JPH0975430A - Method for removing contaminant - Google Patents

Method for removing contaminant

Info

Publication number
JPH0975430A
JPH0975430A JP7274640A JP27464095A JPH0975430A JP H0975430 A JPH0975430 A JP H0975430A JP 7274640 A JP7274640 A JP 7274640A JP 27464095 A JP27464095 A JP 27464095A JP H0975430 A JPH0975430 A JP H0975430A
Authority
JP
Japan
Prior art keywords
lipopolysaccharide
contaminated
insoluble carrier
carrier according
microorganisms
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7274640A
Other languages
Japanese (ja)
Inventor
Masashi Funayama
政志 船山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP7274640A priority Critical patent/JPH0975430A/en
Publication of JPH0975430A publication Critical patent/JPH0975430A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To simplify removal of microorganisms, etc., which have contaminated a cell culture medium and physiologically activating substance by forming an unsoluble carrier while an antibiotic is used as a constituent. SOLUTION: An unsoluble carrier is formed from a film, fibers, etc., in the form of Petri dish or the like, for example from polytetrafluoroethylene. As constituent of the carrier, an antibiotic is used consisting of penicillin, cephem monobactum or tetracyclin antibiotic. Binding of the antibiotic with the carrier is made by the carrier binding method, bridging method, comprehensive method, graft method, etc., the first named method being used usually. It may also be accepted that the unsoluble carrier is formed from magnetic particles.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、第一に、抗菌剤を構成
成分とすることを特徴とする不溶性担体を用いて、細胞
(主として浮遊性細胞および半吸着性細胞)懸濁液およ
び、生理活性物質溶液を汚染した微生物(ウイルスおよ
びマイコプラズマを含む)リポ多糖、および核酸を吸着
除去する方法に関する。更に、抗菌剤を構成成分とする
ことを特徴とする不溶性担体を用いて、細胞懸濁液およ
び生理活性物質溶液中の微生物、リポ多糖および核酸を
検出定量する方法に関する。第二に、抗菌剤を構成成分
とすることを特徴とする磁性粒子を用いて、細胞懸濁液
および生理活性物質溶液中の微生物、リポ多糖および核
酸を吸着除去する方法に関する。更に、抗菌剤を構成成
分とすることを特徴とする磁性粒子を用いて、細胞懸濁
液および生理活性物質溶液中の微生物、リポ多糖および
核酸を検出定量する方法に関する。
The present invention relates to a cell (mainly suspension cell and semi-adsorptive cell) suspension using an insoluble carrier characterized by containing an antibacterial agent as a constituent. The present invention relates to a method for adsorbing and removing a microorganism (including virus and mycoplasma) lipopolysaccharide contaminated with a physiologically active substance solution, and a nucleic acid. Further, the present invention relates to a method for detecting and quantifying microorganisms, lipopolysaccharides and nucleic acids in cell suspensions and physiologically active substance solutions, using an insoluble carrier characterized by containing an antibacterial agent as a constituent. Secondly, it relates to a method for adsorbing and removing microorganisms, lipopolysaccharides and nucleic acids in a cell suspension and a physiologically active substance solution using magnetic particles characterized by containing an antibacterial agent as a constituent. Further, the present invention relates to a method for detecting and quantifying microorganisms, lipopolysaccharides and nucleic acids in cell suspensions and physiologically active substance solutions, using magnetic particles characterized by containing an antibacterial agent as a constituent.

【0002】[0002]

【従来の技術】細胞培養培地が微生物により汚染された
場合には、(1)細胞培養培地を汚染している微生物を
同定する。(2)汚染された細胞培養培地を他の細胞培
養培地から隔離する。(3)インキュベーターおよびl
aminar flow hoodを除菌剤で掃除し、
HEPAフィルターを点検する。(4)抗菌剤(抗生物
質および抗真菌剤)により培養細胞が死滅することを防
止する為に、doserisponseテストを行な
う。という手順を踏んで汚染微生物を除去する。
2. Description of the Related Art When a cell culture medium is contaminated with microorganisms, (1) the microorganisms contaminating the cell culture medium are identified. (2) Isolate contaminated cell culture media from other cell culture media. (3) Incubator and l
Clean the aminal flow hood with disinfectant,
Check the HEPA filter. (4) In order to prevent the cultured cells from being killed by the antibacterial agents (antibiotics and antifungal agents), a doserisponse test is performed. Contamination microorganisms are removed by following the procedure.

【0003】次に、抗菌剤(抗生物質および抗真菌剤)
の毒性濃度を決定し、細胞培養培地の微生物汚染を除去
する為には、(1)細胞を抗菌剤無添加の培地に分散さ
せ、細胞数を数えて細胞継代用の濃度に希釈する。
(2)細胞懸濁液をmultiwell cultur
e plateまたは、小さいフラスコに分注する。F
ungizone,tylocine等の抗菌剤を一定
濃度multi well culture plat
eの各wellまたは、各フラスコに分注する。例えば
Fungizone の場合は、0.25、0.50、
1.0、2.0,4.0、8.0ug/mlの濃度が選
択される。(3)multi wellculture
plate またはフラスコ中の細胞を培養中、毎日
観察し、細胞内容物の抜けたもの、細胞の液胞が現われ
たもの、細胞のconfluencyの低下したもの、
細胞が丸くなったもの等毒性の兆候を観察する。(4)
有害抗菌剤濃度を決定し、当該濃度の1〜1/2の濃度
の抗菌剤を添加した培地で、汚染細胞を2〜3代、継代
培養する。(5)抗菌剤無添加培地で、(4)の操作を
行なった細胞を1代培養する。 (6)(4)の培地
で、(5)の操作を行なった細胞を4〜6代、継代培養
し、汚染の除去を確認する。という手順を踏まなければ
ならない。即ち、従来法は汚染の除去の為の操作手順が
極めて煩雑であるという欠点があった。
Next, antibacterial agents (antibiotics and antifungal agents)
In order to determine the toxic concentration of Escherichia coli and remove microbial contamination of the cell culture medium, (1) cells are dispersed in a medium containing no antibacterial agent, and the number of cells is counted and diluted to a concentration for cell passage.
(2) The cell suspension was added to the multiwell culture.
Dispense into plate or small flask. F
Anti-bacterial agents such as unzone, tyrocine, etc. at a constant concentration of multi well culture plate
Dispense in each well of e or each flask. For example, in the case of Fungizone, 0.25, 0.50,
Concentrations of 1.0, 2.0, 4.0, 8.0 ug / ml are selected. (3) multi wellculture
The cells in the plate or flask were observed every day during the culture, and the cell contents were lost, the vacuoles of the cells appeared, the confluency of the cells was reduced,
Observe signs of toxicity such as rounded cells. (4)
The harmful antibacterial agent concentration is determined, and the contaminated cells are subcultured for 2 to 3 passages in a medium containing an antibacterial agent at a concentration of 1 to 1/2 of the concentration. (5) The cells subjected to the operation of (4) are subjected to primary culture in an antimicrobial-free medium. (6) The cells subjected to the operation of (5) are subcultured for 4 to 6 passages in the medium of (4) to confirm the removal of contamination. I have to take the steps. That is, the conventional method has a drawback that the operation procedure for removing the contamination is extremely complicated.

【0004】リポ多糖(Lipopolysachar
ide:LPS)は、グラム陰性菌細胞壁の外膜を構成
し、生体内に侵入すると発熱やショック症状を惹起する
有害物質である。注射剤等の医薬品や人工腎臓等の医療
用具には、リポ多糖が混入することは許されない。医薬
品等からリポ多糖を除去する為に、イオンクロマトグラ
ソィー、ゲルクロマトグラソィー、アフィニティークロ
マトダラフィー等の方法が提案されている。然し乍ら、
これらの方法には、平衡吸着量が小さい、pH、イオン
強度、再生条件等の条件設定が難しく、実用的な方法で
はない。
Lipopolysaccharide
ide: LPS) is a toxic substance that constitutes the outer membrane of the cell wall of Gram-negative bacteria and causes fever and shock symptoms when entering the living body. It is not allowed to mix lipopolysaccharide into medical products such as injectables and medical devices such as artificial kidneys. In order to remove lipopolysaccharide from pharmaceuticals and the like, methods such as ion chromatography, gel chromatography and affinity chromatography have been proposed. However,
These methods are not practical methods because the equilibrium adsorption amount is small and it is difficult to set conditions such as pH, ionic strength, and regeneration conditions.

【0005】遺伝子工学による生理活性物質の生産で
は、大腸菌、枯草菌、培養動物細胞等に遺伝子を組み込
み、当該菌または、当該細胞に生理活性物質を産生させ
る。この際問題となるのは、産生した生理活性物質と遺
伝子(核酸)および大腸菌等のグラム陰性菌によって産
生されるエンドトキシンとの分離の問題である。
In the production of physiologically active substances by genetic engineering, genes are incorporated into Escherichia coli, Bacillus subtilis, cultured animal cells and the like to cause the bacteria or cells to produce physiologically active substances. In this case, a problem is the separation of the produced physiologically active substance from the gene (nucleic acid) and endotoxin produced by Gram-negative bacteria such as Escherichia coli.

【0006】[0006]

【発明が解決しようとする問題点】本発明の目的は、上
記実情に鑑みてなされたもので、細胞培養培地および生
理活性物質溶液を汚染した、微生物、リポ多糖および核
酸の除去手順が極めて単純な担体を提供することにあ
る。また、当該担体を用いた、リポ多糖、微生物および
核酸の検出定量方法を提供することにある。更にまた、
本発明に関わる抗菌剤を構成成分とすることを特徴とす
る磁性粒子を用いた、リポ多糖、微生物および核酸の除
去方法、検出定量方法を提供することにある。
The object of the present invention has been made in view of the above circumstances, and the procedure for removing microorganisms, lipopolysaccharides and nucleic acids contaminated with a cell culture medium and a physiologically active substance solution is extremely simple. Another object is to provide a suitable carrier. Another object of the present invention is to provide a method for detecting and quantifying lipopolysaccharide, a microorganism and a nucleic acid using the carrier. Furthermore,
It is an object of the present invention to provide a method for removing lipopolysaccharide, a microorganism and a nucleic acid, and a method for detecting and quantifying a lipopolysaccharide, which uses magnetic particles characterized by containing an antibacterial agent according to the present invention as a constituent component.

