JPH0974605A - Device and method for controlling regenerative braking of electric vehicle - Google Patents

Device and method for controlling regenerative braking of electric vehicle

Info

Publication number
JPH0974605A
JPH0974605A JP7227825A JP22782595A JPH0974605A JP H0974605 A JPH0974605 A JP H0974605A JP 7227825 A JP7227825 A JP 7227825A JP 22782595 A JP22782595 A JP 22782595A JP H0974605 A JPH0974605 A JP H0974605A
Authority
JP
Japan
Prior art keywords
battery
regenerative braking
braking force
regenerative
motor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7227825A
Other languages
Japanese (ja)
Other versions
JP3360499B2 (en
Inventor
Masaaki Yamaoka
正明 山岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP22782595A priority Critical patent/JP3360499B2/en
Publication of JPH0974605A publication Critical patent/JPH0974605A/en
Priority to JP2002194396A priority patent/JP3838169B2/en
Application granted granted Critical
Publication of JP3360499B2 publication Critical patent/JP3360499B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Abstract

PROBLEM TO BE SOLVED: To increase the regeneration energy. SOLUTION: A charging upper-limit power Pbatt is determined according to the SOC and temperature of a battery (107), a regeneration torque upper-limit value Tmax (108) is obtained by diving it by the motor speed, and comparing the result with a motor rating a regeneration torque target value Treg (109) is obtained by. By feeding back a battery voltage, a regeneration torque target value Treg is compensated (110) and is subtracted from a requested braking torque, thus obtaining a hydraulic torque target value Thyd (111). A regeneration torque and a hydraulic torque are controlled according to the regeneration torque Treg and the hydraulic torque target value Thyd (102 and 103).

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、電気車両に搭載さ
れる回生制動制御装置及び方法に関する。
TECHNICAL FIELD The present invention relates to a regenerative braking control device and method mounted on an electric vehicle.

【0002】[0002]

【従来の技術】鉛電池、NiMH電池等の二次電池を充
電するに当たっては、過充電を避けねばならない。仮に
顕著な過充電状態にいたると、この種の電池の内部では
電解液の分解によりガスが発生する。このガス発生は、
電池の寿命の短縮を招く。他方、電気自動車等、モータ
にて推進力を発生させる電気車両では、制御方法の一つ
として、車両走行用のモータにて回収した制動エネルギ
にて電池を充電する回生制動が用いられる。特開平5−
161215号公報に開示されている装置では、電池の
充電深度(DOD)又は充電状態(SOC)及び温度に
応じて回生制動力(トルク)の上限値を制限することに
より、回生制動に伴う電池の過充電を好適に防止してい
る。
2. Description of the Related Art When charging a secondary battery such as a lead battery or a NiMH battery, it is necessary to avoid overcharging. If a remarkable overcharge state is reached, gas is generated inside the battery of this type due to decomposition of the electrolytic solution. This gas evolution
This leads to shortened battery life. On the other hand, in an electric vehicle such as an electric vehicle that uses a motor to generate propulsive force, regenerative braking is used as one of control methods, in which a battery is charged with braking energy collected by a motor for running the vehicle. Japanese Patent Laid-Open No. 5-
In the device disclosed in Japanese Patent No. 161215, the upper limit value of the regenerative braking force (torque) is limited according to the depth of charge (DOD) or state of charge (SOC) of the battery and the temperature, so that the battery Overcharge is preferably prevented.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、特開平
5−161215号公報では、電池のDODやSOCに
応じ一律に回生制動力の上限値を制限しているため、実
際にはまだ充電の余地があるにもかかわらず過充電防止
のための回生制動力制限が施されることがあり、従って
車両のエネルギ効率を改善する上で回生制動を十分に利
用しているとはいえないという不具合があった。本発明
は、このような問題点を解決することを課題としてなさ
れたものであり、過充電防止のための回生制動力制限に
新たな要素を導入することにより、回生制動に伴う電池
の過充電を好適に防止すると同時に回生制動を車両のエ
ネルギ効率の改善に最大限利用可能にすることを目的と
する。本発明は、また、電池の特性の経時変化及びばら
つきにも対処可能にすることを目的とする。本発明は、
さらに、回生制動力を含めた合計の制動力を要求制動力
を目標として正確に制御可能にすることを目的とする。
However, in Japanese Unexamined Patent Publication No. Hei 5-161215, the upper limit value of the regenerative braking force is uniformly limited according to the DOD and SOC of the battery, so that there is actually room for charging. However, there is a problem that regenerative braking force is limited to prevent overcharging, and therefore regenerative braking is not fully utilized to improve the energy efficiency of the vehicle. It was The present invention has been made to solve such a problem, and by introducing a new element to regenerative braking force limitation for preventing overcharge, battery overcharge accompanying regenerative braking is introduced. It is an object of the present invention to appropriately prevent regenerative braking and at the same time to make maximum use of regenerative braking for improving the energy efficiency of the vehicle. Another object of the present invention is to make it possible to deal with changes and variations in battery characteristics over time. The present invention
Further, another object of the present invention is to make it possible to accurately control the total braking force including the regenerative braking force with the required braking force as a target.

【0004】[0004]

【課題を解決するための手段】このような目的を達成す
るために、本発明の第1の構成は、充放電可能な電池及
び電池の放電出力により駆動されるモータを備えた電気
車両に搭載され、要求制動力に応じて逐次決定される制
御目標に従い、モータにて発生する回生制動力を制御す
る回生制動制御装置において、電池の状態(例えばSO
Cや温度)及びモータの回転数を検出する手段と、電池
の状態に基づき充電電力上限値を決定する手段と、回生
制動力の制御目標の上限を、充電電力上限値及びモータ
の回転数に基づき制限する手段と、を備えることを特徴
とする。このように、本構成においては、電池の状態に
従い充電電力上限値が決定され、回生制動力と共に充電
電力を左右する要素であるモータの回転数と、充電電力
上限値と、に基づき、回生制動力の制御目標が上限制限
される。従って、特開平5−161215号公報のよう
にモータの回転数にかかわらず一律に回生制動力を制限
する構成と異なり、車両のエネルギ効率の改善に回生制
動を最大限に利用可能になる。無論、回生制動に伴う電
池の過充電も好適に防止される。
In order to achieve such an object, the first structure of the present invention is mounted on an electric vehicle equipped with a rechargeable battery and a motor driven by the discharge output of the battery. In the regenerative braking control device that controls the regenerative braking force generated by the motor according to the control target that is sequentially determined according to the required braking force, the state of the battery (for example, SO
C and temperature) and the number of rotations of the motor, means for determining the charging power upper limit value based on the state of the battery, and the upper limit of the control target of the regenerative braking force to the charging power upper limit value and the number of rotations of the motor. And means for restricting based on the above. As described above, in the present configuration, the charging power upper limit value is determined according to the state of the battery, and the regenerative braking upper limit value is determined based on the rotation speed of the motor, which is an element that influences the charging power together with the regenerative braking force, and the charging power upper limit value. The power control target is limited to the upper limit. Therefore, unlike the configuration of JP-A-5-161215, which uniformly limits the regenerative braking force regardless of the number of rotations of the motor, the regenerative braking can be utilized to the maximum for improving the energy efficiency of the vehicle. Needless to say, overcharging of the battery due to regenerative braking is also suitably prevented.

