JPH0975731A - Catalytic structure and heat exchange type catalytic reactor - Google Patents

Catalytic structure and heat exchange type catalytic reactor

Info

Publication number
JPH0975731A
JPH0975731A JP7239418A JP23941895A JPH0975731A JP H0975731 A JPH0975731 A JP H0975731A JP 7239418 A JP7239418 A JP 7239418A JP 23941895 A JP23941895 A JP 23941895A JP H0975731 A JPH0975731 A JP H0975731A
Authority
JP
Japan
Prior art keywords
catalyst
copper
catalyst structure
sintered alloy
zinc
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7239418A
Other languages
Japanese (ja)
Inventor
Junji Hizuka
淳次 肥塚
Akira Harada
亮 原田
Naomiki Yamada
直幹 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP7239418A priority Critical patent/JPH0975731A/en
Publication of JPH0975731A publication Critical patent/JPH0975731A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/06Combination of fuel cells with means for production of reactants or for treatment of residues
    • H01M8/0606Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants
    • H01M8/0612Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants from carbon-containing material
    • H01M8/0625Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants from carbon-containing material in a modular combined reactor/fuel cell structure
    • H01M8/0631Reactor construction specially adapted for combination reactor/fuel cell
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Hydrogen, Water And Hydrids (AREA)
  • Catalysts (AREA)
  • Fuel Cell (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain a tubular or circularly tubular catalytic structure having satisfactory heat conductivity by using a Cu-Zn-Al sintered alloy tube. SOLUTION: The inside of a cylindrical Cu-Zn-Al sintered alloy tube 1 is treated with alkali and a catalyst forming layer 2 is formed on the treated inside to obtain the objective catalytic structure. A high activity catalyst is formed and the catalytic structure has remarkably improved heat conductivity as compared with a conventional catalyst bed packed with a granular catalyst.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は高熱伝導でかつメタ
ノール,一酸化炭素等と反応活性を有する触媒構造体と
その触媒構造体を用いた熱交換型触媒反応器に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a catalyst structure having a high heat conductivity and a reaction activity with methanol, carbon monoxide and the like, and a heat exchange type catalytic reactor using the catalyst structure.

【0002】[0002]

【従来の技術】メタノールを水蒸気改質する従来の触媒
は、粒状でかつ組成がCu−ZnOあるいはCu−Zn
O−Al2 3 のものがよく知られており、多管式の反
応器に充填されて用いられている。この触媒を用いた
時、水素を製造する反応は以下の(1)式と(2)式の
反応を組み合わせたものである。
2. Description of the Related Art A conventional catalyst for steam reforming methanol is granular and has a composition of Cu--ZnO or Cu--Zn.
O-Al 2 O 3 is well known and is used by being filled in a multitubular reactor. When this catalyst is used, the reaction for producing hydrogen is a combination of the reactions of the following formulas (1) and (2).

【0003】[0003]

【化1】 Embedded image

【0004】上記(1)式は吸熱反応、(2)式は発熱
反応であるが、トータルすれば吸熱反応であり、外部よ
り熱を供給してやる必要がある。通常、温度は300〜
350℃、圧力は〜5kgG/cm2 程度で行われるの
が一般的である。
The above formula (1) is an endothermic reaction, and the formula (2) is an exothermic reaction. However, the total is an endothermic reaction, and it is necessary to supply heat from the outside. Usually, the temperature is 300 ~
It is generally performed at 350 ° C. and a pressure of about 5 kgG / cm 2 .

【0005】[0005]

【発明が解決しようとする課題】ところで、CO濃度を
低くすることができれば、それだけ水素収率がよくな
り、また(2)式の反応の平衡が低温になればなるほど
右にずれているため、より低温で活性を有する触媒が求
められている。
By the way, if the CO concentration can be lowered, the hydrogen yield is improved, and the equilibrium of the reaction of the formula (2) is shifted to the right as the temperature becomes lower. There is a need for catalysts that are active at lower temperatures.