【0007】[0007]

【課題を解決するための手段】上記目的を達成する為、
本発明の発明者は鋭意検討した結果、 (1)抗菌剤を構成成分とすることを特徴とする不溶性
担体が、細胞懸濁液および、生理活性物質溶液を汚染し
た微生物を容易に除去すること。 (2)抗菌剤を構成成分とすることを特徴とする不溶性
担体が、細胞懸濁液および、生理活性物質溶液を汚染し
たリポ多糖を容易に除去すること。 (3)抗菌剤を構成成分とすることを特徴とする不溶性
担体が、細胞懸濁液および、生理活性物質溶液を汚染し
た核酸を容易に除去すること。 を見出し、本発明を完成した。本発明に関わる担体は、
吸着容量が大きく、pH、イオン強度、再生条件等の条
件設定が容易であり、微生物、リポ多糖、核酸を容易に
吸着することが可能である。更に、当該担体を用いるこ
とにより、前記物質の定量が可能となる。更にまた、当
該担体は、本発明に関わる溶媒により洗浄することによ
り、容易に再生が可能である。
[Means for Solving the Problems] To achieve the above object,
As a result of diligent studies, the inventor of the present invention has found that (1) an insoluble carrier characterized by containing an antibacterial agent as a constituent easily removes microorganisms contaminated with a cell suspension and a physiologically active substance solution. . (2) An insoluble carrier characterized by containing an antibacterial agent as a constituent component easily removes lipopolysaccharide contaminated with a cell suspension and a physiologically active substance solution. (3) An insoluble carrier characterized by containing an antibacterial agent as a constituent component easily removes nucleic acid contaminated with a cell suspension and a physiologically active substance solution. And completed the present invention. The carrier relating to the present invention is
It has a large adsorption capacity and can easily set conditions such as pH, ionic strength, and regeneration conditions, and can easily adsorb microorganisms, lipopolysaccharides, and nucleic acids. Furthermore, by using the carrier, the substance can be quantified. Furthermore, the carrier can be easily regenerated by washing with the solvent according to the present invention.

【0008】本発明の不溶性担体は、本発明に関わる抗
菌剤を結合または配合できる担体を意味する。該不溶性
担体の形状は、膜、繊維、中空糸、粒状物等が考えられ
る。本発明の不溶性担体の具体例を挙げると、(1)ポ
リテトラフルオロエチレン、(2)ポリエチレン、
(3)ポリイソプレン、(4)ポリブタジエン、(5)
ポリスチレン、(6)ポリアクリル酸メチル、(7)ポ
リ塩化ビニル、(8)セルロース系樹脂(再生セルロー
ス、アセチルセルロース、ニトロセルロース等)、
(9)ポリエチレンテレフタレート、(10)ポリアク
リルニトリルル、(11)ポリビニルアルコール、(1
2)アミノプロピルガラスビーズ等が挙げられるが、こ
れらに限定されるものではない。具体的な製品名として
は、シャーレ、フィルム、試験管、管、注射筒、カテー
テル、フラスコ、ゲル等が考えられる。
The insoluble carrier of the present invention means a carrier to which the antibacterial agent of the present invention can be bound or blended. The shape of the insoluble carrier may be a membrane, a fiber, a hollow fiber, a granular material or the like. Specific examples of the insoluble carrier of the present invention include (1) polytetrafluoroethylene, (2) polyethylene,
(3) polyisoprene, (4) polybutadiene, (5)
Polystyrene, (6) polymethyl acrylate, (7) polyvinyl chloride, (8) cellulose resin (regenerated cellulose, acetyl cellulose, nitrocellulose, etc.),
(9) Polyethylene terephthalate, (10) Polyacrylonitrile, (11) Polyvinyl alcohol, (1
2) Aminopropyl glass beads and the like can be mentioned, but the present invention is not limited thereto. Specific product names include petri dishes, films, test tubes, tubes, syringes, catheters, flasks, gels and the like.

【0009】本発明に関わる抗菌剤と担体との結合方式
には担体結合法、架橋法、包括法、グラフト法等が考え
られるが、通常、担体結合法を用いる。担体と抗菌剤と
は、直接結合してもスペーサーを介して結合してもよい
が、本発明にかかわる担体への細胞および生理活性物質
の非特異吸着、補体の活性化等を防止する為、スペーサ
ーとして、予め親水性基を導入することが望ましい。担
体と抗菌剤との結合方法は、共有結合、イオン結合、疎
水結合、配位結合等が考えられるが、抗菌剤の剥離の可
能性の低い共有結合が望ましい。共有結合の例としてア
ミド結合、エステル結合、エーテル結合、アミノ結合、
イミノ結合、スルフィド結合、ジスルフィド結合等が挙
げられる。担体に抗菌剤またはスペーサーを結合させる
方法として望ましいのは、ハロゲン化シアン、エポキシ
化合物、ハロゲノ有機ハロイド、ジアルデヒド、ベンゾ
キノン等により担体を活性化した後、抗菌剤または、ス
ペーサーを結合させる。スペーサーを介したリガンドの
結合方法には、エポキシ化法、還元アミノ化法、チオー
ル活性化法等が考えられる。また、担体に抗菌剤を練り
込む、練り込み法も本法に含まれる。更にまた、担体表
面に抗菌剤を塗布する方法も本法に含まれる。
The binding method of the antibacterial agent and the carrier according to the present invention may be a carrier binding method, a cross-linking method, an encapsulation method, a graft method or the like, but the carrier binding method is usually used. The carrier and the antibacterial agent may be directly bonded or may be bonded via a spacer, in order to prevent nonspecific adsorption of cells and physiologically active substances to the carrier according to the present invention, activation of complement, etc. As a spacer, it is desirable to introduce a hydrophilic group in advance. As a method of binding the carrier and the antibacterial agent, covalent bond, ionic bond, hydrophobic bond, coordinate bond and the like can be considered, but covalent bond which is less likely to peel off the antibacterial agent is desirable. Examples of covalent bond include amide bond, ester bond, ether bond, amino bond,
Examples thereof include imino bond, sulfide bond and disulfide bond. A desirable method for binding the antibacterial agent or the spacer to the carrier is to activate the carrier with a cyanogen halide, an epoxy compound, a halogeno organic halide, dialdehyde, benzoquinone, etc., and then bond the antibacterial agent or the spacer. Epoxidation method, reductive amination method, thiol activation method and the like can be considered as the method of binding the ligand via the spacer. Further, a kneading method in which an antibacterial agent is kneaded into a carrier is also included in this method. Furthermore, a method of applying an antibacterial agent to the surface of the carrier is also included in this method.

【0010】[0010]

【発明の効果】【The invention's effect】

(1)本発明にかかわる抗菌剤を構成成分とすることを
特徴とする不溶性担体により、細胞懸濁液および、生理
活性物質溶液を汚染した微生物、リポ多糖および核酸を
効率良く吸着除去することが可能となる。 (2)本発明にかかわる抗菌剤を構成成分とすることを
特徴とする不溶性担体を用いて、細胞懸濁液および、生
理活性物質溶液を汚染した微生物、リボ多糖および核酸
の検出および定量を行なうことが可能となる。 (3)本発明にかかわる抗菌剤を構成成分とすることを
特徴とする磁性粒子により、細胞懸濁液および、生理活
性物質溶液を汚染した微生物、リポ多糖、核酸を効率良
く吸着除去することが可能となる。 (4)本発明にかかわる抗菌剤を構成成分とすることを
特徴とする磁性粒子を用いて、細胞懸濁液および、生理
活性物質溶液を汚染した微生物、リポ多糖、核酸の検出
および定量を行なうことが可能となる。
(1) An insoluble carrier characterized by comprising an antibacterial agent according to the present invention as a constituent component can efficiently adsorb and remove microorganisms, lipopolysaccharides and nucleic acids contaminated with cell suspensions and physiologically active substance solutions. It will be possible. (2) Detection and quantification of microorganisms, ribopolysaccharides and nucleic acids contaminated with cell suspensions and physiologically active substance solutions, using an insoluble carrier characterized by comprising an antibacterial agent according to the present invention as a constituent. It becomes possible. (3) The magnetic particles, which are characterized in that the antibacterial agent according to the present invention is a constituent component, can efficiently adsorb and remove microorganisms, lipopolysaccharides, and nucleic acids that contaminate cell suspensions and physiologically active substance solutions. It will be possible. (4) Detection and quantification of microorganisms, lipopolysaccharides, and nucleic acids contaminated with cell suspensions and physiologically active substance solutions, using magnetic particles characterized by containing an antibacterial agent according to the present invention as a constituent component It becomes possible.

【0011】[0011]

【実施例】本発明を実施例により更に詳細に説明する。
本発明は実施例により、何ら限定されるものではない。 《実施例1.》 −ポリミキシンB固定化ガラス膜の調製− 1)コーニング社製多孔質ガラス膜(NaO−B
−SiO系ガラス膜)をγ−グリシドキシプロピル
トリメトキシシランの0.5%水溶液に浸漬し、2時間
攪拌し、多孔質ガラス表面のシラノール基と、γ−グリ
シドキシプロピルトリメトキシシランとを反応させた。 2)1)の操作をした多孔質ガラス膜の水分を除去し、
120℃で3時間乾燥させた。 3)30℃のpH9.5の炭酸緩衝液に2%の割合でポ
リミキシンBを溶解した溶液に2)の操作をし、室温に
戻した多孔質ガラス膜を浸漬し、静かに震盪し、4℃で
24時間反応させた。 4)3)の操作をした多孔質ガラス膜を精製水に浸漬
し、静かに震盪、洗浄した。 5)4)の操作をした多孔質ガラス膜を20%エタノー
ル溶液に溶解した0.2MNaOH溶液に浸漬し、静か
に震盪、洗浄した。 6)5)の操作をした多孔質ガラス膜をパイロジェンフ
リーの精製水に浸漬し、精製水を交換しながら、洗浄液
のpHが7.0になるまで、静かに震盪、洗浄した。 7)6)の操作をした多孔質ガラス膜を乾燥後、無菌、
パイロジェンフリーのプラスチック袋に入れ、保存し
た。
The present invention will be described in more detail with reference to examples.
The present invention is not limited to the embodiments. << Embodiment 1. -Preparation of polymyxin B-immobilized glass membrane-1) Poring glass membrane (Na 2 O-B 2 O manufactured by Corning Incorporated)
(3- SiO 2 type glass film) is immersed in a 0.5% aqueous solution of γ-glycidoxypropyltrimethoxysilane and stirred for 2 hours to obtain silanol groups on the surface of the porous glass and γ-glycidoxypropyltrimethoxysilane. Reacted with silane. 2) Remove the water content of the porous glass membrane subjected to the operation of 1),
It was dried at 120 ° C. for 3 hours. 3) Perform the operation of 2) in a solution prepared by dissolving polymyxin B at a ratio of 2% in a carbonate buffer of pH 9.5 at 30 ° C., immerse the porous glass membrane returned to room temperature, gently shake, and The reaction was carried out at ℃ for 24 hours. 4) The porous glass membrane subjected to the operation of 3) was immersed in purified water, gently shaken and washed. 5) The porous glass membrane subjected to the operation of 4) was immersed in a 0.2 M NaOH solution dissolved in a 20% ethanol solution, gently shaken and washed. 6) The porous glass membrane subjected to the operation of 5) was immersed in pyrogen-free purified water, and while the purified water was being exchanged, it was gently shaken and washed until the pH of the washing solution reached 7.0. 7) After drying the porous glass membrane subjected to the operation of 6), aseptic,
Stored in a pyrogen-free plastic bag.