【0005】本発明の第2の構成は、第1の構成におい
て、電池の電圧を検出する手段と、電池の電圧が所定の
最大許容値を上回った場合に回生制動力の制御目標を低
減する手段と、を備えることを特徴とする。従って、充
電電力上限値及びモータの回転数に基づき回生制動力の
制御目標の上限を制限したにもかかわらず電池の特性の
経時変化やばらつきに起因して電池の電圧が所定の最大
許容値を上回ってしまった場合にも、本構成において
は、回生制動力の制御目標の低減により、電池の過充電
が好適に防止される。
A second configuration of the present invention is, in the first configuration, means for detecting the voltage of the battery and a control target of the regenerative braking force when the voltage of the battery exceeds a predetermined maximum allowable value. Means and are provided. Therefore, although the upper limit of the control target of the regenerative braking force is limited based on the charging power upper limit value and the rotation speed of the motor, the battery voltage has a predetermined maximum allowable value due to changes or variations in the characteristics of the battery over time. Even when it exceeds the limit, in the present configuration, the control target of the regenerative braking force is reduced, so that the overcharge of the battery is appropriately prevented.

【0006】本発明の第3の構成は、第1又は第2の構
成において、要求制動力から回生制動力の制御目標を減
じた値を流体圧制動力の制御目標に設定する手段と、上
記電気車両の駆動輪に作用する流体圧制動力をその制御
目標に従い増減制御する手段(例えば駆動輪に作用する
流体圧を増やすバルブと減らすバルブ)と、を備えるこ
とを特徴とする。本構成においては、従って、要求制動
力が回生制動力の制御目標の上限値を上回る分や、第2
の構成における制御目標の低減の結果生じた回生制動力
の低減分が、流体圧制動力で補われる。この結果、回生
制動力及び流体圧制動力を含めた合計の制動力が、回生
制動力の制限乃至変動にもかかわらず、要求制動力を目
標として正確に制御される。
According to a third aspect of the present invention, in the first or second aspect, means for setting a value obtained by subtracting the control target of the regenerative braking force from the required braking force as the control target of the fluid pressure braking force, and the above electric A means for increasing / decreasing the fluid pressure braking force acting on the drive wheels of the vehicle according to its control target (for example, a valve for increasing or decreasing the fluid pressure acting on the drive wheels) is provided. In this configuration, therefore, the required braking force exceeds the upper limit of the control target of the regenerative braking force,
The reduction amount of the regenerative braking force resulting from the reduction of the control target in the above configuration is compensated by the fluid pressure braking force. As a result, the total braking force including the regenerative braking force and the fluid pressure braking force is accurately controlled with the required braking force as a target, despite the limitation or fluctuation of the regenerative braking force.

【0007】本発明の第4の構成は、充放電可能な電池
及び電池の放電出力により駆動されるモータを備えた電
気車両にて実行される回生制動制御方法において、電池
の状態及びモータの回転数を検出するステップと、電池
の状態に基づき充電電力上限値を決定するステップと、
充電電力上限値及びモータの回転数に基づきその上限を
制限しながら、回生制動力の制御目標を要求制動力に応
じて逐次決定するステップと、モータにて発生する回生
制動力をその制御目標に従い制御するステップと、を有
することを特徴とする。本発明の第5の構成は、第4の
構成において、電池の電圧を検出するステップと、電池
の電圧が所定の最大許容値を上回った場合に回生制動力
の制御目標を低減するステップと、を有することを特徴
とする。本発明の第6の構成は、第4又は第5の構成に
おいて、要求制動力から回生制動力の制御目標を減じた
値を流体圧制動力の制御目標に設定するステップと、上
記電気車両の駆動輪に作用する流体圧制動力をその制御
目標に従い増減制御するステップと、を有することを特
徴とする。これらの構成によれば、それぞれ第1乃至第
3の構成に適する回生制動制御方法が実現される。
According to a fourth aspect of the present invention, in a regenerative braking control method executed in an electric vehicle equipped with a rechargeable battery and a motor driven by the discharge output of the battery, the state of the battery and the rotation of the motor are controlled. Detecting the number, determining the charging power upper limit value based on the state of the battery,
While limiting the upper limit based on the charging power upper limit value and the number of rotations of the motor, sequentially determining the control target of the regenerative braking force according to the required braking force, and the regenerative braking force generated by the motor according to the control target. And a controlling step. A fifth configuration of the present invention, in the fourth configuration, a step of detecting the voltage of the battery, a step of reducing the control target of the regenerative braking force when the voltage of the battery exceeds a predetermined maximum allowable value, It is characterized by having. A sixth configuration of the present invention is, in the fourth or fifth configuration, setting a value obtained by subtracting a control target of the regenerative braking force from a required braking force as a control target of the fluid pressure braking force, and driving the electric vehicle. And a step of increasing / decreasing the fluid pressure braking force acting on the wheel according to the control target thereof. According to these configurations, the regenerative braking control methods suitable for the first to third configurations are realized.

【0008】[0008]

【発明の実施の形態】以下、本発明の好適な実施形態に
関し図面に基づき説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Preferred embodiments of the present invention will be described below with reference to the drawings.

【0009】図1には、本発明の一実施形態に係る電気
自動車のシステム構成が示されている。このシステムで
は三相交流モータを車両走行用のモータ16として使用
しており、モータ16はインバータ17を介して供給さ
れる電池18の放電出力により駆動される。モータEC
U(電子制御ユニット)19は、アクセルペダルの踏込
量やシフト位置に応じて力行トルクの制御目標を決定す
る一方でモータ16の回転数wmを検出し、決定した力
行トルク目標値及び検出したモータ回転数wmに基づき
モータ電流の制御目標を求め、求めたモータ電流目標値
に従いインバータ17による電力変換動作を制御する。
これにより、アクセルペダルの踏込量等に応じた力行ト
ルクがモータ16から出力される。上述の手順を実行す
るに際しては、モータECU19は、電池ECU20に
より検出される電池18のSOC、温度、電圧等を参照
し、必要に応じ力行トルク目標値を補正する。
FIG. 1 shows the system configuration of an electric vehicle according to an embodiment of the present invention. In this system, a three-phase AC motor is used as the motor 16 for running the vehicle, and the motor 16 is driven by the discharge output of the battery 18 supplied via the inverter 17. Motor EC
The U (electronic control unit) 19 determines the control target of the power running torque according to the depression amount of the accelerator pedal and the shift position, while detecting the rotation speed wm of the motor 16, and determines the determined power running torque target value and the detected motor. The control target of the motor current is obtained based on the rotation speed wm, and the power conversion operation by the inverter 17 is controlled according to the obtained motor current target value.
As a result, the power running torque corresponding to the amount of depression of the accelerator pedal is output from the motor 16. When executing the above procedure, the motor ECU 19 refers to the SOC, temperature, voltage, etc. of the battery 18 detected by the battery ECU 20, and corrects the power running torque target value as necessary.