【0006】また、最近では製造された水素が燃料電池
発電に応用することが考えられており、この場合、CO
は燃料電池にとって有害であるので、できるだけ低濃度
にすることが求められている。例えば、COを0.5%
程度以下にするには、250℃程度以下にすることが好
ましい。更に燃料電池等への応用を考えると、触媒を充
填した反応器をできるだけコンパクトにすることも必要
である。
Recently, it is considered that the produced hydrogen is applied to fuel cell power generation. In this case, CO
Is harmful to the fuel cell, so that it is required to make the concentration as low as possible. For example, CO is 0.5%
In order to reduce the temperature to less than about 250 ° C., it is preferable to set the temperature to about 250 ° C. or less. Further, in consideration of application to fuel cells and the like, it is also necessary to make the reactor filled with the catalyst as compact as possible.

【0007】しかしながら、上述したように触媒は粒状
であり、触媒および触媒充填層の伝熱性が悪くかつ反応
が吸熱反応であり、反応熱を外部から供給するために大
きな伝熱面積を必要とするので、これにより触媒反応器
のコンパクト化が妨げられている。
However, as described above, the catalyst is granular, the heat transfer properties of the catalyst and the catalyst packed bed are poor, and the reaction is an endothermic reaction, which requires a large heat transfer area for supplying reaction heat from the outside. Therefore, this hinders the compactness of the catalytic reactor.

【0008】本発明は上記事情に鑑みてなされたもの
で、その目的は、銅−亜鉛−アルミニウム焼結合金管を
用いて伝熱性の良い管状あるいは円管状の触媒構造体を
提供することにある。また、本発明の他の目的は、その
触媒構造体を複数個用いてコンパクトに形成した熱交換
型触媒反応器を提供することにある。
The present invention has been made in view of the above circumstances, and an object thereof is to provide a tubular or circular tubular catalyst structure having good heat transfer using a copper-zinc-aluminum sintered alloy tube. Another object of the present invention is to provide a heat exchange type catalytic reactor which is compactly formed by using a plurality of the catalyst structures.

【0009】[0009]

【課題を解決するための手段】上記目的を達成するため
に、本発明の請求項1の触媒構造体は、円筒状の銅−亜
鉛−アルミニウム焼結合金管の内面をアルカリ処理し
て、その表面に触媒化層を形成したことを特徴とする。
In order to achieve the above-mentioned object, the catalyst structure according to claim 1 of the present invention is obtained by subjecting the inner surface of a cylindrical copper-zinc-aluminum sintered alloy tube to an alkali treatment to obtain its surface. It is characterized in that a catalyzed layer is formed on.

【0010】本発明の請求項2の触媒構造体は、同心円
状に一体化された銅管と銅−亜鉛−アルミニウム焼結合
金管の内面をアルカリ処理して、その表面に触媒化層を
形成したことを特徴とする。
In the catalyst structure according to the second aspect of the present invention, the inner surfaces of the concentrically integrated copper tube and copper-zinc-aluminum sintered alloy tube are treated with alkali to form a catalyzed layer on the surface. It is characterized by

【0011】本発明の請求項3は、請求項1または請求
項2の触媒構造体において、銅−亜鉛−アルミニウムの
焼結合金管の組成が90%〜98%銅が占めるまでアル
カリ処理したことを特徴とする。
According to a third aspect of the present invention, in the catalyst structure according to the first or second aspect, alkali treatment is performed until the composition of the copper-zinc-aluminum sintered alloy tube is 90% to 98% copper. Characterize.

【0012】本発明の請求項4の熱交換型触媒反応器
は、請求項1乃至請求項3記載の触媒構造物を、触媒反
応器本体内に設置すると共に、前記触媒反応器本体に反
応ガス入口管と出口管並びに熱媒体入口管と出口管を設
けたことを特徴とする。
According to a fourth aspect of the present invention, in the heat exchange type catalytic reactor, the catalyst structure according to the first to third aspects is installed in the main body of the catalytic reactor, and the reaction gas is introduced into the main body of the catalytic reactor. An inlet pipe and an outlet pipe, and a heat medium inlet pipe and an outlet pipe are provided.