【0012】《実施例2.》 −ポリミキシンB固定化多孔質ガラス膜による緑膿菌の
除去− RPMI−1640を主成分とする10%牛血清添加培
地に、ナマルバ細胞を1.2x10cells/ml
の濃度で懸濁し、その20mlを、エチレンオキサイド
ガス滅菌した容量30mlのシャーレに分取した。次
に、当該シャーレに、緑膿菌を含有するRPMI−16
40を主成分とする10%牛血清添加培地(P.aer
uginosa5.0×10/ml含有)2mlを添
加した。新規に用意した容量30mlのシャーレに、実
施例1で調製したポリミキシンB固定化多孔質ガラス膜
を入れた。続いて、前記の緑膿菌およよナマルバ細胞を
含有するRPMI−1640を主成分とする10%牛血
清添加培地全量を添加し、炭酸ガス培養器で37℃で6
時間培養した。当該シャーレを静かに震盪した後、その
上清を更に、新規に用意した、実施例1で調製したポリ
ミキシンB固定化多孔質ガラス膜を入れた容量30ml
のシャーレに分取し、37℃で6時間培養した。6時間
後に、その上清を容量50mlの細胞培養フラスコに分
取し、光学顕微鏡で鏡検した。その結果、当該細胞培養
液中には、緑膿菌は観察されなかった。また、ナマルパ
細胞は1.0×10cells/ml生存していた。
Example 2 -Removal of Pseudomonas aeruginosa by polymyxin B-immobilized porous glass membrane-Namalva cells were added to a medium containing 10% bovine serum containing RPMI-1640 as a main component at 1.2 × 10 4 cells / ml.
20 ml was suspended in a petri dish having a volume of 30 ml and sterilized with ethylene oxide gas. Next, RPMI-16 containing Pseudomonas aeruginosa was added to the petri dish.
10% bovine serum-supplemented medium ( P. aer
uginosa 5.0 × 10 2 / ml) (2 ml) was added. The polymyxin B-immobilized porous glass membrane prepared in Example 1 was placed in a newly prepared petri dish having a capacity of 30 ml. Then, the whole amount of 10% bovine serum-containing medium containing RPMI-1640 containing Pseudomonas aeruginosa and Namalwa cells as a main component was added, and the mixture was added at 37 ° C. in a carbon dioxide incubator at 6 ° C.
Cultured for hours. After gently shaking the petri dish, the supernatant was further added with a newly prepared polymyxin B-immobilized porous glass membrane prepared in Example 1 and having a volume of 30 ml.
Was collected into a petri dish of and cultured at 37 ° C. for 6 hours. After 6 hours, the supernatant was collected in a cell culture flask having a volume of 50 ml and examined under a light microscope. As a result, Pseudomonas aeruginosa was not observed in the cell culture medium. In addition, the Namalpa cells were alive at 1.0 × 10 4 cells / ml.

【0013】《実施例3.》 −ポリミキシンB固定化多孔質ガラス膜による各種微生
物の除去− 実施例2の緑膿菌に代えて、黄色ブドウ球菌、大腸菌、
バシラス菌、クレブシエラ属細菌、エンテロバクター属
細菌、サルモネラ菌、シトロバクター属細菌、変形菌、
エンテロバクター属細菌、ウイルス、マイコプラズマの
何れか1種類を用いて、同様の操作を行なった(添加し
た微生物の量は何れも10cells)。その結果、
実施例2と同様に、最終細胞培養液中には、何れの菌も
観察されなかった。
Example 3 -Removal of various microorganisms by polymyxin B-immobilized porous glass membrane-In place of Pseudomonas aeruginosa of Example 2, Staphylococcus aureus, Escherichia coli,
Bacillus, Klebsiella, Enterobacter, Salmonella, Citrobacter, morphobacterium,
The same operation was performed using any one of Enterobacter bacteria, virus and mycoplasma (the amount of the added microorganism was 10 3 cells in each case). as a result,
As in Example 2, no bacterium was observed in the final cell culture medium.

【0014】《実施例4.》 −ポリミキシンB固定化多孔質ガラス膜による緑膿菌由
来LPSの除去− RPMI−1640を主成分とする10%牛血清添加培
地に、ナマルバ細胞を1.2x10cells/ml
の濃度で懸濁し、その20mlを、エチレンオキサイド
ガス滅菌した容量30mlのシャーレに分取した。次
に、当該シャーレに、緑膿菌を含有するRPMI−16
40を主成分とする10%牛血清添加培地(Paeru
ginosa5.0×10/ml含有)2mlを添加
した。新規に用意した容量30mlのシャーレに、実施
例1で調製したポリミキシンB固定化多孔質ガラス膜を
入れた。続いて、前記の緑膿菌およびナマルバ細胞を含
有するRPMI−1640を主成分とする10%牛血清
添加培地全量を添加し、炭酸ガス培養器で37℃で6時
間培養した。当該シャーレを静かに震盪した後、その上
清を更に、新規に用意した、実施例1で調製したポリミ
キシンB固定化多孔質ガラス膜を入れた容量30mlの
シャールに分取し、37℃で6時間培養した。6時間後
に、その上清を容量15mlのエチレンオキサイドガス
滅菌したポリスチレン製試験管に分取し、その100μ
lを用いて、生化学工業製エンドトキシン定量試薬パイ
ロディックにより、緑膿菌由来エンドトキシン(LP
S)の定量を行なった。その結果、当該細胞培養液中に
は、緑膿菌由来エンドトキシン(LPS)は検出されな
かった。また、ナマルバ細胞は1.0×10cell
s/ml生存していた。
Example 4 -Removal of LPS derived from Pseudomonas aeruginosa by polymyxin B-immobilized porous glass membrane-1.2 x 10 4 cells / ml of Namalwa cells in 10% bovine serum-containing medium containing RPMI-1640 as a main component
20 ml was suspended in a petri dish having a volume of 30 ml and sterilized with ethylene oxide gas. Next, RPMI-16 containing Pseudomonas aeruginosa was added to the petri dish.
40% 10% bovine serum supplemented medium ( Paeru
2 ml of ginosa ( containing 5.0 × 10 2 / ml) was added. The polymyxin B-immobilized porous glass membrane prepared in Example 1 was placed in a newly prepared petri dish having a capacity of 30 ml. Then, the whole amount of 10% bovine serum-containing medium containing RPMI-1640 containing Pseudomonas aeruginosa and Namalwa cells as the main components was added, and the mixture was cultured in a carbon dioxide incubator at 37 ° C. for 6 hours. After gently shaking the petri dish, the supernatant was further aliquoted into a freshly prepared polymyxin B-immobilized porous glass membrane prepared in Example 1 and having a volume of 30 ml, and the mixture was placed at 37 ° C. for 6 hours. Incubated for hours. After 6 hours, the supernatant was dispensed into a polystyrene test tube sterilized with ethylene oxide gas having a volume of 15 ml, and 100 μm thereof was collected.
Pseudomonas aeruginosa-derived endotoxin (LP
S) was quantified. As a result, Pseudomonas aeruginosa-derived endotoxin (LPS) was not detected in the cell culture medium. Moreover, the Namalwa cell has 1.0 × 10 4 cells.
s / ml was alive.