【0010】図1に示される車両は、制動手段として油
圧制動(より一般には非圧縮性流体による流体圧制動)
及び回生制動を搭載している。まず、油圧制動に係る油
圧配管は、マスタシリンダ1からフロント側の増圧バル
ブ5を経てフロント側のホイールシリンダ3に、またリ
ア側の増圧バルブ6を経てリア側のホイールシリンダ4
に、それぞれ至っている。マスタシリンダ1は、車両操
縦者によるブレーキペダルの踏込量に応じた油圧を発生
させる。また、増圧バルブ5及び6は、回生ECU21
からの指令に応じ開閉する。後述する減圧バルブ7を閉
じている状態で増圧バルブ5を開くと、マスタシリンダ
1からホイールシリンダ3に制動油が導入されるため、
マスタシリンダ1における油圧上昇に応じてホイールシ
リンダ3の油圧も上昇する(増圧)。逆に、減圧バルブ
7を閉じている状態で増圧バルブ5を閉じれば、マスタ
シリンダ1からホイールシリンダ3への制動油の導入が
遮断されるため、マスタシリンダ1における油圧上昇に
かかわらずホイールシリンダ3の油圧は保持される。増
圧バルブ6も、同様に動作する。ホイールシリンダ3及
び4は、それぞれ前輪又は後輪に油圧による制動トルク
(以下油圧トルクと呼ぶ)を作用させる。なお、この図
では前輪駆動車の例を示しているが、本発明は後輪駆動
車や四輪駆動車にも適用できる。
The vehicle shown in FIG. 1 employs hydraulic braking as braking means (more generally, fluid pressure braking using an incompressible fluid).
And equipped with regenerative braking. First, the hydraulic piping for hydraulic braking is from the master cylinder 1 to the front side wheel cylinder 3 via the front side pressure increasing valve 5 and to the rear side wheel cylinder 4 via the rear side pressure increasing valve 6.
, Respectively. The master cylinder 1 generates hydraulic pressure according to the amount of depression of the brake pedal by the vehicle operator. Further, the pressure increasing valves 5 and 6 are provided in the regenerative ECU 21.
It opens and closes according to the command from. When the pressure increasing valve 5 is opened while the pressure reducing valve 7 to be described later is closed, braking oil is introduced from the master cylinder 1 to the wheel cylinder 3,
As the hydraulic pressure in the master cylinder 1 increases, the hydraulic pressure in the wheel cylinders 3 also increases (pressure increase). On the contrary, if the pressure increasing valve 5 is closed while the pressure reducing valve 7 is closed, the introduction of the braking oil from the master cylinder 1 to the wheel cylinder 3 is blocked, so that the wheel cylinder is increased regardless of the increase in the hydraulic pressure in the master cylinder 1. The hydraulic pressure of 3 is maintained. The pressure increasing valve 6 operates in the same manner. The wheel cylinders 3 and 4 apply hydraulic braking torque (hereinafter referred to as hydraulic torque) to the front wheels or the rear wheels, respectively. Although this figure shows an example of a front-wheel drive vehicle, the present invention can be applied to a rear-wheel drive vehicle and a four-wheel drive vehicle.

【0011】油圧制動に係る油圧配管は、さらに、ホイ
ールシリンダ3又は4からフロント側又はリア側の減圧
バルブ7又は8を介してリザーバタンク13に至り、さ
らにリザーバタンク13から油圧ポンプ12、チェック
バルブ11及び切り替え弁15を経てフルードタンク1
4又はマスタシリンダ1に至っている。減圧バルブ7及
び8は、回生ECU21からの指令に応じ開閉する。増
圧バルブ5を閉じかつ減圧バルブ7を開くと、ホイール
シリンダ3からリザーバタンク13に制動油が排出され
るため、マスタシリンダ1における油圧の発生如何にか
かわらず、ホイールシリンダ3の油圧が下がる(減
圧)。油圧ポンプ12は、リザーバタンク13内に貯留
されている制動油を、回生ECU21からの指令に応じ
切り替え弁15側に送給する。切り替え弁15は、油圧
ポンプ12から送給される制動油をフルードタンク14
に排出するのかそれともマスタシリンダ1に導入するの
かを、回生ECU21からの指令に応じ切り替える。チ
ェックバルブ11は、切り替え弁15側から油圧ポンプ
12側に制動油が導入されるのを防いでいる。
The hydraulic piping for hydraulic braking further reaches the reservoir tank 13 from the wheel cylinder 3 or 4 through the front or rear pressure reducing valve 7 or 8, and further from the reservoir tank 13 to the hydraulic pump 12 and the check valve. Fluid tank 1 via 11 and switching valve 15
4 or master cylinder 1. The pressure reducing valves 7 and 8 are opened and closed according to a command from the regenerative ECU 21. When the pressure increasing valve 5 is closed and the pressure reducing valve 7 is opened, the braking oil is discharged from the wheel cylinder 3 to the reservoir tank 13, so that the hydraulic pressure of the wheel cylinder 3 decreases regardless of the hydraulic pressure generated in the master cylinder 1 ( Decompression). The hydraulic pump 12 sends the braking oil stored in the reservoir tank 13 to the switching valve 15 side in response to a command from the regenerative ECU 21. The switching valve 15 allows the brake fluid sent from the hydraulic pump 12 to be supplied to the fluid tank 14.
Whether to discharge to the master cylinder 1 or to introduce into the master cylinder 1 is switched according to a command from the regenerative ECU 21. The check valve 11 prevents the brake fluid from being introduced from the switching valve 15 side to the hydraulic pump 12 side.

【0012】回生ECU21は、マスタシリンダ1にお
ける油圧を圧力センサ2により、ホイールシリンダ3に
おける油圧を圧力センサ9により、ホイールシリンダ4
における油圧を圧力センサ10により、それぞれ検出す
る。回生ECU21は、検出結果を利用して、回生によ
る制動トルク(以下回生トルクと呼ぶ)の目標値及び油
圧トルクの目標値を決定し、決定した回生トルク目標値
をモータECU19に与えて回生制動を行わせる一方
で、決定した油圧トルク目標値に従い増圧バルブ5及び
6並びに減圧バルブ7及び8を制御する。回生ECU2
1は、また、油圧ポンプ12や切り替え弁15を適宜制
御することにより、マスタシリンダ1のボトミング(制
動油の不足)を防ぐ。
The regenerative ECU 21 uses the pressure sensor 2 for the oil pressure in the master cylinder 1 and the pressure sensor 9 for the oil pressure in the wheel cylinder 3 to cause the wheel cylinder 4 to rotate.
The hydraulic pressure in each is detected by the pressure sensor 10. The regenerative ECU 21 uses the detection result to determine the target value of the braking torque (hereinafter referred to as regenerative torque) and the target value of the hydraulic torque due to regeneration, and supplies the determined regenerative torque target value to the motor ECU 19 to perform regenerative braking. Meanwhile, the pressure increasing valves 5 and 6 and the pressure reducing valves 7 and 8 are controlled according to the determined hydraulic torque target value. Regenerative ECU 2
1 also prevents bottoming of the master cylinder 1 (insufficiency of braking oil) by appropriately controlling the hydraulic pump 12 and the switching valve 15.

【0013】図2には、回生ECU21の動作の流れが
示されている。回生ECU21は、動作開始直後にまず
内部パラメタの設定等の初期化処理を実行した上で(1
00)、ブレーキペダルが踏まれているか否かを判定す
る(101)。この判定は、圧力センサ2により検出さ
れる油圧が所定値を超えているか否かの判定として、実
現できる。無論、ブレーキペダルに付設されているブレ
ーキスイッチ(図示せず)がオンしたことを以て、ブレ
ーキペダルが踏まれたと判定してもよい。ブレーキペダ
ルが踏まれていないときには、回生ECU21は回生ト
ルク目標値Treg及び油圧トルク目標値Thydを共
に0に設定し(102)、その上で、設定した回生トル
ク目標値TregをモータECU19に与え(10
3)、同時に、設定した油圧トルク目標値Thydに従
いバルブ5〜8を駆動する(104)。回生ECU21
は、その際、必要に応じ油圧ポンプ12や切り替え弁1
5を駆動する。車両操縦者によりキースイッチがオフさ
れると(105)、回生ECU21は所定の終了処理を
実行し(106)、動作を終了する。キースイッチがオ
フされるまでは、回生ECU21はステップ101以降
の動作を繰り返す。
FIG. 2 shows a flow of operation of the regenerative ECU 21. Immediately after starting the operation, the regenerative ECU 21 first executes initialization processing such as setting of internal parameters and then (1
00), it is determined whether or not the brake pedal is depressed (101). This determination can be realized as a determination as to whether or not the hydraulic pressure detected by the pressure sensor 2 exceeds a predetermined value. Of course, it may be determined that the brake pedal is depressed by turning on a brake switch (not shown) attached to the brake pedal. When the brake pedal is not depressed, the regenerative ECU 21 sets both the regenerative torque target value Treg and the hydraulic torque target value Thyd to 0 (102), and then gives the set regenerative torque target value Treg to the motor ECU 19 ( 10
3) At the same time, the valves 5 to 8 are driven according to the set hydraulic torque target value Thyd (104). Regenerative ECU 21
At that time, if necessary, the hydraulic pump 12 and the switching valve 1
5 is driven. When the key switch is turned off by the vehicle operator (105), the regenerative ECU 21 executes a predetermined ending process (106) and ends the operation. Until the key switch is turned off, the regenerative ECU 21 repeats the operation after step 101.