【0013】次に、本発明の触媒構造体に用いられる焼
結合金管について説明する。本発明で用いられる焼結合
金の組成は、アルミニウムが10%を越えないことが望
ましい。またCuは少なすぎると、アルカリ処理して亜
鉛とアルミニウムを溶出させた後の触媒構造体の強度が
小さくなるので50〜80%がよく、残りが亜鉛である
が亜鉛が少なすぎると触媒活性が低くなるので10%を
下回らないことが重要である。
Next, the sintered alloy tube used in the catalyst structure of the present invention will be described. The composition of the sintered alloy used in the present invention is preferably such that aluminum does not exceed 10%. Further, if the amount of Cu is too small, the strength of the catalyst structure after alkali treatment to elute zinc and aluminum becomes small, so 50 to 80% is preferable, and the balance is zinc, but if the amount of zinc is too small, the catalytic activity is It is important not to go below 10% as it will be lower.

【0014】一般に用いる焼結合金の組成としては、C
u;60%、Zn;30%、Al;10%程度が好まし
い。また、焼結合金の気孔率が大きすぎると、アルカリ
処理した場合に触媒構造体の強度が小さくなる。反対に
焼結合金の気孔率が小さすぎると、アルカリ処理する時
間が長くなり、製造コストが上昇する欠点はあるが、触
媒構造体としての機能的な問題はない。通常、焼結合金
の気孔率は20〜40%程度が望ましい。
The composition of a generally used sintered alloy is C
It is preferable that u: 60%, Zn: 30%, Al: 10%. Further, if the porosity of the sintered alloy is too large, the strength of the catalyst structure will decrease when treated with alkali. On the other hand, if the porosity of the sintered alloy is too small, the alkali treatment takes a long time and the production cost increases, but there is no functional problem as a catalyst structure. Usually, it is desirable that the porosity of the sintered alloy is about 20 to 40%.

【0015】また、銅−亜鉛−アルミニウム焼結金属円
筒管の肉厚は0.5mm以上がよく、厚すぎるのは無意
味であり、高々1mm程度でよい。長さは反応器の設計
によって決定されるべきであるが高々1〜2m程度が製
造上も容易である。
Further, the wall thickness of the copper-zinc-aluminum sintered metal cylindrical tube is preferably 0.5 mm or more, and it is meaningless to be too thick, and about 1 mm at the most. The length should be determined according to the design of the reactor, but the length is at most 1 to 2 m, which is easy to manufacture.

【0016】このような円筒管を高濃度のアルカリ溶液
で処理し、亜鉛とアルミニウムを溶出させることが触媒
構造体としては必須であり、これによって触媒としての
機能が発揮される。しかし、焼結管の触媒化した部分に
ついてみれば存在する亜鉛およびアルミニウムを100
%溶出させ、組成的に100%銅になるまで溶出させる
のは触媒として好ましくない。高々銅が98%程度の組
成になるまで溶出させれば充分である。また、溶出させ
る亜鉛,アルミニウムが少なすぎると触媒構造体のミク
ロポアーが少なくなり、触媒としての比表面積が小さく
なり、好ましくないので銅の組成が90%程度になるま
では溶出させるべきである。また、焼結合金管の触媒化
する厚みは0.5mm程度が適当でこれ以上厚くしても
著しい効果が現れない。例えば肉厚1mmの焼結合金管
を用いる場合は肉厚の半分程度触媒化するだけでよい。
焼結合金管の管径は細ければ細いほど触媒としては好都
合であるが、ガスの流通抵抗が増加すると共に、反応器
としてみた場合に管の本数が増えることになるのでコス
トアップになる。また、管径を大きくし過ぎると、もし
内面を溶出させて触媒化した場合はガスとの触媒の接触
が充分でなく反応効率が悪くなる。したがって、管径は
内径で2〜6mmΦ程度が好ましい。
It is indispensable for the catalyst structure to treat such a cylindrical tube with a high-concentration alkaline solution to elute zinc and aluminum, and thereby the function as a catalyst is exerted. However, regarding the catalyzed part of the sintered tube, the amount of zinc and aluminum present is 100%.
%, And elution until the composition becomes 100% copper is not preferable as a catalyst. It is sufficient to elute copper to a composition of at most about 98%. If the amount of zinc or aluminum to be eluted is too small, the micropores of the catalyst structure will be small and the specific surface area as a catalyst will be small, which is not preferable. Therefore, it should be eluted until the composition of copper is about 90%. Further, the thickness of the sintered alloy tube to be catalyzed is preferably about 0.5 mm, and even if it is made thicker than this, a remarkable effect does not appear. For example, when using a sintered alloy tube having a wall thickness of 1 mm, it is sufficient to catalyze about half the wall thickness.
The smaller the diameter of the sintered alloy tube is, the more convenient it is as a catalyst, but the gas flow resistance increases, and the number of tubes increases when viewed as a reactor, resulting in an increase in cost. On the other hand, if the tube diameter is too large, if the inner surface is eluted and catalyzed, the catalyst will not contact the gas sufficiently and the reaction efficiency will deteriorate. Therefore, the inner diameter of the tube is preferably about 2 to 6 mmΦ.