【0015】《実施例5.》 −メタクリル酸グリシジル−ジビニルベンゼン球状共重
合体にホスホニウム残基を導入した樹脂の合成− 野中らの方法(日本化学会誌、1097〜、1994
年)に従い、メタクリル酸グリシジル−1,4−ジビニ
ルベンゼン球状共重合体に塩化水素を反応させた後、ア
ルキルホスソィンを反応させることにより、(a)トリ
オクチルホスフィン(TOP)を導入したホスホニウム
樹脂、(b)アルキルジメチルホスフィン(炭素数10
〜16)を導入したホスホニウム樹脂、(c)(3−ア
ミノプロピル)ホスフィン(TAPP)を導入したホス
ホニウム樹脂を合成した。即ち、以下の(1)〜(3)
の手順に従い含成した。 (1)グリシジルメタクリラートー1,4−ジビニルベ
ンゼン球状共重合体の合成 1wt/wol%ゼラチン水溶液50ml、無水硫酸ナ
トリウム6g、精製水450mlを耐圧ガラスオートク
レーブに取り、静かに攪拌し、分散浴を調製した。当該
分散浴と、予め調製したグリシジルメタクリラートモノ
マーおよび、1,4−ジビニルベンゼンモノマーおよ
び、酢酸イソブチルの混合液を一時間窒素置換した。続
いて、当該溶液にモノマー溶液に溶解した過酸化ベンゾ
イル0.5gを添加した。引き続いて、当該溶液の温度
を上げずに、280rpmの回転速度で30分攪拌し
た。続いて、一時間をかけ、当該溶液の温度を78℃に
上げ、当該温度で一時間重合させた。更に、1.5時間
をかけ、当該溶液の温度を90℃に上げ、90℃で2時
間熟成を行ない、重合を完了させた。次に当該溶液を放
冷、吸引ろ過し、重合体を大量の精製水に浸漬し、ドラ
フト内で煮沸しゼラチンを溶解した。続いて、吸引ろ過
し、メタノールに浸漬し、希釈剤を除去、乾燥した。続
いて、32〜60メッシユ大きさの球状重合体を篩で分
けた。 (2)2−クロロ−3−ヒドロキシプロピル基を有する
樹脂の合成 耐圧試験管に減圧下で充分に乾燥したグリシジルメタク
リラート−1,4−ジビニルベンゼン球状共重合体1g
と0.4MHCl−1,4−ジオキサン20mlとを取
り、一夜放置し充分に膨潤させた後密栓し、70℃で3
時間油浴中で反応させ、精製水で充分に洗浄した。これ
を充分に乾燥させ、2−クロロ−3−ヒドロキシプロピ
ル基を有する樹脂を得た。 (3)ホスホニウム残基を有する樹脂の合成 耐圧試験管に減圧下で充分に乾燥した、2−クロロ−3
−ヒドロキシプロピル基を有する樹脂1gを入れ、Cl
基に対して4倍量のトリオクチルホスフィン(TOP)
を窒素雰囲気下で添加、密栓し、100℃の油浴中で4
0時間反応させた。続いて、メタノール、精製水で洗浄
し、1M HClに浸漬した後、メチルオレンジが変色
しなくなる迄精製水で充分に洗浄した。更に、ソックス
レー抽出器で15時間抽出した。次に、風乾、減圧下で
充分に乾燥し、トリオクチルホスフィンを有する樹脂
(Cl型樹脂)を合成した。得られたCl型樹脂を1M
NaOHに浸漬し、1M NaOH溶液を5回交換し
た後、洗浄液のpHが中性になる迄精製水で洗浄した。
続いて樹脂を風乾し、更に真空乾燥器中で充分に乾燥
し、トリオクチルホスフィンを有する樹脂(OH型樹
脂)を得た。また、同様の操作を行なうことにより、ア
ルキルジメチルホスフィンを有する樹脂(炭素数10〜
16)、(3−アミノプロピル)ホスフィン(TAP
P)を導入したホスホニウム樹脂(Cl型樹脂およびO
H型樹脂)を合成した。
Example 5 -Synthesis of resin in which phosphonium residue is introduced into glycidyl methacrylate-divinylbenzene spherical copolymer-Method of Nonaka et al. (Journal of Japan Chemical Society, 1097-, 1994)
(A) Trioctylphosphine (TOP) -introduced phosphonium by reacting glycidyl methacrylate-1,4-divinylbenzene spherical copolymer with hydrogen chloride and then reacting with alkylphosphine according to Resin, (b) alkyldimethylphosphine (having 10 carbon atoms
˜16) introduced phosphonium resin, and (c) (3-aminopropyl) phosphine (TAPP) introduced phosphonium resin were synthesized. That is, the following (1) to (3)
It was incorporated according to the procedure of. (1) Synthesis of glycidyl methacrylato 1,4-divinylbenzene spherical copolymer 50 ml of a 1 wt / wol% gelatin aqueous solution, 6 g of anhydrous sodium sulfate, and 450 ml of purified water were placed in a pressure-resistant glass autoclave and gently stirred to form a dispersion bath. Prepared. The dispersion bath, a mixed solution of a glycidyl methacrylate monomer prepared in advance, a 1,4-divinylbenzene monomer and isobutyl acetate were replaced with nitrogen for 1 hour. Subsequently, 0.5 g of benzoyl peroxide dissolved in the monomer solution was added to the solution. Subsequently, the solution was stirred for 30 minutes at a rotation speed of 280 rpm without increasing the temperature. Then, the temperature of the said solution was raised to 78 degreeC over 1 hour, and it superposed | polymerized at the said temperature for 1 hour. Further, the temperature of the solution was raised to 90 ° C. over 1.5 hours, and aging was carried out at 90 ° C. for 2 hours to complete the polymerization. Next, the solution was allowed to cool and suction filtered, the polymer was immersed in a large amount of purified water, and boiled in a draft to dissolve gelatin. Then, it was suction filtered, immersed in methanol to remove the diluent, and dried. Subsequently, a spherical polymer having a size of 32 to 60 mesh was separated by a sieve. (2) Synthesis of Resin Having 2-Chloro-3-hydroxypropyl Group 1 g of glycidyl methacrylate-1,4-divinylbenzene spherical copolymer sufficiently dried under reduced pressure in a pressure test tube.
And 0.4 M HCl-1,4-dioxane (20 ml) were left overnight and allowed to swell sufficiently, then the container was tightly sealed and the mixture was kept at 70 ° C. for 3 times.
The mixture was reacted in an oil bath for an hour and washed thoroughly with purified water. This was dried sufficiently to obtain a resin having a 2-chloro-3-hydroxypropyl group. (3) Synthesis of Resin Having Phosphonium Residue 2-Chloro-3 fully dried under reduced pressure in a pressure-resistant test tube.
-Add 1 g of resin having hydroxypropyl group and add Cl
4 times the amount of trioctylphosphine (TOP)
Was added under a nitrogen atmosphere, the bottle was tightly capped, and the mixture was placed in an oil bath at 100 ° C.
The reaction was allowed for 0 hours. Subsequently, it was washed with methanol and purified water, immersed in 1M HCl, and then sufficiently washed with purified water until the methyl orange did not discolor. Further, it was extracted with a Soxhlet extractor for 15 hours. Next, it was air-dried and sufficiently dried under reduced pressure to synthesize a resin having trioctylphosphine (Cl type resin). The obtained Cl type resin is 1M
After immersing in NaOH and exchanging the 1M NaOH solution 5 times, it was washed with purified water until the pH of the washing solution became neutral.
Subsequently, the resin was air-dried and further sufficiently dried in a vacuum dryer to obtain a resin having trioctylphosphine (OH type resin). Further, by carrying out the same operation, a resin having an alkyldimethylphosphine (having 10 to 10 carbon atoms) is obtained.
16), (3-aminopropyl) phosphine (TAP
P) introduced phosphonium resin (Cl type resin and O
H type resin) was synthesized.

【0016】《実施例6.》 −ホスホニウム樹脂による黄色ブドウ球菌の除去− RITC57−1培地に、Ball−1細胞を1.2×
10cells/mlの濃度で懸濁し、その20ml
を、エチレンオキサイドガス滅菌した容量30mlのシ
ャーレに分取した。次に、当該シャーレに、黄色ブドウ
球菌を含有するRITC57−1培地(S.aureu
:IFO 13276:5.0×10/ml含有)
2mlを添加した。新規に用意した容量150mlの細
胞培養フラスコに、予めエチレンオキサイドガス滅菌し
た、実施例5で調製した(3−アミノプロピル)ホスフ
ィン(TAPP)を導入したホスホニウム型浮遊性樹脂
(OH型樹脂)2gを入れた。続いて、前記の黄色ブド
ウ球菌およびBall−1細胞を含有するRITC57
−1培地全量を添加し、静かに震盪しながら、炭酸ガス
培養器で37℃で6時間培養した。6時間後に、その上
清を容量150mlの細胞培養フラスコに分取し、光学
顕微鏡で鏡検した。その結果、当該細胞培養液中には、
黄色ブドウ球菌は観察されなかった。また、Ball−
1細胞は1.1×10cells/ml生存してい
た。
Example 6. >>-Removal of Staphylococcus aureus by phosphonium resin-Ball-1 cells were added to RITC57-1 medium by 1.2x.
Suspended at a concentration of 10 4 cells / ml, 20 ml thereof
Was collected in a petri dish with a capacity of 30 ml sterilized with ethylene oxide gas. Next, RITC57-1 medium ( S. aureu) containing Staphylococcus aureus was added to the petri dish.
s : IFO 13276: 5.0 × 10 2 / ml included)
2 ml was added. 2 g of a phosphonium-type floating resin (OH-type resin) introduced with (3-aminopropyl) phosphine (TAPP) prepared in Example 5, which had been sterilized with ethylene oxide gas in advance, was placed in a newly prepared cell culture flask with a capacity of 150 ml. I put it in. Subsequently, RITC57 containing S. aureus and Ball-1 cells as described above.
-1 The total amount of the medium was added, and the mixture was cultured in a carbon dioxide incubator at 37 ° C for 6 hours while gently shaking. After 6 hours, the supernatant was collected in a cell culture flask having a volume of 150 ml and examined under a light microscope. As a result, in the cell culture medium,
No Staphylococcus aureus was observed. In addition, Ball-
One cell was alive at 1.1 × 10 4 cells / ml.

【0017】《実施例7.》 −ホスホニウム樹脂による各種微生物の除去− 実施例6の緑膿菌に代えて、黄色ブドウ球菌、大腸菌、
バシラス菌、クレブシエラ属細菌、エンテロバクター属
細菌、サルモネラ菌、シトロバクター属細菌、変形菌、
エンテロバクター属細菌、ウイルス、マイコプラズマの
何れか1種類を用いて、同様の操作を行なった(添加し
た微生物の量は何れも10cells)。その結果、
実施例6と同様に、最終細胞培養液中には、何れの菌も
観察されなかった。
Example 7. -Removal of various microorganisms by phosphonium resin-In place of Pseudomonas aeruginosa of Example 6, Staphylococcus aureus, Escherichia coli,
Bacillus, Klebsiella, Enterobacter, Salmonella, Citrobacter, morphobacterium,
The same operation was performed using any one of Enterobacter bacteria, virus and mycoplasma (the amount of the added microorganism was 10 3 cells in each case). as a result,
As in Example 6, no bacterium was observed in the final cell culture medium.