【0014】ブレーキペダルが踏まれると、回生ECU
21は、電池ECU20にて検出される電池18のSO
C及び温度にて、内蔵するPbattテーブルを参照す
ることにより、充電上限パワーPbattを決定する
(107)。回生ECU21は、決定した充電上限パワ
ーPbattとモータ16のパワー定格Pmotに基づ
き次の式
When the brake pedal is depressed, the regenerative ECU
21 is the SO of the battery 18 detected by the battery ECU 20.
The charging upper limit power Pbatt is determined by referring to the built-in Pbatt table at C and temperature (107). The regenerative ECU 21 calculates the following formula based on the determined charging upper limit power Pbatt and the power rating Pmot of the motor 16.

【数1】Pmin=Min(Pbatt,Pmot)
(但しMinは最小値関数) の演算を実行することによりパワー制約値Pminを求
め、さらに、モータECU19により検出されたモータ
回転数wmに基づき次の式
## EQU1 ## Pmin = Min (Pbatt, Pmot)
(However, Min is a minimum value function) The power constraint value Pmin is obtained by executing the following equation, and based on the motor rotation speed wm detected by the motor ECU 19,

【数2】Tmax=Pmin/wm の演算を実行することにより回生トルク上限値Tmax
を決定する(108)。回生ECU21は、圧力センサ
2により検出されるマスタシリンダ1の油圧Pmcに油
圧・トルク変換係数Kを乗ずることにより要求制動トル
クK・Pmcを求め、求めた要求制動トルクK・Pmc
と決定した回生トルク上限値Tmaxに基づき次の式
## EQU2 ## By executing the calculation of Tmax = Pmin / wm, the regenerative torque upper limit value Tmax
Is determined (108). The regenerative ECU 21 obtains the required braking torque K · Pmc by multiplying the oil pressure Pmc of the master cylinder 1 detected by the pressure sensor 2 by the oil pressure / torque conversion coefficient K, and the obtained required braking torque K · Pmc.
Based on the regenerative torque upper limit value Tmax determined as

【数3】Treg=Min(K・Pmc,Tmax) の演算を実行することにより回生トルク目標値Treg
を決定する(109)。回生ECU21は、電池ECU
20にて検出される電池18の電圧が所定の最大許容電
圧を超えた場合に、前者から後者を減じた値ΔVをトル
クに換算し、換算により得られた値ΔTに基づき次の式
## EQU3 ## By executing the calculation of Treg = Min (K.Pmc, Tmax), the regenerative torque target value Treg
Is determined (109). The regenerative ECU 21 is a battery ECU
When the voltage of the battery 18 detected at 20 exceeds a predetermined maximum allowable voltage, the value ΔV obtained by subtracting the latter from the former is converted into torque, and the following formula is used based on the value ΔT obtained by the conversion.

【数4】Treg=Treg−ΔT の演算を実行することにより回生トルク目標値Treg
を補正する(110)。回生ECU21は、次の式
## EQU4 ## By executing the calculation of Treg = Treg-.DELTA.T, the regenerative torque target value Treg
Is corrected (110). The regenerative ECU 21 uses the following formula

【数5】Thyd=K・Pmc−Treg の演算を実行することにより、油圧トルク目標値Thy
dを求める(111)。回生ECU21の動作は、この
後ステップ103に移行する。
[Equation 5] The hydraulic torque target value Thy is calculated by executing the calculation Thyd = K · Pmc-Treg.
Find d (111). The operation of the regenerative ECU 21 thereafter shifts to step 103.

【0015】図3〜図7には、この実施形態の動作原理
及び利点が示されている。本実施形態で着目しているの
は、過充電を避けるためには、電池18の電圧が最大
許容電圧を超えないようにすればよいこと、できるだ
け多くの制動エネルギをモータ16から電池18へ回生
するためには、回生トルクをできるだけ大きくする必要
があること、電池18の瞬時充電電力と電圧との間に
相関があること、電池18の瞬時充電電力がモータ回
転数wmと回生トルクの関数であること、従ってでき
るだけ多くの制動エネルギを回生しながら過充電を避け
るためには、電池18の電圧が最大許容電圧を超えない
範囲でできる限り高い電圧となるよう、回生トルクを制
御すればよいこと、である。
3 to 7 illustrate the operating principle and advantages of this embodiment. The focus of the present embodiment is that the voltage of the battery 18 should not exceed the maximum allowable voltage in order to avoid overcharge, and as much braking energy as possible is regenerated from the motor 16 to the battery 18. In order to do so, it is necessary to increase the regenerative torque as much as possible, there is a correlation between the instantaneous charging power of the battery 18 and the voltage, and the instantaneous charging power of the battery 18 is a function of the motor rotation speed wm and the regenerative torque. Therefore, in order to regenerate as much braking energy as possible and avoid overcharging, it is sufficient to control the regenerative torque so that the voltage of the battery 18 is as high as possible without exceeding the maximum allowable voltage. ,.