【0017】[0017]

【発明の実施の形態】本発明の実施の形態である触媒構
造体を図を用いて詳細に説明する。図1は本発明の実施
例(請求項1対応)である触媒構造体の構成図である。
同図に示すように、銅−亜鉛−アルミニウムの焼結合金
管1の内側を、例えば苛性ソーダ溶液のような強アルカ
リ溶液によって処理することによって、亜鉛およびアル
ミニウムを溶出させ、触媒化層2を形成させたものであ
る。この場合、焼結合金管1の外側を同様に処理して触
媒化層2を外側に形成してもよい。
BEST MODE FOR CARRYING OUT THE INVENTION A catalyst structure according to an embodiment of the present invention will be described in detail with reference to the drawings. FIG. 1 is a configuration diagram of a catalyst structure which is an embodiment (corresponding to claim 1) of the present invention.
As shown in the figure, the inside of the copper-zinc-aluminum sintered alloy tube 1 is treated with a strong alkaline solution such as a caustic soda solution to elute zinc and aluminum and form a catalyzed layer 2. It is a thing. In this case, the outside of the sintered alloy tube 1 may be treated in the same manner to form the catalyzed layer 2 on the outside.

【0018】本実施例によると、メタノールの分解,メ
タノールの水蒸気改質,一酸化炭素の変性反応あるいは
メタノールの合成反応に高活性な触媒が形成されると共
に触媒構造体としては従来の粒状触媒を充填した触媒層
として比較して著しく伝熱性が向上している。
According to this embodiment, a highly active catalyst is formed for decomposition of methanol, steam reforming of methanol, modification reaction of carbon monoxide, or synthesis reaction of methanol, and a conventional granular catalyst is used as the catalyst structure. The heat conductivity is remarkably improved as compared with the filled catalyst layer.

【0019】また、上記にあげた反応はいずれも吸熱あ
るいは発熱反応であり、熱を供給あるいは除熱する必要
があり、そのために従来と比較してコンパクトで安価な
触媒反応器を構成することができる。内側に触媒層を形
成した場合は内側に反応ガス、外側は冷却の場合は水の
ような冷却剤を、加熱の場合は高温ガスのような加熱媒
体を流せばよい。
Further, all of the above-mentioned reactions are endothermic or exothermic reactions, and it is necessary to supply or remove heat, so that a compact and inexpensive catalytic reactor can be constructed as compared with the conventional ones. it can. When a catalyst layer is formed on the inside, a reaction gas may be passed on the inside, a coolant such as water may be passed on the outside for cooling, and a heating medium such as a high temperature gas may be passed on for heating.