【0018】《実施例8.》 −ホスホニウム樹脂による緑膿菌由来LPSの除去− RITC57−1培地に、Ball−1細胞を1.2×
10cells/mlの濃度で懸濁し、その20ml
を、エチレンオキサイドガス滅菌した容量30mlのシ
ャーレに分取した。次に、当該シャーレに、緑膿菌を含
有するRITC57−1培地(P.aeruginos
5.0×10/ml含有)2mlを添加した。新規
に用意した容量150mlの細胞培養フラスコに、予め
エチレンオキサイドガス滅菌した、実施例5で調製した
(3−アミノプロピル)ホスフィン(TAPP)を導入
したホスホニウム浮遊性樹脂(OH型樹脂)2gを入れ
た。続いて、前記の緑膿菌およびBall−1細胞を含
有するRITC57−1培地全量を添加し、静かに震盪
しながら、炭酸ガス培養器で37℃で6時間培養した。
6時間後に,その上清を容量15mlのエチレンオキサ
イドガス滅菌したポリスチレン製試験管に分取し、その
100μlを用いて、生化学工業製エンドトキシン定量
試薬パイロディックにより、緑膿菌由来のエンドトキシ
ン(LPS)の定量を行なった。その結果、当該細胞培
養液中には、緑膿菌由来のヱソドトキシン(LPS)は
検出されなかった。また、Ball−1細胞は1.0×
10cells/ml生存していた。
Example 8. >>-Removal of Pseudomonas aeruginosa-derived LPS by phosphonium resin-Ball-1 cells were added to RITC57-1 medium at 1.2x.
Suspended at a concentration of 10 4 cells / ml, 20 ml thereof
Was collected in a petri dish with a capacity of 30 ml sterilized with ethylene oxide gas. Next, RITC57-1 medium ( P. aeruginos) containing Pseudomonas aeruginosa was added to the petri dish.
a containing 5.0 × 10 2 / ml) 2 ml was added. In a cell culture flask with a capacity of 150 ml newly prepared, 2 g of phosphonium floating resin (OH type resin) introduced with (3-aminopropyl) phosphine (TAPP) prepared in Example 5, which had been sterilized with ethylene oxide gas in advance, was placed. It was Subsequently, the whole amount of RITC57-1 medium containing the above-described Pseudomonas aeruginosa and Ball-1 cells was added, and the mixture was cultured in a carbon dioxide incubator at 37 ° C for 6 hours while gently shaking.
After 6 hours, the supernatant was aliquoted into a polystyrene test tube sterilized with ethylene oxide gas having a volume of 15 ml, and 100 μl of the supernatant was used to determine the endotoxin (LPS derived from Pseudomonas aeruginosa) by the endotoxin quantitative reagent Pyrodick manufactured by Seikagaku ) Was determined. As a result, erythodotoxin (LPS) derived from Pseudomonas aeruginosa was not detected in the cell culture medium. In addition, Ball-1 cells have 1.0 ×
10 4 cells / ml were alive.

【0019】《実施例9.》 −ホスホニウム樹脂による大腸菌由来のLPSの除去− 容量15mlのカラムに実施例5で調製した(3−アミ
ノプロピル)ホスフィン(TAPP)を導入したホスホ
ニウム樹脂(OH型樹脂)10mlを充填し、1%デオ
キシコール酸ナトリウム溶液100mlおよび注射用蒸
留水100mlで洗浄した。次に、当該カラムにE.c
oli0111由来のLPS溶液(10EU/ml)8
mlをapplyし、コックを閉じて室温で2時間in
cubateした。続いて、当該カラムに注射用蒸留水
10mlをapplyし、流速1ml/minで流下さ
せ、流出画分を1mlづつ15ml迄分画した。各画分
について、生化学工業製エンドトキシン定量試薬パイロ
ディックにより、大腸菌由来のエンドトキシン(LP
S)の定量を行なった。その結果、当該細胞培養液中に
は、大腸菌由来のエンドトキシン(LPS)は検出され
なかった。
Example 9 -Removal of LPS derived from Escherichia coli by phosphonium resin-A column having a capacity of 15 ml was filled with 10 ml of a phosphonium resin (OH type resin) into which (3-aminopropyl) phosphine (TAPP) prepared in Example 5 was introduced, and 1% was charged. It was washed with 100 ml of sodium deoxycholate solution and 100 ml of distilled water for injection. Then, E. c
LPS solution (10 EU / ml) derived from oli 0111 8
Apply ml, close the cock, and in at room temperature for 2 hours
I cubated. Subsequently, 10 ml of distilled water for injection was applied to the column and allowed to flow down at a flow rate of 1 ml / min, and the outflow fractions were fractionated up to 15 ml by 1 ml. For each fraction, the endotoxin (LP
S) was quantified. As a result, endotoxin (LPS) derived from Escherichia coli was not detected in the cell culture medium.

【0020】《実施例10.》 −(3−アミノプロピル)ホスフィン共有結合ポリエチ
レンテレフタレートフィルムによる大腸菌由来のLPS
の定量− 厚さ1mmのポリエチレンテレフタレート製フィルムの
表面に、エチルメチルケトンに溶解した(3−アミノプ
ロピル)ホスフィン(TAPP)を塗布し、5umの皮
膜を形成した。次に、当該フィルムを1cmx1cmの
大きさに切断した。続いて、当該フィルムをエチレンオ
キサイドガス滅菌し、容量5mlのエチレンオキサイド
ガス滅菌したポリスチレン製試験管に分取した。当該ポ
リスチレン製試験管に、1%パイロジェンフリー・アル
ブミンおよびLPS(E.coli 0111由来)を
含する精製水3mlを分取し、静かに震盪しながら、3
7℃で30分incubateした。30分後に当該操
作をしたポリスチレン製試験管をパイロジェンフリー燐
酸緩衝液3mlで3回洗浄した。新規に準備した、容量
5mlのエチレンオキサイドガス滅菌したポリスチレン
製試験管に、生化学工業製エンドトキシン定量試薬(パ
イロディック試薬)を各100μl分取した。前記操作
をしたポリエチレンテレフタレート製フィルムを、無菌
操作により当該試験管に入れ、37℃で30分incu
bateした。30分後に当該ポリスチレン製試験管に
0.6N酢酸各1mlを添加し、405nmの吸光度を
測定した。標準LPSを用いて同様の操作を行ない、検
量線を描いた。描いた検量線から、検体中のLPS量を
求めた。
Example 10 >>-(3-aminopropyl) phosphine covalently bonded polyethylene terephthalate film-derived LPS from E. coli
Quantification- (3-aminopropyl) phosphine (TAPP) dissolved in ethyl methyl ketone was applied to the surface of a polyethylene terephthalate film having a thickness of 1 mm to form a film of 5 um. Next, the film was cut into a size of 1 cm × 1 cm. Subsequently, the film was sterilized with ethylene oxide gas and dispensed into a polystyrene test tube sterilized with ethylene oxide gas having a volume of 5 ml. 3 ml of purified water containing 1% pyrogen-free albumin and LPS (derived from E. coli 0111) was taken into the polystyrene test tube, and gently shaken to give 3
Incubate for 30 minutes at 7 ° C. After 30 minutes, the polystyrene test tube subjected to the above operation was washed 3 times with 3 ml of a pyrogen-free phosphate buffer solution. Into a newly prepared polystyrene test tube sterilized with ethylene oxide gas and having a capacity of 5 ml, 100 μl of each of the endotoxin quantification reagent (pyrodic reagent) manufactured by Seikagaku Kogyo was collected. The polyethylene terephthalate film that has been subjected to the above operation is put into the test tube by aseptic operation, and incu
I batted. After 30 minutes, each 1 ml of 0.6N acetic acid was added to the polystyrene test tube, and the absorbance at 405 nm was measured. The same operation was performed using the standard LPS to draw a calibration curve. The amount of LPS in the sample was calculated from the drawn calibration curve.

【0021】《実施例11.》 −アミカシン結合磁性粒子の調製− ドラフト内で、エチレンオキサイドガス滅菌した容量5
0mlのポリスチレン製フラスコに、BioMag(磁
性粒子:Perseptive Biosystems
社製)10mlを分取した。続いて、当該フラスコにカ
ップリングバッファー35mlを添加、攪拌後、Mag
netic Separatorで磁性粒子を分離する
洗浄操作を5回繰り返した。当該操作をした磁性粒子の
入ったフラスコに、5%グルタルアルデヒド溶液20m
lを添加し、5分間激しく攪拌した。引き続いて、当該
フラスコを3時間静かに攪拌した。攪拌後Magnet
ic Separatorで磁性粒子を分離した。続い
て、当該操作をした磁性粒子の入ったフラスコに、カッ
プリングバッファー35mlを添加攪拌後、Magne
tic Separatorで磁性粒子を分離する洗浄
操作を5回繰り返した。続いて、当該操作をした磁性粒
子の入ったフラスコに、カップリングバッファーに溶解
したアミカシン溶液(アミカシン濃度:5mg/ml)
10mlを添加し、5分間激しく攪拌した。続いて、当
該フラスコを室温で24時間静かに攪拌した。攪拌後、
Magnetic Separatorで磁性粒子を分
離した。当該操作をした磁性粒子の入ったフラスコに、
5%グリシン溶液35mlを添加し、5分間激しく攪拌
した。続いて、当該フラスコを1時間静かに攪拌した。
攪拌後、Magnetic Separatorで磁性
粒子を分離した。続いて、当該操作をした磁性粒子の入
ったフラスコに、洗浄バッファー35mlを添加、攪拌
後、Magnetic Separatorで磁性粒子
を分離する洗浄操作を5回繰り返し、アミカシン結合磁
性粒子を調製した。アミカシン結合磁性粒子は4℃で保
存した。
Example 11 -Preparation of amikacin-bonded magnetic particles-Volume 5 sterilized with ethylene oxide gas in a draft
In a 0 ml polystyrene flask, BioMag (magnetic particles: Perseptive Biosystems
10 ml was collected. Subsequently, 35 ml of coupling buffer was added to the flask, stirred, and then Mag
The washing operation for separating the magnetic particles with a net separator was repeated 5 times. In a flask containing the magnetic particles that had been subjected to the operation, 20m of a 5% glutaraldehyde solution
1 was added and stirred vigorously for 5 minutes. Subsequently, the flask was gently stirred for 3 hours. After stirring Magnet
The magnetic particles were separated with an ic Separator. Subsequently, 35 ml of the coupling buffer was added to the flask containing the magnetic particles that had been subjected to the operation, and the mixture was stirred.
The washing operation for separating magnetic particles with a tic Separator was repeated 5 times. Then, in the flask containing the magnetic particles that had been subjected to the operation, a solution of amikacin dissolved in a coupling buffer (concentration of amikacin: 5 mg / ml)
10 ml was added and stirred vigorously for 5 minutes. Subsequently, the flask was gently stirred at room temperature for 24 hours. After stirring,
The magnetic particles were separated with a Magnetic Separator. In the flask containing the magnetic particles that were operated,
35 ml of 5% glycine solution was added and vigorously stirred for 5 minutes. Subsequently, the flask was gently stirred for 1 hour.
After stirring, the magnetic particles were separated with a Magnetic Separator. Subsequently, 35 ml of the washing buffer was added to the flask containing the magnetic particles that had been subjected to the above operation, and after stirring, the washing operation of separating the magnetic particles with a Magnetic Separator was repeated 5 times to prepare amikacin-bound magnetic particles. Amikacin-bonded magnetic particles were stored at 4 ° C.