【0016】まず、電池18の電圧は充電電流の変化に
対し一次遅れ応答特性(又はこれに類似する特性)に従
い応答する(図3参照)。従って、電池18の電圧は充
電電流変化から例えば5秒程度の時間が経過した時点で
安定し、電池18の充電電流と電圧の積として与えられ
る電池18の瞬時充電電力もその時点で安定する。電池
18の過充電を防止するためには、安定後の電圧が最大
許容電圧を超えないよう、ひいては安定後の瞬時充電電
力が最大許容電圧相当の瞬時充電電力(すなわち前述の
充電上限パワーPbatt)を超えないようにすればよ
い。電池18の瞬時充電電力は、他方で、モータ16の
出力トルク(この場合は回生トルク)とモータ回転数w
mとの積でも定まる(図4参照)。従って、電池18の
過充電を防止する際、電池18のSOC等に応じ最大許
容電圧相当の充電上限パワーPbattを定めた上で、
この充電上限パワーPbatt及びモータ回転数wmに
基づき回生トルク目標値Tregを決定するようにすれ
ば、電池18の過充電を防止できる範囲内でさらに回生
トルクを最大の値とすることができ、ひいては最大のエ
ネルギを電池18に回生できる。図5に示されるPba
ttテーブルは、最大許容電圧相当の充電上限パワーP
battを定めるべくステップ107にて使用可能なテ
ーブルの一例である。このテーブルでは、電池18のS
OC及び温度を充電上限パワーPbattと対応付けて
いる。通常の二次電池では、SOCの上昇又は温度の低
下に伴い充電の余地がなくなるため、図3に示されるテ
ーブルは、SOCの上昇に伴い充電上限パワーPbat
tが減少し、かつ温度の上昇に伴い増大するよう、設計
されている。なお、SOCに代え電池18の電解液比重
等の量を用いてもよい。
First, the voltage of the battery 18 responds to a change in charging current according to a first-order delay response characteristic (or a characteristic similar to this) (see FIG. 3). Therefore, the voltage of the battery 18 stabilizes when a time of, for example, about 5 seconds elapses from the change of the charging current, and the instantaneous charging power of the battery 18 given as the product of the charging current of the battery 18 and the voltage also stabilizes at that time. In order to prevent the battery 18 from being overcharged, the voltage after stabilization does not exceed the maximum allowable voltage, and thus the instantaneous charging power after stabilization is equivalent to the maximum allowable voltage (that is, the above-described charging upper limit power Pbatt). Should not exceed. On the other hand, the instantaneous charging power of the battery 18 is the output torque of the motor 16 (regenerative torque in this case) and the motor rotation speed w.
It is also determined by the product of m and m (see Fig. 4). Therefore, when the overcharge of the battery 18 is prevented, after the charge upper limit power Pbatt corresponding to the maximum allowable voltage is determined according to the SOC of the battery 18,
If the regenerative torque target value Treg is determined based on the charging upper limit power Pbatt and the motor rotation speed wm, the regenerative torque can be further maximized within the range in which the overcharge of the battery 18 can be prevented, and eventually Maximum energy can be regenerated to the battery 18. Pba shown in FIG.
The tt table shows the charging upper limit power P corresponding to the maximum allowable voltage.
It is an example of a table that can be used in step 107 to determine the batt. In this table, the S of the battery 18
The OC and the temperature are associated with the charging upper limit power Pbatt. In a normal secondary battery, there is no room for charging as the SOC increases or the temperature decreases. Therefore, the table shown in FIG. 3 shows that the charging upper limit power Pbat increases as the SOC increases.
It is designed so that t decreases and increases with increasing temperature. It should be noted that an amount such as the specific gravity of the electrolytic solution of the battery 18 may be used instead of the SOC.

【0017】図6及び図7には、制動の進行に伴う油圧
・回生間の制動力配分の変化が示されている。ここで
は、モータ16として、モータ回転数wmが高い領域で
は回生トルクの上限値がモータ定格Pmotにより制約
され、モータ回転数wmが低い領域では回生トルクの上
限値がモータ最大回生トルクにより制約され、モータ回
転数wmが極めて低い領域では回生トルク出力が禁止さ
れたトルク回転数特性を有するモータを想定している。
FIG. 6 and FIG. 7 show changes in the distribution of braking force between hydraulic pressure and regeneration with the progress of braking. Here, as the motor 16, the upper limit value of the regenerative torque is restricted by the motor rating Pmot in the region where the motor rotation speed wm is high, and the upper limit value of the regenerative torque is restricted by the motor maximum regenerative torque in the region where the motor rotation speed wm is low, A motor having a torque rotation speed characteristic in which regenerative torque output is prohibited in a region where the motor rotation speed wm is extremely low is assumed.

【0018】図6に示されるようにモータ16が高速回
転している状態でブレーキペダルが踏み込まれると、要
求制動トルクK・Pmcが回生トルク上限値Tmaxに
至るまでは、Treg=K・Pmc、Thyd=0とな
り、要求制動トルクK・Pmcが回生のみにより賄われ
る。この状態では、回生ECU21は増圧バルブ5及び
減圧バルブ7を閉じる。その後要求制動トルクK・Pm
cが回生トルク上限値Tmaxを上回ると、Treg=
Tmin、Thyd=K・Pmc−Tminとなり、要
求制動トルクK・Pmcの一部が油圧により賄われ始め
る。この状態では、K・Pmc−Tminが増加してい
る間は回生ECU21は増圧バルブ5を開き減圧バルブ
7を閉じる。逆に、K・Pmc−Tminが減少してい
る間は回生ECU21は増圧バルブ5及び減圧バルブ7
を開く。モータ回転数wmの低下に伴い要求制動トルク
K・Pmcが回生トルク上限値Tmaxを下回ると、再
びTreg=K・Pmc、Thyd=0となる。その
後、モータ回転数wmが極めて低い領域に至ると、Tr
eg=0、Thyd=K・Pmcとなり、要求制動トル
クK・Pmcが油圧のみにより賄われる。このような制
動の経過から明らかなように、本実施形態においては、
ホイールシリンダ3の油圧を減圧することが可能である
ため、回生トルク上限値Tmaxに従い回生トルク目標
値Tregを制限しているにもかかわらず、油圧・回生
合計の制動トルクを常に要求制動トルクK・Pmcに一
致させることができる。また、ホイールシリンダ3の油
圧を減圧するのに応じホイールシリンダ4の油圧を減圧
することが可能であるため、前後輪間の制動力配分を常
に良好な値とすることができる。
When the brake pedal is depressed while the motor 16 is rotating at a high speed as shown in FIG. 6, Treg = K.Pmc, until the required braking torque K.Pmc reaches the regenerative torque upper limit value Tmax. Thyd = 0, and the required braking torque K · Pmc is covered only by regeneration. In this state, the regenerative ECU 21 closes the pressure increasing valve 5 and the pressure reducing valve 7. After that, the required braking torque K ・ Pm
When c exceeds the regenerative torque upper limit value Tmax, Treg =
Tmin and Thyd = K · Pmc−Tmin, and a part of the required braking torque K · Pmc begins to be covered by hydraulic pressure. In this state, the regenerative ECU 21 opens the pressure increasing valve 5 and closes the pressure reducing valve 7 while K · Pmc-Tmin is increasing. On the contrary, while the K · Pmc-Tmin is decreasing, the regenerative ECU 21 controls the pressure increasing valve 5 and the pressure reducing valve 7.
open. When the required braking torque K · Pmc falls below the regenerative torque upper limit value Tmax as the motor speed wm decreases, Treg = K · Pmc and Thyd = 0 again. After that, when the motor rotation speed wm reaches an extremely low region, Tr
eg = 0, Thyd = K · Pmc, and the required braking torque K · Pmc is covered only by the hydraulic pressure. As is clear from such a braking process, in the present embodiment,
Since the hydraulic pressure of the wheel cylinders 3 can be reduced, the total braking pressure of the hydraulic pressure and the regenerative torque is always the required braking torque K, even though the regenerative torque target value Treg is limited according to the regenerative torque upper limit value Tmax. Can match Pmc. Further, since the hydraulic pressure of the wheel cylinder 4 can be reduced in accordance with the reduction of the hydraulic pressure of the wheel cylinder 3, the braking force distribution between the front and rear wheels can always be made a good value.