【0020】図2は本発明の他の実施例(請求項2対
応)である触媒構造体の構成図である。同図に示すよう
に、銅管3に密着して銅−亜鉛−アルミニウム合金管4
を配置し、その内側を強アルカリ処理することによって
触媒化層5を形成させたものである。
FIG. 2 is a constitutional view of a catalyst structure which is another embodiment (corresponding to claim 2) of the present invention. As shown in the figure, the copper-zinc-aluminum alloy tube 4 is closely attached to the copper tube 3.
And the inside thereof is treated with a strong alkali to form the catalyzed layer 5.

【0021】本実施例も上記実施例と同様にエタノール
の分解,メタノールの水蒸気改質,一酸化炭素の変性反
応あるいはメタノールの合成反応に高活性な触媒が形成
されると共に触媒構造体としては従来の粒状触媒を充填
した触媒層として比較して著しく伝熱性が向上してい
る。
In the present embodiment, similarly to the above embodiments, a highly active catalyst is formed in the decomposition of ethanol, steam reforming of methanol, denaturation reaction of carbon monoxide or synthesis reaction of methanol, and a conventional catalyst structure is used. The heat transfer property is remarkably improved as compared with the catalyst layer filled with the granular catalyst.

【0022】図3は本発明の触媒構造体(請求項3対
応)における触媒化層を形成させたときの触媒化層の銅
の組成とメタノール分解能の関係を示すグラフであり、
銅の組成が100%になるまで亜鉛とアルミニウムを溶
出させるとかえって分解能は悪くなっており、また銅の
組成が90%程度以下では分解能にかなりの差があるこ
とが分かる。
FIG. 3 is a graph showing the relationship between the composition of copper in the catalyzed layer and the methanol decomposing ability when the catalyzed layer is formed in the catalyst structure of the present invention (corresponding to claim 3).
It can be seen that when the zinc and aluminum are eluted until the copper composition reaches 100%, the resolving power deteriorates, and when the copper composition is about 90% or less, there is a considerable difference in resolving power.

【0023】図4は本発明の触媒構造体を伝熱管として
用いた一例である熱交換器型触媒反応器(請求項4対
応)の構成図である。同図に示すように、熱交換器触媒
反応器6の入口管7から反応ガス8が入り、触媒構造体
9で反応して出口管10より排出される。他方、熱供給
あるいは除熱のための熱媒体11は、熱媒体入口管12
により入って触媒構造体9で熱交換して熱媒体出口管1
3から出ていく。
FIG. 4 is a structural diagram of a heat exchanger type catalytic reactor (corresponding to claim 4) which is an example of using the catalyst structure of the present invention as a heat transfer tube. As shown in the figure, the reaction gas 8 enters through the inlet pipe 7 of the heat exchanger catalytic reactor 6, reacts in the catalyst structure 9, and is discharged through the outlet pipe 10. On the other hand, the heat medium 11 for heat supply or heat removal is the heat medium inlet pipe 12
The heat medium outlet pipe 1 is introduced by heat exchange with the catalyst structure 9
Go out from 3.

【0024】このように、本実施例の熱交換型触媒反応
器は、粒状触媒を充填した従来の触媒反応器と比較し
て、触媒層の伝熱が2〜3倍以上向上するために、吸熱
反応では加熱のための伝熱面積を小さくすることができ
る。したがって、反応器自体ををコンパクトにすること
が可能で、メタノールの分解反応を例にとれば容積を約
2/3以下にすることができる。
As described above, in the heat exchange type catalytic reactor of this embodiment, the heat transfer in the catalyst layer is improved by 2 to 3 times or more as compared with the conventional catalytic reactor filled with the granular catalyst. In the endothermic reaction, the heat transfer area for heating can be reduced. Therefore, the reactor itself can be made compact, and the volume can be reduced to about ⅔ or less when taking the decomposition reaction of methanol as an example.