【0022】《実施例12.》 −アミカシン結合磁性粒子による緑膿菌の除去− RITC57−1培地に、EBウイルス変異ヒトBリン
パ球様細胞株を1.2×10cells/mlの濃度
で懸濁し、その20mlを、エチレンオキサイドガス滅
菌した容量30mlのシャーレに分取した。次に、当該
シャーレに、緑膿菌含有RI TC57−1培地(P.
aeruginosa5.0×10/ml含有)2m
lを添加した。新規に用意した容量150mlの細胞培
養フラスコに、予め、1%デオキシコール酸ナトリウム
溶液およびパイロジェンフリー精製水で洗浄した、実施
例11で調製したアミカシン結合磁性粒子5mlを分取
した。続いて、前記の緑膿菌およびEBウイルス変異ヒ
トBリンパ球様細胞株を含有するRITC57−1培地
全量を添加し、静かに震盪しながら、炭酸ガス培養器で
37℃で6時間培養した。6時間後にMagnetic
Separatorで磁性粒子を分離した。分離した
溶液を容量150mlの細胞培養フラスコに分取し、光
学顕微鏡で鏡検した。その結果、当該細胞培養液中に
は、緑膿菌は観察されなかった。また、EBウイルス変
異ヒトBリンパ球様細胞株は1.0×10cells
/ml生存していた。
Example 12 -Removal of Pseudomonas aeruginosa by amikacin-bound magnetic particles-The EB virus mutant human B lymphoid cell line was suspended in RITC57-1 medium at a concentration of 1.2 x 10 < 4 > cells / ml, and 20 ml thereof was added to ethylene. It was dispensed into a petri dish with a volume of 30 ml that had been sterilized with oxide gas. Next, on the petri dish, the RI TC57-1 medium containing Pseudomonas aeruginosa ( P.
aeruginosa 5.0 × 10 2 / ml included) 2m
1 was added. 5 ml of amikacin-bonded magnetic particles prepared in Example 11, which had been previously washed with a 1% sodium deoxycholate solution and pyrogen-free purified water, was collected in a newly prepared cell culture flask having a capacity of 150 ml. Then, the whole amount of RITC57-1 medium containing the above-mentioned Pseudomonas aeruginosa and EB virus mutant human B lymphoid cell line was added, and the cells were cultured in a carbon dioxide incubator at 37 ° C. for 6 hours while gently shaking. 6 hours later Magnetic
The magnetic particles were separated with a Separator. The separated solution was dispensed into a cell culture flask with a volume of 150 ml, and examined under a light microscope. As a result, Pseudomonas aeruginosa was not observed in the cell culture medium. In addition, the EB virus mutant human B lymphoid cell line was 1.0 × 10 4 cells.
/ Ml was alive.

【0023】《実施例13.》 −アミカシン結合磁性粒子による大腸菌由来LPSの除
去− RPMI−1640を主成分とする10%牛血清添加培
地に、ナマルバ細胞を1.2×10cells/ml
の濃度で懸濁し、その20mlを、エチレンオキサイド
ガス滅菌した容量30mlのシャーレに分取した。次
に、当該シャーレに、大腸菌含有RPMI−1640を
主成分とする10%牛血清添加培地(E.coli5.
0×10/ml含有)2mlを添加した。新規に用意
した容量150mlの細胞培養フラスコに、予め、1%
デオキシコール酸ナトリウム溶液およびパイロジェンフ
リー精製水で洗浄した、実施例11で調製したアミカシ
ン結合磁性粒子5mlを分取した。続いて、前記の大腸
菌およびナマルバ細胞を含有するRPMI−1640を
主成分とする10%牛血清添加培地全量を添加し、静か
に震盪しながら、炭酸ガス培養器で37℃で6時間培養
した。6時間後にMagnetic Separato
rで磁性粒子を分離した。分離した溶液を容量150m
lの細胞培養フラスコに分取した。当該溶液100μl
について、生化学工業製エンドトキシン定量試薬パイロ
ディックによりエンドトキシンの定量を行なった。その
結果、当該細胞培養液中には、大腸菌由来のエンドトキ
シンは検出されなかった。また、ナマルバ細胞は1.0
×10cells/ml生存していた。
Example 13 -Removal of LPS derived from Escherichia coli by amikacin-bonded magnetic particles-Namarba cells were added to a medium containing 10% bovine serum containing RPMI-1640 as a main component at 1.2 × 10 4 cells / ml.
20 ml was suspended in a petri dish having a volume of 30 ml and sterilized with ethylene oxide gas. Next, a 10% bovine serum-containing medium containing E. coli-containing RPMI-1640 as a main component ( E. coli 5.
2 ml (containing 0 × 10 2 / ml) was added. In a newly prepared cell culture flask with a capacity of 150 ml, add 1% in advance.
5 ml of amikacin-bonded magnetic particles prepared in Example 11, which had been washed with a sodium deoxycholate solution and pyrogen-free purified water, were collected. Subsequently, the whole amount of 10% bovine serum-containing medium containing RPMI-1640 containing the above-mentioned Escherichia coli and Namalwa cells as a main component was added, and the mixture was cultured in a carbon dioxide incubator at 37 ° C. for 6 hours while gently shaking. 6 hours later Magnetic Separato
The magnetic particles were separated by r. Volume of separated solution is 150m
1 cell culture flask. 100 μl of the solution
For, the endotoxin was quantified by the endotoxin quantitative reagent Pyrodic manufactured by Seikagaku. As a result, endotoxin derived from Escherichia coli was not detected in the cell culture medium. In addition, 1.0 for Namalwa cells
× 10 4 cells / ml were alive.

【0024】《実施例14.》 −アミカシン結合磁性粒子による大腸菌由来LPSの定
量− 予め、1%デオキシコール酸ナトリウム溶液およびパイ
ロジェンフリー精製水で洗浄した、実施例11で調製し
たアミカシン結合磁性粒子1mlを容量5mlのエチレ
ンオキサイドガス滅菌したポリスチレン製試験管に分取
した。当該ポリスチレン製試験管に、1%アルブミンお
よびLPS(E.coli0111由来)を含有する精
製水3mlを分取し、静かに震盪しながら、37℃で3
0分incubateした。30分後にMagneti
c Separatorで磁性粒子を分離した。次に、
当該操作をしたアミカシン結合磁性粒子をパイロジェン
フリー水3mlで3回洗浄した。次に、当該操作をした
アミカシン結合磁性粒子の入ったポリスチレン製試験管
に、生化学工業製エンドトキシン定量試薬(パイロディ
ック試薬)を各100μl分取し、37℃で30分in
cubateした。30分後に当該操作をしたポリスチ
レン製試験管に0.6N酢酸各1mlを添加し、405
nmの吸光度を測定した。標準LPSを用いて同様の操
作を行ない、検量線を描いた。描いた検量線から、検体
中のLPS量を求めた。
Example 14 -Quantification of LPS derived from Escherichia coli by amikacin-bonded magnetic particles- 1 ml of amikacin-bonded magnetic particles prepared in Example 11, which had been washed with 1% sodium deoxycholate solution and pyrogen-free purified water, was sterilized with ethylene oxide gas in a volume of 5 ml. It was collected in a polystyrene test tube. Into the polystyrene test tube, 3 ml of purified water containing 1% albumin and LPS (derived from E. coli 0111) was collected and shaken gently at 37 ° C for 3 times.
It was incubated for 0 minutes. 30 minutes later Magneti
Magnetic particles were separated with a c Separator. next,
The operated amikacin-bonded magnetic particles were washed 3 times with 3 ml of pyrogen-free water. Next, 100 μl each of the endotoxin quantitative reagent (Pyrodic reagent) manufactured by Seikagaku Kogyo Co., Ltd. was taken into a polystyrene test tube containing the amikacin-bonded magnetic particles that had been subjected to the operation, and the mixture was stored at 37 ° C. for 30 minutes
I cubated. After 30 minutes, 1 ml each of 0.6N acetic acid was added to the polystyrene test tube subjected to the above operation, and 405
The absorbance at nm was measured. The same operation was performed using the standard LPS to draw a calibration curve. The amount of LPS in the sample was calculated from the drawn calibration curve.

【0025】《実施例15.》 −メタクリル酸グリシジル−ジビニルベンゼン球状共重
合体に第四級アンモニウム塩を導入した樹脂の合成− 野中らの方法(日本化学会誌、1097〜、1994
年)に従い、メタクリル酸グリシジル−1,4−ジビニ
ルベンゼン球状共重合体に、四級アンモニウム塩(3−
(トリメトキシシリル)−プロピルオクタデシルジメチ
ルアンモニウムクロライドを反応させることにより第四
級アンモニウム塩を導入した樹脂を合成した。即ち、実
施例5に準じてCl型樹脂およびOH型樹脂を合成し
た。
Example 15 >>-Synthesis of Resin in which Quaternary Ammonium Salt is Introduced into Glycidyl Methacrylate-Divinylbenzene Spherical Copolymer-Method of Nonaka et al. (Journal of Japan Chemical Society, 1097-1994)
Glycidyl methacrylate-1,4-divinylbenzene spherical copolymer, quaternary ammonium salt (3-
A resin having a quaternary ammonium salt introduced therein was synthesized by reacting (trimethoxysilyl) -propyloctadecyldimethylammonium chloride. That is, according to Example 5, Cl type resin and OH type resin were synthesized.

【0026】《実施例16.》 −第四級アンモニウム塩結合メタクリル酸グリシジル−
ジビニルルベンゼン球状共重合体による大腸菌由来のL
PS、DNAおよびRANの除去− 容量15mlのカラムに実施例13で調製した(3−
(トリメトキシシリル)−プロピルオクタデシルジメチ
ルアンモニウムクロライドを導入した樹脂(OH型樹
脂)10mlを充填し、1%デオキシコール酸ナトリウ
ム溶液100mlおよび注射用蒸留水100mlで洗浄
した。次に、当該カラムにE.coli HB101由
来の菌体抽出液(DNA含量30μg/ml,RAN含
量520μg/ml,LPS含量20EU/ml)8m
lをapplyし、室温で2時間incubateし
た。続いて、当該カラムに注射用蒸留水10mlをap
plyし、流速1ml/minで流下させ、流出画分を
1mlづつ15ml迄分画した。各画分について、生化
学工業製エンドトキシン定量試薬パイロディックによ
り、大腸菌由来のエンドトキシン(LPS)の定量を行
なった。その結果、当該細胞培養液中には、大腸菌由来
のエンドトキシンは検出されなかった。また、当該画分
について、DNA量、RAN量の定量を行なったが、何
れの画分にもDNAおよびRANは検出されなかった。
Example 16 >>-Quaternary ammonium salt-bonded glycidyl methacrylate-
L derived from Escherichia coli by divinyl rubenzene spherical copolymer
Removal of PS, DNA and RAN-Prepared in Example 13 in a 15 ml volume column (3-
10 ml of a resin (OH type resin) into which (trimethoxysilyl) -propyloctadecyldimethylammonium chloride was introduced was filled and washed with 100 ml of a 1% sodium deoxycholate solution and 100 ml of distilled water for injection. Then, E. E. coli HB101-derived cell extract (DNA content 30 μg / ml, RAN content 520 μg / ml, LPS content 20 EU / ml) 8 m
1 was applied and incubated at room temperature for 2 hours. Then, add 10 ml of distilled water for injection to the column.
It was plied and allowed to flow down at a flow rate of 1 ml / min, and the outflow fractions were fractionated up to 15 ml by 1 ml. For each fraction, the endotoxin (LPS) derived from Escherichia coli was quantified by the endotoxin quantification reagent Pyrodic manufactured by Seikagaku Corporation. As a result, endotoxin derived from Escherichia coli was not detected in the cell culture medium. Further, the amount of DNA and the amount of RAN were quantified for the fraction, but neither DNA nor RAN was detected in any of the fractions.