【0019】また、図7に示されるように、特性のばら
つきや経時変化に起因して、電池18の電圧が一時的に
最大許容電圧を超えた場合、前述のステップ110の動
作により、回生トルクにこれを補償するフィードバック
が施される。従って、電池18の電圧が最大許容電圧を
超える状況が長く続くことはない。すなわち、電池18
の特性のばらつきや経時変化にかかわらず常に過充電を
防止できる。また、ステップ110による電圧フィード
バックは、回生トルク上限値Tmaxに従い回生トルク
目標値Tregを制限した上で実行しているから、前述
のΔVは小さな値であり、従ってステップ110による
電圧フィードバックのゲインは小さくすることができ
る。これにより、電圧フィードバックに係る制御系を安
定化することができる。さらに、電圧フィードバックに
より回生トルクが変動するが、これを補うよう油圧トル
クが変動するから、常に要求制動トルクK・Pmcを実
現することができる。
Further, as shown in FIG. 7, when the voltage of the battery 18 temporarily exceeds the maximum allowable voltage due to variations in characteristics and changes with time, the regenerative torque is increased by the operation of step 110 described above. Feedback will be provided to compensate for this. Therefore, the situation where the voltage of the battery 18 exceeds the maximum allowable voltage will not last long. That is, the battery 18
It is possible to prevent overcharging regardless of variations in characteristics of the battery and changes over time. Further, since the voltage feedback in step 110 is executed after limiting the regenerative torque target value Treg in accordance with the regenerative torque upper limit value Tmax, the above-mentioned ΔV is a small value, and therefore the voltage feedback gain in step 110 is small. can do. As a result, the control system related to voltage feedback can be stabilized. Further, although the regenerative torque fluctuates due to the voltage feedback, the hydraulic torque fluctuates to compensate for this, so that the required braking torque K · Pmc can always be realized.

【0020】[0020]

【発明の効果】以上説明したように、本発明の第1及び
第4の構成によれば、電池の状態に従い充電電力上限値
を決定し、回生制動力と共に充電電力を左右する要素で
あるモータの回転数と、充電電力上限値と、に基づき、
回生制動力の制御目標を上限制限するようにしたため、
回生制動に伴う電池の過充電を好適に防止しながら、車
両のエネルギ効率の改善に回生制動を最大限に利用する
ことが可能になる。
As described above, according to the first and fourth structures of the present invention, the upper limit value of the charging power is determined according to the state of the battery, and the motor is an element that influences the charging power together with the regenerative braking force. Based on the number of revolutions and the charging power upper limit,
Since the control target of the regenerative braking force is limited to the upper limit,
It is possible to maximize the use of regenerative braking to improve the energy efficiency of the vehicle while preferably preventing overcharging of the battery due to regenerative braking.

【0021】本発明の第2及び第5の構成によれば、電
池の電圧が所定の最大許容値を上回った場合に回生制動
力の制御目標を低減するようにしたため、充電電力上限
値及びモータの回転数に基づき回生制動力の制御目標の
上限を制限したにもかかわらず電池の特性の経時変化や
ばらつきに起因して電池の電圧が所定の最大許容値を上
回ってしまった場合にも、電池の過充電を好適に防止で
きる。
According to the second and fifth configurations of the present invention, the control target of the regenerative braking force is reduced when the voltage of the battery exceeds a predetermined maximum allowable value. Even when the upper limit of the control target of the regenerative braking force is limited based on the number of revolutions of the battery, even if the battery voltage exceeds the predetermined maximum allowable value due to the change or variation in the characteristics of the battery over time, It is possible to preferably prevent overcharge of the battery.

【0022】本発明の第3及び第6の構成によれば、要
求制動力から回生制動力の制御目標を減じた値に従い、
液体圧制動力を増減制御するようにしたため、要求制動
力が回生制動力の制御目標の上限値を上回る分や、第2
の構成における制御目標の低減の結果生じた回生制動力
の低減分を、流体圧制動力で補うことができ、回生制動
力及び流体圧制動力を含めた合計の制動力を、回生制動
力の制限乃至変動にもかかわらず、要求制動力を目標と
して正確に制御できる。
According to the third and sixth configurations of the present invention, according to the value obtained by subtracting the control target of the regenerative braking force from the required braking force,
Since the liquid pressure braking force is controlled to increase / decrease, the required braking force exceeds the upper limit value of the control target of the regenerative braking force,
The reduction amount of the regenerative braking force resulting from the reduction of the control target in the above configuration can be compensated by the fluid pressure braking force, and the total braking force including the regenerative braking force and the fluid pressure braking force is limited to the regenerative braking force. Despite the fluctuation, the required braking force can be accurately controlled with the target.

【0023】[0023]

【補遺】本発明は、次のような構成としても把握するこ
とができる。
[Addendum] The present invention can also be understood as the following configurations.

【0024】本発明の第7の構成は、第3又は第6の構
成において、流体圧制動力の制御目標が増大したとき、
目標制動力に相当する流体圧を発生させる液体圧発生部
材(例えばマスタシリンダ)から上記電気車両の駆動輪
に流体圧を作用させる流体圧作用部材(例えばホイール
シリンダ)へと例えば増圧バルブにより制動用非圧縮性
流体を導入し、流体圧制動力の制御目標が減少したと
き、流体圧作用部材から所定のタンク部材(例えばリザ
ーバタンク)へと例えば減圧バルブにより制動用非圧縮
性流体を排出し、流体圧発生部材が制動用非圧縮性流体
の導入を要求しているとき、流体圧作用部材から排出さ
れた後タンク部材に貯溜されている制動用圧縮性流体を
例えばポンプにより流体圧発生部材に導入することを特
徴とする。本構成によれば、制動用非圧縮性流体を有効
利用でき、また、流体圧発生部材における制動用非圧縮
性流体のボトミングを好適に防止できる。
A seventh structure of the present invention is the third or sixth structure, wherein when the control target of the fluid pressure braking force is increased,
Braking from a liquid pressure generating member (for example, a master cylinder) that generates a fluid pressure corresponding to the target braking force to a fluid pressure acting member (for example, a wheel cylinder) that applies fluid pressure to the drive wheels of the electric vehicle, for example, by a pressure increasing valve. When the control target of the fluid pressure braking force is reduced by introducing the incompressible fluid for use in the fluid, the incompressible fluid for braking is discharged from the fluid pressure acting member to a predetermined tank member (for example, a reservoir tank) by, for example, a pressure reducing valve, When the fluid pressure generating member requests the introduction of the incompressible fluid for braking, the compressive fluid for braking stored in the tank member after being discharged from the fluid pressure acting member is applied to the fluid pressure generating member by, for example, a pump. It is characterized by introducing. According to this configuration, the braking incompressible fluid can be effectively used, and the bottoming of the braking incompressible fluid in the fluid pressure generating member can be preferably prevented.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明の一実施形態に係る電気自動車の構成
を示すブロック図である。
FIG. 1 is a block diagram showing a configuration of an electric vehicle according to an embodiment of the present invention.

【図2】 回生ECU2の動作の流れを示すフローチャ
ートである。
FIG. 2 is a flowchart showing a flow of operations of the regenerative ECU 2.

【図3】 電池の充電電流及び電圧の変化を示すタイミ
ングチャートである。
FIG. 3 is a timing chart showing changes in battery charging current and voltage.

【図4】 回生トルク上限値を示すトルク回転数特性図
である。
FIG. 4 is a torque rotation speed characteristic diagram showing a regenerative torque upper limit value.

【図5】 Pbattテーブルを示す概念図である。FIG. 5 is a conceptual diagram showing a Pbatt table.

【図6】 制動の進行に伴う油圧・回生制動力配分の変
化を、トルク回転数特性と共に示す図である。
FIG. 6 is a diagram showing a change in hydraulic pressure / regenerative braking force distribution with progress of braking together with a torque rotation speed characteristic.

【図7】 制動の進行に伴う油圧・回生制動力配分の変
化を示すタイミングチャートである。
FIG. 7 is a timing chart showing changes in hydraulic pressure / regenerative braking force distribution as braking progresses.

