033747B2 (en)
JP3115440B2 (en) Electrolysis method of alkali chloride aqueous solution
US4510026A (en) Process for electrolysis of sea water
CN112281180A (en) Method for preparing chlorine by electrolyzing concentrated seawater through bipolar membrane
RU2108413C1 (en) Method for production of aqueous acidified solution containing chlorate ions, method for electrochemical treatment of aqueous solution of mixture of salts of alkali metals, method for production of chlorine dioxide
CN1172028C (en) Method for preparing hypophosphorous acid by using electrolytic method
JPH0610177A (en) On-site electrolysis system
CA1158196A (en) Process of electrolyzing aqueous solutions of alkali halides
RU1836493C (en) Method of production of chlorine dioxide
JP2014015649A (en) Production method of caustic soda
JP2003293178A (en) Method for preparing chemical for water treatment
US3364127A (en) Method for producing caustic soda and chlorine by means of electrolysis of sea water or other similar saltish water
JP2839155B2 (en) Process for producing alkali metal dichromate and chromic acid
JPH08296076A (en) Production of aqueous solution of hydrogen peroxide and device therefor
JP3373175B2 (en) Method of starting operation of alkaline chloride electrolytic cell using gas diffusion cathode
JP3568294B2 (en) How to prevent chlorate from increasing in salt water
JP3651872B2 (en) Method for removing sulfate and chlorate radicals in brine
JP4771467B2 (en) Method for producing high purity alkali metal hydroxide
JP2012091981A (en) Method for purifying sodium hydroxide

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071213

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081213

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081213

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091213

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101213

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101213

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111213

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121213

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121213

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131213

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131213

Year of fee payment: 11

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131213

Year of fee payment: 11

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term