【0027】《実施例17.》 −アミカシン結合磁性粒子の界面活性剤および抗菌剤に
よる再生− 実施例9で調製したアミカシン結合磁性粒子1mlを容
量50mlのエチレンオキサイドガス滅菌したポリスチ
レン製フラスコに分取した。当該ポリスチレン製フラス
コに、1%アルブミンおよびLPS(E.coli01
11由来:100EU/ml)を含有する精製水30m
lを分取し、静かに震盪しながら、37℃で2時間in
cubateした。2時間後にMagnetic Se
paratorでアミカシン結合磁性粒子を分離した。
次に、当該磁性粒子を1%デオキシコール酸ナトリウム
溶液40mlで3回、パイロジェンフリー精製水40m
lで3回洗浄した。次に、当該磁性粒子を、容量5ml
のエチレンオキサイドガス滅菌したポリスチレン製試験
管に、無菌操作により分取した。次に、当該ポリスチレ
ン製試験管に、生化学工業製エンドトキシン定量試薬
(パイロディック試薬)を各100μl分取し、37℃
で30分間incubateした。30分後に当該操作
をしたポリスチレン製試験管に0.6N酢酸各1mlを
添加し、405nmの吸光度を測定した。その結果、当
該磁性粒子からは、E.coli 0111由来LPS
は検出されず、デオキシコール酸ナトリウム溶液による
洗浄効果が確認された。当該磁性粒子を5%ストレプト
マイシン溶液で洗浄した場合にも、同様に洗浄効果が確
認された。
Example 17 -Regeneration of amikacin-bound magnetic particles with surfactant and antibacterial agent- 1 ml of amikacin-bound magnetic particles prepared in Example 9 was dispensed into a polystyrene flask sterilized with ethylene oxide gas and having a volume of 50 ml. In the polystyrene flask, 1% albumin and LPS ( E. coli 01
11-derived: 30 m of purified water containing 100 EU / ml)
Take 1 aliquot and incubate for 2 hours at 37 ° C with gentle shaking.
I cubated. 2 hours later Magnetic Se
The amikacin-bound magnetic particles were separated with a parameter.
Next, the magnetic particles were treated with 40 ml of a 1% sodium deoxycholate solution three times and 40 m of pyrogen-free purified water.
1 × 3 times. Next, add the magnetic particles to a volume of 5 ml.
Into a polystyrene test tube sterilized with ethylene oxide gas, the sample was collected by aseptic operation. Next, 100 μl each of the endotoxin quantitative reagent (Pyrodic reagent) manufactured by Seikagaku Kogyo was collected in the polystyrene test tube, and the temperature was 37 ° C.
It was incubated for 30 minutes. After 30 minutes, 1 ml of 0.6N acetic acid was added to the polystyrene test tube which was operated, and the absorbance at 405 nm was measured. As a result, E. coli 0111 derived LPS
Was not detected, confirming the cleaning effect of the sodium deoxycholate solution. When the magnetic particles were washed with a 5% streptomycin solution, the same washing effect was confirmed.

【0028】《実施例18.》 −プラディマシン誘導体共有結合担体による大腸菌由来
のLPS、DNAおよびRANの除去− 容量15mlのカラムにプラディマシン誘導体(プラデ
ィマシンE)共有結合担体10mlを充填し、1%デオ
キシコール酸ナトリウム溶液100mlおよび注射用蒸
留水100mlで洗浄した。次に、当該カラムにE.c
oli HB101由来の菌体抽出液(DNA含量30
μg/ml,RAN含量520μg/ml、LPS含量
20EU/ml)8mlをapplyし、カラムを停止
して室温で2時間incubateした。続いて、当該
カラムに注射用蒸留水20mlをapplyし、流速1
ml/minで流下させ、流出画分を1mlづつ15m
l迄分画した。各画分について、生化学工業製エンドト
キシン定量試薬パイロディックにより、大腸菌由来のヱ
ンドトキシン(LPS)の定量を行なった。その結果、
当該細胞培養液中には、大腸菌由来のエンドトキシンは
検出されなかった。また、当該画分について、DNA
量、RAN量の定量を行なったが、何れの画分にもDN
AおよびRANは検出されなかった。
Example 18 -Removal of LPS, DNA, and RAN derived from Escherichia coli by covalently bound pradimachine derivative carrier-A column having a capacity of 15 ml was filled with 10 ml of covalently bound pradimachine derivative (Pradimachine E), and 1% sodium deoxycholate was added. It was washed with 100 ml of the solution and 100 ml of distilled water for injection. Then, E. c
Cell extract from oli HB101 (DNA content 30
8 g (μg / ml, RAN content 520 μg / ml, LPS content 20 EU / ml) was applied, and the column was stopped and incubated at room temperature for 2 hours. Then, 20 ml of distilled water for injection was applied to the column, and the flow rate was 1
Flow out at a flow rate of ml / min, and the effluent fractions will be 1 ml each for 15 m.
Fractionated to 1 For each fraction, the amount of E. coli-derived endotoxin (LPS) was quantified by the endotoxin quantification reagent Pyrodic manufactured by Seikagaku. as a result,
No endotoxin derived from Escherichia coli was detected in the cell culture medium. In addition, regarding the relevant fraction, DNA
Amount and RAN amount were quantified.
A and RAN were not detected.

【0029】《実施例19.》 −第四級アンモニウム塩固定化不織布による大腸菌由来
のLPSの除去− ポリエステル製不織布(東洋紡績製:6デニール)に親
水性基(メタクリル酸)をグラフト重合し、更に第四級
アンモニウム塩抗菌剤、(3−(トリメトキシシリル)
−プロピルオクタデシルジメチルアンモニウムクロライ
ド(ダウコーニング社製)を結合させることにより、第
四級アンモニウム塩を固定化した不織布を調製した。当
該不織布を、5cm×5cmの大きさに切断し、エチレ
ンオキサイドガス滅菌した。RPMI−1640を主成
分とする10%牛血清添加培地に、ナマルバ細胞を1.
2×10cells/mlの濃度で懸濁し、その20
mlを、エチレンオキサイドガス滅菌した容量30ml
のシャーレに分取した。次に、当該シャーレに、大腸菌
含有RPMI−1640を主成分とする10%牛血清添
加培地(E.coli5.0×10/ml含有)2m
lを添加した。新規に用意した容量150mlの細胞培
養フラスコに、予め、エチレンオキサイドガス滅菌した
上記不織布を分取した。続いて、前記の大腸菌およびナ
マルバ細胞を含有するRPMI−1640を主成分とす
る10%牛血清添加培地全量を添加し、静かに震盪しな
がら、炭酸ガス培養器で37℃ で6時間培養した。6
時間後に不織布を無菌的に除去した。不織布の分離によ
り得られた溶液を容量150mlの細胞培養フラスコに
分取した。当該溶液100μlについて、生化学工業製
エンドトキシン定量試薬パイロディックによりエンドト
キシンの定量を行なった。その結果、当該細胞培養液中
には、大腸菌由来のエンドトキシンは検出されなかっ
た。また、ナマルバ細胞は1.0×10cells/
ml生存していた。
Example 19 -Removal of LPS derived from Escherichia coli by quaternary ammonium salt-immobilized nonwoven fabric-Polyester nonwoven fabric (Toyobo Co., Ltd .: 6 denier) is graft-polymerized with a hydrophilic group (methacrylic acid), and further quaternary ammonium salt antibacterial agent , (3- (trimethoxysilyl)
A non-woven fabric having a quaternary ammonium salt immobilized thereon was prepared by binding propyloctadecyldimethylammonium chloride (manufactured by Dow Corning). The nonwoven fabric was cut into a size of 5 cm × 5 cm and sterilized with ethylene oxide gas. In a 10% bovine serum-containing medium containing RPMI-1640 as a main component, 1.
20 × suspended at a concentration of 2 × 10 4 cells / ml
ml is ethylene oxide gas sterilized, volume 30 ml
It was collected in a petri dish. Then, 2 m of a medium containing 10% bovine serum containing E. coli-containing RPMI-1640 as a main component (containing E. coli 5.0 × 10 2 / ml) was added to the petri dish.
1 was added. The above-mentioned non-woven fabric sterilized with ethylene oxide gas in advance was dispensed into a newly prepared cell culture flask having a capacity of 150 ml. Subsequently, the whole amount of 10% bovine serum-containing medium containing RPMI-1640 containing Escherichia coli and Namalwa cells as a main component was added, and the mixture was cultured in a carbon dioxide incubator at 37 ° C for 6 hours while gently shaking. 6
The nonwoven was aseptically removed after a period of time. The solution obtained by separating the non-woven fabric was dispensed into a cell culture flask having a volume of 150 ml. For 100 μl of the solution, endotoxin was quantified by Pyrodick, an endotoxin quantification reagent manufactured by Seikagaku Corporation. As a result, endotoxin derived from Escherichia coli was not detected in the cell culture medium. In addition, Namalwa cells have 1.0 × 10 4 cells /
ml was alive.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 G01N 33/567 G01N 33/567 33/569 33/569 B // C12N 1/00 C12N 1/00 J 11/00 11/00 ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification code Internal reference number FI Technical display location G01N 33/567 G01N 33/567 33/569 33/569 B // C12N 1/00 C12N 1/00 J 11/00 11/00