【0025】[0025]

【発明の効果】以上説明したように、本発明の触媒構造
体はその内側を強アルカリ処理することによって触媒化
層を形成しているので、高活性な触媒が形成されると共
に触媒構造体としては従来の粒状触媒を充填した触媒層
として比較して著しく伝熱性が向上する。また、このよ
うな触媒構造体を用いた本発明の熱交換型触媒反応器
は、伝熱性が良好であるのでコンパクト化が達成され
る。
As described above, the catalyst structure of the present invention forms a catalyzed layer by treating the inside with a strong alkali, so that a highly active catalyst is formed and a catalyst structure is obtained. Has significantly improved heat transfer property as compared with a conventional catalyst layer filled with a granular catalyst. Further, the heat exchange type catalytic reactor of the present invention using such a catalyst structure has a good heat transfer property, and thus can be made compact.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の触媒構造体の構成図。FIG. 1 is a configuration diagram of a catalyst structure of the present invention.

【図2】本発明の他の触媒構造体の構成図。FIG. 2 is a configuration diagram of another catalyst structure of the present invention.

【図3】本発明の触媒構造体における触媒化層を形成さ
せたときの触媒化層の銅の組成とメタノール分解能の関
係を示すグラフ。
FIG. 3 is a graph showing the relationship between the composition of copper in the catalyzed layer and the methanol decomposing ability when the catalyzed layer is formed in the catalyst structure of the present invention.

【図4】本発明の熱交換型触媒反応器の構成図。FIG. 4 is a configuration diagram of a heat exchange type catalytic reactor of the present invention.

【符号の説明】[Explanation of symbols]

1…銅−亜鉛−アルミニウム焼結合金管、2…触媒化
層、3…銅管、4…銅−亜鉛−アルミニウム焼結合金
管、5…触媒化層、6…熱交換型触媒反応器、7…反応
ガス入口管、8…反応ガス、9…触媒構造体、10…反
応ガス出口管、11…熱媒体、12…熱媒体入口管、1
3…熱媒体出口管。
DESCRIPTION OF SYMBOLS 1 ... Copper-zinc-aluminum sintered alloy tube, 2 ... Catalytic layer, 3 ... Copper tube, 4 ... Copper-zinc-aluminum sintered alloy tube, 5 ... Catalytic layer, 6 ... Heat exchange type catalytic reactor, 7 ... Reaction gas inlet pipe, 8 ... Reaction gas, 9 ... Catalyst structure, 10 ... Reaction gas outlet pipe, 11 ... Heat medium, 12 ... Heat medium inlet pipe, 1
3 ... Heat medium outlet pipe.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 円筒状の銅−亜鉛−アルミニウム焼結合
金管の内面をアルカリ処理して、その表面に触媒化層を
形成したことを特徴とする触媒構造体。
1. A catalyst structure characterized in that an inner surface of a cylindrical copper-zinc-aluminum sintered alloy tube is treated with an alkali to form a catalyzed layer on the surface.
【請求項2】 同心円状に一体化された銅管と銅−亜鉛
−アルミニウム焼結合金管の内面をアルカリ処理して、
その表面に触媒化層を形成したことを特徴とする触媒構
造体。
2. An inner surface of a copper tube and a copper-zinc-aluminum sintered alloy tube, which are concentrically integrated, are alkali-treated,
A catalyst structure having a catalyzed layer formed on the surface thereof.
【請求項3】 請求項1または請求項2の触媒構造体に
おいて、銅−亜鉛−アルミニウムの焼結合金管の組成が
90%〜98%銅が占めるまでアルカリ処理したことを
特徴とする触媒構造体。
3. The catalyst structure according to claim 1 or 2, wherein the sintered alloy tube of copper-zinc-aluminum is treated with an alkali until the composition thereof is 90% to 98% copper. .
【請求項4】 請求項1乃至請求項3記載の触媒構造物
を、触媒反応器本体内に設置すると共に、前記触媒反応
器本体に反応ガス入口管と出口管並びに熱媒体入口管と
出口管を設けたことを特徴とする熱交換型触媒反応器。
4. The catalyst structure according to any one of claims 1 to 3 is installed in a catalytic reactor main body, and a reaction gas inlet pipe and an outlet pipe and a heat medium inlet pipe and an outlet pipe are provided in the catalytic reactor main body. A heat exchange type catalytic reactor characterized by being provided with.
JP7239418A 1995-09-19 1995-09-19 Catalytic structure and heat exchange type catalytic reactor Pending JPH0975731A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7239418A JPH0975731A (en) 1995-09-19 1995-09-19 Catalytic structure and heat exchange type catalytic reactor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7239418A JPH0975731A (en) 1995-09-19 1995-09-19 Catalytic structure and heat exchange type catalytic reactor