【符号の説明】[Explanation of symbols]

1 マスタシリンダ、2,9,10 圧力センサ、3,
4 ホイールシリンダ、5,6 増圧バルブ、7,8
減圧バルブ、12 油圧ポンプ、13 リザーバタン
ク、14 フルードタンク、15 切り替え弁、16
モータ、17 インバータ、18 電池、19 モータ
ECU(電子制御ユニット)、20 電池ECU、21
回生ECU、Pbatt 充電上限パワー、Tmax
回生トルク上限値、Treg 回生トルク目標値、T
hyd 油圧トルク目標値。
1 master cylinder, 2, 9, 10 pressure sensor, 3,
4 wheel cylinders, 5, 6 booster valves, 7, 8
Pressure reducing valve, 12 hydraulic pump, 13 reservoir tank, 14 fluid tank, 15 switching valve, 16
Motor, 17 Inverter, 18 Battery, 19 Motor ECU (Electronic Control Unit), 20 Battery ECU, 21
Regenerative ECU, Pbatt charge upper limit power, Tmax
Regenerative torque upper limit value, Treg Regenerative torque target value, T
hyd Hydraulic torque target value.

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 充放電可能な電池及び電池の放電出力に
より駆動されるモータを備えた電気車両に搭載され、要
求制動力に応じて逐次決定される制御目標に従い、モー
タにて発生する回生制動力を制御する回生制動制御装置
において、 電池の状態及びモータの回転数を検出する手段と、 電池の状態に基づき充電電力上限値を決定する手段と、 回生制動力の制御目標の上限を、充電電力上限値及びモ
ータの回転数に基づき制限する手段と、 を備えることを特徴とする回生制動制御装置。
1. A regenerative braking system that is mounted on an electric vehicle equipped with a chargeable / dischargeable battery and a motor driven by the discharge output of the battery and that is generated by the motor according to a control target that is sequentially determined according to a required braking force. In a regenerative braking control device that controls power, means for detecting the state of the battery and the number of rotations of the motor, means for determining the charging power upper limit value based on the state of the battery, and charging the upper limit of the regenerative braking force control target. A means for limiting the electric power based on the upper limit value of the electric power and the number of revolutions of the motor, and a regenerative braking control device.
【請求項2】 請求項1記載の回生制動制御装置におい
て、 電池の電圧を検出する手段と、 電池の電圧が所定の最大許容値を上回った場合に回生制
動力の制御目標を低減する手段と、 を備えることを特徴とする回生制動制御装置。
2. The regenerative braking control device according to claim 1, further comprising means for detecting a voltage of the battery, and means for reducing a control target of the regenerative braking force when the voltage of the battery exceeds a predetermined maximum allowable value. A regenerative braking control device comprising:
【請求項3】 請求項1又は2記載の回生制動制御装置
において、 要求制動力から回生制動力の制御目標を減じた値を流体
圧制動力の制御目標に設定する手段と、 上記電気車両の駆動輪に作用する流体圧制動力をその制
御目標に従い増減制御する手段と、 を備えることを特徴とする回生制動制御装置。
3. The regenerative braking control device according to claim 1, further comprising means for setting a value obtained by subtracting a control target of the regenerative braking force from a required braking force as a control target of the fluid pressure braking force, and driving the electric vehicle. A regenerative braking control device comprising: means for increasing / decreasing a fluid pressure braking force acting on a wheel according to its control target.
【請求項4】 充放電可能な電池及び電池の放電出力に
より駆動されるモータを備えた電気車両にて実行される
回生制動制御方法において、 電池の状態及びモータの回転数を検出するステップと、 電池の状態に基づき充電電力上限値を決定するステップ
と、 充電電力上限値及びモータの回転数に基づきその上限を
制限しながら、回生制動力の制御目標を要求制動力に応
じて逐次決定するステップと、 モータにて発生する回生制動力をその制御目標に従い制
御するステップと、 を有することを特徴とする回生制動制御方法。
4. A regenerative braking control method executed in an electric vehicle including a chargeable / dischargeable battery and a motor driven by the discharge output of the battery, the step of detecting the state of the battery and the rotation speed of the motor, A step of determining the charging power upper limit value based on the state of the battery, and a step of sequentially determining the control target of the regenerative braking force according to the required braking force while limiting the upper limit based on the charging power upper limit value and the motor rotation speed. And a step of controlling the regenerative braking force generated by the motor according to the control target thereof, and a regenerative braking control method.
【請求項5】 請求項4記載の回生制動制御方法におい
て、 電池の電圧を検出するステップと、 電池の電圧が所定の最大許容値を上回った場合に回生制
動力の制御目標を低減するステップと、 を有することを特徴とする回生制動制御方法。
5. The regenerative braking control method according to claim 4, wherein the step of detecting the voltage of the battery, and the step of reducing the control target of the regenerative braking force when the voltage of the battery exceeds a predetermined maximum allowable value. A regenerative braking control method comprising:
【請求項6】 請求項4又は5記載の回生制動制御方法
において、 要求制動力から回生制動力の制御目標を減じた値を流体
圧制動力の制御目標に設定するステップと、 上記電気車両の駆動輪に作用する流体圧制動力をその制
御目標に従い増減制御するステップと、 を有することを特徴とする回生制動制御装置。
6. The regenerative braking control method according to claim 4, wherein the control target of the fluid pressure braking force is set to a value obtained by subtracting the control target of the regenerative braking force from the required braking force, and driving of the electric vehicle. A regenerative braking control device comprising: a step of increasing / decreasing a fluid pressure braking force acting on a wheel according to a control target thereof.
JP22782595A 1995-09-05 1995-09-05 Regenerative braking control apparatus and method for electric vehicle Expired - Lifetime JP3360499B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP22782595A JP3360499B2 (en) 1995-09-05 1995-09-05 Regenerative braking control apparatus and method for electric vehicle
JP2002194396A JP3838169B2 (en) 1995-09-05 2002-07-03 Electric vehicle regenerative braking control method and overcharge prevention method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP22782595A JP3360499B2 (en) 1995-09-05 1995-09-05 Regenerative braking control apparatus and method for electric vehicle
JP2002194396A JP3838169B2 (en) 1995-09-05 2002-07-03 Electric vehicle regenerative braking control method and overcharge prevention method

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2002194396A Division JP3838169B2 (en) 1995-09-05 2002-07-03 Electric vehicle regenerative braking control method and overcharge prevention method

Publications (2)

Publication Number Publication Date
JPH0974605A true JPH0974605A (en) 1997-03-18
JP3360499B2 JP3360499B2 (en) 2002-12-24

Family

ID=59399152

Family Applications (2)

Application Number Title Priority Date Filing Date
JP22782595A Expired - Lifetime JP3360499B2 (en) 1995-09-05 1995-09-05 Regenerative braking control apparatus and method for electric vehicle
JP2002194396A Expired - Lifetime JP3838169B2 (en) 1995-09-05 2002-07-03 Electric vehicle regenerative braking control method and overcharge prevention method

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP2002194396A Expired - Lifetime JP3838169B2 (en) 1995-09-05 2002-07-03 Electric vehicle regenerative braking control method and overcharge prevention method

Country Status (1)

Country Link
JP (2) JP3360499B2 (en)