Claims (16)

【特許請求の範囲】[Claims] 【請求項1】抗菌剤を構成成分とすることを特徴とする
不溶性担体。
1. An insoluble carrier comprising an antibacterial agent as a constituent.
【請求項2】抗菌剤がペニシリン系抗生物質、セフェム
系抗生物質、モノバクタム系抗生物質、テトラサイクリ
ン系抗生物質、クロラムフェニコール系抗生物質、マク
ロライド系抗生物質、アミノダリコシド系抗生物質、ポ
リペプチド系抗生物質、ピリドンカルボン酸系合成抗菌
薬、抗真菌剤、抗ウイルス剤、サルファ剤、ピリジニウ
ム化合物、ホスホニウム化合物、第四級アンモニウム
塩、プラディマイシン群抗生物質の中から選択されたこ
とを特徴とする請求項1記載の不溶性担体。
2. The antibacterial agent is a penicillin antibiotic, a cephem antibiotic, a monobactam antibiotic, a tetracycline antibiotic, a chloramphenicol antibiotic, a macrolide antibiotic, an aminodaricoside antibiotic, a polypeptide antibiotic. Characterized by being selected from antibiotics, pyridonecarboxylic acid-based synthetic antibacterial agents, antifungal agents, antiviral agents, sulfa agents, pyridinium compounds, phosphonium compounds, quaternary ammonium salts, and pradimycin group antibiotics The insoluble carrier according to claim 1.
【請求項3】不溶性担体が磁性粒子である請求項1記載
の不溶性担体。
3. The insoluble carrier according to claim 1, wherein the insoluble carrier is magnetic particles.
【請求項4】請求項1記載の不溶性担体を用いて、微生
物に汚染された細胞懸濁液中の微生物および、微生物に
汚染された生理活性物質溶液中の微生物を吸着除去する
方法。
4. A method for adsorbing and removing microorganisms in a cell suspension contaminated with microorganisms and microorganisms in a physiologically active substance solution contaminated with microorganisms, using the insoluble carrier according to claim 1.
【請求項5】請求項1記載の不溶性担体を用いて、リポ
多糖に汚染された細胞懸濁液中のリポ多糖および、リポ
多糖に汚染された生理活性物質溶液中のリポ多糖を吸着
除去する方法。
5. The lipopolysaccharide in a cell suspension contaminated with lipopolysaccharide and the lipopolysaccharide in a physiologically active substance solution contaminated with lipopolysaccharide are adsorbed and removed by using the insoluble carrier according to claim 1. Method.
【請求項6】請求項1記載の不溶性担体に、リポ多糖に
汚染された細胞懸濁液中のリポ多糖および、リポ多糖に
汚染された生理活性物質溶液中のリポ多糖を吸着させた
後、リポ多糖の検出定量方法によりリポ多糖を検出定量
する方法。
6. The lipopolysaccharide in a cell suspension contaminated with lipopolysaccharide and the lipopolysaccharide in a physiologically active substance solution contaminated with lipopolysaccharide are adsorbed to the insoluble carrier according to claim 1. A method for detecting and quantifying lipopolysaccharide by a method for detecting and quantifying lipopolysaccharide.
【請求項7】請求項3記載の不溶性担体を用いて、微生
物に汚染された細胞懸濁液中の微生物および、微生物に
汚染された生理活性物質溶液中の微生物を吸着除去する
方法。
7. A method for adsorbing and removing microorganisms in a cell suspension contaminated with microorganisms and microorganisms in a physiologically active substance solution contaminated with microorganisms, using the insoluble carrier according to claim 3.
【請求項8】請求項3記載の不溶性担体を用いて、リポ
多糖に汚染された細胞懸濁液中のリポ多糖および、リポ
多糖に汚染された生理活性物質溶液中のリポ多糖を吸着
除去する方法。
8. The lipopolysaccharide in a cell suspension contaminated with lipopolysaccharide and the lipopolysaccharide in a solution of a physiologically active substance contaminated with lipopolysaccharide are adsorbed and removed using the insoluble carrier according to claim 3. Method.
【請求項9】請求項3記載の不溶性担体に、微生物に汚
染された細胞懸濁液中の微生物および、微生物に汚染さ
れた生理活性物質溶液中の微生物を吸着させた後、微生
物の検出定量方法により、微生物を検出定量する方法。
9. A method for detecting and quantifying a microorganism after adsorbing the microorganism in a cell suspension contaminated with the microorganism and the microorganism in a physiologically active substance solution contaminated with the microorganism to the insoluble carrier according to claim 3. A method for detecting and quantifying microorganisms by the method.
【請求項10】請求項3記載の不溶性担体に、リポ多糖
に汚染された細胞懸濁液中のリポ多糖および、リポ多糖
に汚染された生理活性物質溶液中のリポ多糖を吸着させ
た後、リポ多糖の検出定量方法によりリポ多糖を検出定
量する方法。
10. The lipopolysaccharide in a cell suspension contaminated with lipopolysaccharide and the lipopolysaccharide in a physiologically active substance solution contaminated with lipopolysaccharide are adsorbed to the insoluble carrier according to claim 3. A method for detecting and quantifying lipopolysaccharide by a method for detecting and quantifying lipopolysaccharide.
【請求項11】請求項3記載の不溶性担体を用いて、核
酸に汚染された細胞懸濁液中の核酸および、核酸に汚染
された生理活性物質溶液中の核酸を吸着除去する方法。
11. A method for adsorbing and removing nucleic acid in a cell suspension contaminated with nucleic acid and nucleic acid in a physiologically active substance solution contaminated with nucleic acid using the insoluble carrier according to claim 3.
【請求項12】請求項3記載の不溶性担体に、核酸に汚
染された細胞懸濁液中の核酸および、核酸に汚染された
生理活性物質溶液中の核酸を吸着させた後、核酸の検出
定量方法により、核酸を検出定量する方法。
12. The nucleic acid in a cell suspension contaminated with nucleic acid and the nucleic acid in a physiologically active substance solution contaminated with nucleic acid are adsorbed to the insoluble carrier according to claim 3, and then the nucleic acid is detected and quantified. A method for detecting and quantifying nucleic acid according to the method.
【請求項13】界面活性剤含有溶液を用いて、請求項3
記載の不溶性担体を洗浄、再生する方法。
13. The method according to claim 3, wherein a solution containing a surfactant is used.
A method for washing and regenerating the insoluble carrier described.
【請求項14】抗菌剤を含有する溶液を用いて、請求項
3記載の不溶性担体を洗浄、再生する方法。
14. A method for washing and regenerating the insoluble carrier according to claim 3, using a solution containing an antibacterial agent.
【請求項15】請求項3記載の不溶性担体の吸着活性を
洗浄、再生する為の界面活性剤を含有する溶液。
15. A solution containing a surfactant for washing and regenerating the adsorption activity of the insoluble carrier according to claim 3.
【請求項16】請求項3記載の不溶性担体の吸着活性を
洗浄、再生する為の抗菌剤を含有する溶液。
16. A solution containing an antibacterial agent for washing and regenerating the adsorption activity of the insoluble carrier according to claim 3.
JP7274640A 1995-09-18 1995-09-18 Method for removing contaminant Pending JPH0975430A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7274640A JPH0975430A (en) 1995-09-18 1995-09-18 Method for removing contaminant

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7274640A JPH0975430A (en) 1995-09-18 1995-09-18 Method for removing contaminant

Publications (1)

Publication Number Publication Date
JPH0975430A true JPH0975430A (en) 1997-03-25

Family

ID=17544528

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7274640A Pending JPH0975430A (en) 1995-09-18 1995-09-18 Method for removing contaminant

Country Status (1)

Country Link
JP (1) JPH0975430A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010284535A (en) * 2001-12-26 2010-12-24 Nihon Medi Physics Co Ltd Compositions for eliminating endotoxin
JP2021520443A (en) * 2018-04-27 2021-08-19 南京大学 Multifunctional resin and its manufacturing method and application
CN115261323A (en) * 2022-08-04 2022-11-01 河南省遗传资源细胞库有限公司 Method for removing bacteria in umbilical cord blood cells

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010284535A (en) * 2001-12-26 2010-12-24 Nihon Medi Physics Co Ltd Compositions for eliminating endotoxin
JP2021520443A (en) * 2018-04-27 2021-08-19 南京大学 Multifunctional resin and its manufacturing method and application
CN115261323A (en) * 2022-08-04 2022-11-01 河南省遗传资源细胞库有限公司 Method for removing bacteria in umbilical cord blood cells

Similar Documents

Publication Publication Date Title
US7264728B2 (en) Method of separating components in a sample using silane-treated silica filter media
US8303819B2 (en) Separation material
JP6043062B2 (en) Graft copolymer for ion exchange chromatography
US9643173B2 (en) Temperature responsive adsorbent having a strong cation exchange group and method for producing the same
JPH026750A (en) Agarose coating glass fiber used as column packing material for biological sample separation or chromatography member
WO1998004334A1 (en) Air cleaning filter
JP2006502856A (en) Composition for separating molecules
US6090292A (en) Device for purifying solutions containing proteins and use of the device
CN111836824A (en) Composite material for removing contaminants from a solution
JP2006296427A (en) Cell separation method using hydrophobic solid support
KR100647335B1 (en) Cell separation method using hydrophobic solid supports
JP2016049527A (en) Endotoxin adsorbent
US20040211724A1 (en) Method of separating components in a sample using silane-treated silica filter media
JPH0975430A (en) Method for removing contaminant
EP1518870B1 (en) Separating material
CN104583395B (en) Microstructured bodies used for capturing and releasing microbe
WO2002015964A1 (en) Bacterial toxin adsorbing material, method of removing the toxin by adsorbing, and adsorber formed by filling the adsorbing material therein
WO2019088167A1 (en) Purification agent for sugar chain or glycopeptide, and use thereof
JPH08108069A (en) Separation of stem cell
EP0222146B1 (en) Selective adsorbent for binding immunocouplers
JPH09227318A (en) Removal of contamination of microorganism and antimicrobial tool used therefor
JPH07133290A (en) New method for removing nucleic acid
JPH09918A (en) Physiologically active substance adsorbing carrier
JP2000051689A (en) High pressure steam-sterilizable adsorbent for lipopolysaccharide and method for removing lipopolysaccharide by adsorption
JPH05331052A (en) Adsorbent for pyrogen substance and adsorption of pyrogen substance using the adsorbent