Publications (1)

Publication Number Publication Date
JPH0975731A true JPH0975731A (en) 1997-03-25

Family

ID=17044484

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7239418A Pending JPH0975731A (en) 1995-09-19 1995-09-19 Catalytic structure and heat exchange type catalytic reactor

Country Status (1)

Country Link
JP (1) JPH0975731A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004167483A (en) * 2002-11-15 2004-06-17 Haldor Topsoe As High temperature fixed bed reactor
JP2005247684A (en) * 2004-03-01 2005-09-15 Haldor Topsoe As Method for cooling exothermic reaction zone and reactor unit
JP2012157825A (en) * 2011-02-01 2012-08-23 Tohoku Univ Co shift catalyst
JP2013173101A (en) * 2012-02-24 2013-09-05 Mitsubishi Heavy Ind Ltd Chemical reactor
CN107774303A (en) * 2016-08-30 2018-03-09 中国石油化工股份有限公司 Porous metals/molecular sieve composite catalyst, its preparation method and the purposes in preparing low-carbon olefin

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004167483A (en) * 2002-11-15 2004-06-17 Haldor Topsoe As High temperature fixed bed reactor
JP2005247684A (en) * 2004-03-01 2005-09-15 Haldor Topsoe As Method for cooling exothermic reaction zone and reactor unit
JP2012157825A (en) * 2011-02-01 2012-08-23 Tohoku Univ Co shift catalyst
JP2013173101A (en) * 2012-02-24 2013-09-05 Mitsubishi Heavy Ind Ltd Chemical reactor
CN107774303A (en) * 2016-08-30 2018-03-09 中国石油化工股份有限公司 Porous metals/molecular sieve composite catalyst, its preparation method and the purposes in preparing low-carbon olefin
CN107774303B (en) * 2016-08-30 2020-02-28 中国石油化工股份有限公司 Porous metal/molecular sieve composite catalyst, preparation method thereof and application thereof in preparation of low-carbon olefin from synthesis gas

Similar Documents

Publication Publication Date Title
KR100929886B1 (en) Compact Fuel Processor for High Hydrogen Gas Production
US5904913A (en) Process for obtaining a high-hydrogen, low-carbon-monoxide gas
AU2006264046B2 (en) Compact reforming reactor
JP4959105B2 (en) Syngas production method and apparatus
US6277339B1 (en) Reforming reactor with catalytic burner unit
WO2002047464A2 (en) Nested compact fuel processor for producing hydrogen rich gas
MXPA05004061A (en) Use of metal supported copper catalysts for reforming alcohols.
WO2000048261A1 (en) Carbon monoxide converting apparatus for fuel cell and generating system of fuel cell
MXPA04008857A (en) Steam-reforming catalytic structures.
JPS63162503A (en) Gas producer
JPS61285675A (en) Fuel battery integragted with steam modifier
US20110064631A1 (en) Hydrogen generator and the application of the same
JP2007531626A (en) Actively cooled exothermic reactor
JPH0975731A (en) Catalytic structure and heat exchange type catalytic reactor
JP2001172003A (en) Reforming apparatus
JP2002003204A (en) Fuel reformer
JPS6124372B2 (en)
JP3364069B2 (en) Solid oxide fuel cell module
TW201228931A (en) Hydrogen producing device and prodcuing method of hydrogen
JPS63201001A (en) Fuel reforming apparatus
JP2572251B2 (en) Fuel reformer
JP4189732B2 (en) Internal heat steam reformer
JPH0794321B2 (en) Methanol reforming method using exhaust heat and exhaust heat recovery type methanol reformer
JPH084104Y2 (en) Exothermic reactor that doubles as a heat exchanger
KR100498159B1 (en) Methanol autothermal reformer for hydrogen production

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040330

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050315

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20050705