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000000363A1 (en) * 1998-06-30 2000-01-06 Nissan Diesel Co., Ltd. Brake device for car
JP2002223501A (en) * 2001-01-25 2002-08-09 Toyota Motor Corp Charging controller
WO2003031219A1 (en) * 2001-09-10 2003-04-17 Honda Giken Kogyo Kabushiki Kaisha Vehicle driving apparatus
JP2007203793A (en) * 2006-01-31 2007-08-16 Toyota Motor Corp Vehicle, its controlling method, and brake device
WO2007099726A1 (en) * 2006-02-28 2007-09-07 Toyota Jidosha Kabushiki Kaisha Vehicle drive device and method of controlling vehicle drive device
US7479761B2 (en) 2003-10-29 2009-01-20 Toyota Jidosha Kabushiki Kaisha Secondary battery control apparatus and control method for predicting charging in regenerative braking
US7719238B2 (en) 2006-03-03 2010-05-18 Panasonic Ev Energy Co., Ltd. System for controlling charge/discharge of secondary battery, and battery controller
JP2011018485A (en) * 2009-07-07 2011-01-27 Toyota Motor Corp Fuel cell system
FR2952864A1 (en) * 2009-11-25 2011-05-27 Renault Sa Electric machine controlling method for e.g. hybrid motor vehicle, involves determining torque values limiting torque set point to maximum and/or minimal values, by using maximum mechanical torque values in motor mode and/or generator mode
WO2012111111A1 (en) * 2011-02-16 2012-08-23 スズキ株式会社 Hybrid vehicle
JP2013014282A (en) * 2011-07-06 2013-01-24 Toyota Motor Corp Brake control system
FR3007221A1 (en) * 2013-06-17 2014-12-19 Renault Sa METHOD OF SECURING THE HIGH VOLTAGE NETWORK OF AN ELECTRIC OR HYBRID VEHICLE
JP5673768B1 (en) * 2013-09-27 2015-02-18 ダイキン工業株式会社 Hydraulic device
US9156358B2 (en) * 2013-10-15 2015-10-13 Ford Global Technologies, Llc Regenerative braking in the presence of an antilock braking system control event
CN105313704A (en) * 2014-07-01 2016-02-10 现代自动车株式会社 Method for calculating amount of regenerative braking for environmentally-friendly vehicle
CN106541933A (en) * 2015-09-21 2017-03-29 上海汽车集团股份有限公司 brake energy recovery control method and system
CN106828114A (en) * 2015-12-03 2017-06-13 财团法人车辆研究测试中心 Kinetic energy recharges controller, kinetic energy and recharges control system and its control method
JP2017539190A (en) * 2014-10-27 2017-12-28 エネルジカ モーター カンパニー エス.ピー.エー. System for manipulating electric motors in electric motorcycles
CN113580948A (en) * 2021-08-11 2021-11-02 华人运通(江苏)技术有限公司 Brake control method, device, equipment and storage medium for electric automobile

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4116609B2 (en) 2004-11-04 2008-07-09 パナソニックEvエナジー株式会社 Power supply control device, electric vehicle and battery control unit
JP4271682B2 (en) * 2005-11-24 2009-06-03 本田技研工業株式会社 Control device for motor-driven vehicle
KR100867826B1 (en) 2006-12-12 2008-11-10 현대자동차주식회사 Method for control regenerative braking of electric vehicle
JP4867665B2 (en) * 2007-01-16 2012-02-01 株式会社明電舎 Charge / discharge control device for power storage unit
JP5131175B2 (en) * 2008-12-10 2013-01-30 トヨタ自動車株式会社 Electric vehicle and control method thereof
KR101058721B1 (en) 2009-02-16 2011-08-22 현대모비스 주식회사 Regenerative braking system
JP2010200557A (en) * 2009-02-26 2010-09-09 Nissan Motor Co Ltd Device and method for controlling regenerative cooperation
DE102010042183A1 (en) 2010-10-08 2012-04-12 Robert Bosch Gmbh Hybrid drive device
JP5724704B2 (en) * 2011-07-15 2015-05-27 三菱自動車工業株式会社 Regenerative control device for electric vehicle
EP2546089A3 (en) 2011-07-15 2017-08-23 Mitsubishi Jidosha Kogyo Kabushiki Kaisha Regeneration control device of electrically powered vehicle
JP5733073B2 (en) * 2011-07-15 2015-06-10 三菱自動車工業株式会社 Regenerative control device for electric vehicle
JP2013027064A (en) * 2011-07-15 2013-02-04 Mitsubishi Motors Corp Regeneration control device of electric vehicle
KR101761322B1 (en) 2014-07-10 2017-07-26 주식회사 세인전장 Apparatus and Method for Charging Battery Using Altitude Data
CN104175891B (en) * 2014-08-07 2016-07-13 吉林大学 Pure electric automobile energy regenerating regenerating brake control method
KR101610121B1 (en) 2014-10-08 2016-04-08 현대자동차 주식회사 Apparatus and method for calculating regenerative braking amont of hybrid electirc vehicle
KR101637709B1 (en) * 2014-10-30 2016-07-07 현대자동차주식회사 Braking control method for eco-friendly vehicle
KR102274014B1 (en) * 2015-08-26 2021-07-06 현대자동차 주식회사 Regenerative braking apparatus for vehicle and method of the same
US10369888B2 (en) * 2016-03-09 2019-08-06 Ford Global Technologies, Llc Control system for regenerative braking in a hybrid vehicle
CN106200617B (en) * 2016-07-22 2018-08-07 西安航空制动科技有限公司 Test the method that antiskid brake control device low temperature calculates model data
CN106828119B (en) * 2017-01-11 2018-12-18 电子科技大学 A kind of braking system and braking method for taking into account feedback efficiency and brake efficiency
CN109278588B (en) * 2018-10-24 2020-06-12 重庆长安汽车股份有限公司 Method for controlling temperature of lithium battery
CN110450641B (en) * 2019-08-21 2022-10-28 上海英恒电子有限公司 Automobile braking energy recovery method and device and electric automobile
CN110667394B (en) * 2019-09-29 2022-06-21 奇瑞新能源汽车股份有限公司 Battery SOC brake recovery system and method and electric automobile

Cited By (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1092584A1 (en) * 1998-06-30 2001-04-18 Nissan Diesel Co., Ltd. Brake device for car
US6353786B1 (en) 1998-06-30 2002-03-05 Nissan Diesel Co., Ltd. Braking device for an electrically-powered car that uses a load of an electrical motor as a braking force
EP1092584A4 (en) * 1998-06-30 2003-05-21 Nissan Diesel Brake device for car
WO2000000363A1 (en) * 1998-06-30 2000-01-06 Nissan Diesel Co., Ltd. Brake device for car
JP2002223501A (en) * 2001-01-25 2002-08-09 Toyota Motor Corp Charging controller
WO2003031219A1 (en) * 2001-09-10 2003-04-17 Honda Giken Kogyo Kabushiki Kaisha Vehicle driving apparatus
US6870336B2 (en) * 2001-09-10 2005-03-22 Honda Giken Kogyo Kabushiki Kaisha Vehicle driving apparatus
AU2002328562B2 (en) * 2001-09-10 2005-04-14 Honda Giken Kogyo Kabushiki Kaisha Vehicle driving apparatus
US7479761B2 (en) 2003-10-29 2009-01-20 Toyota Jidosha Kabushiki Kaisha Secondary battery control apparatus and control method for predicting charging in regenerative braking
JP2007203793A (en) * 2006-01-31 2007-08-16 Toyota Motor Corp Vehicle, its controlling method, and brake device
US8040084B2 (en) 2006-01-31 2011-10-18 Toyota Jidosha Kabushiki Kaisha Vehicle, control method thereof and braking device
WO2007099726A1 (en) * 2006-02-28 2007-09-07 Toyota Jidosha Kabushiki Kaisha Vehicle drive device and method of controlling vehicle drive device
US7923950B2 (en) 2006-02-28 2011-04-12 Toyota Jidosha Kabushiki Kaisha Vehicle drive device and method of controlling vehicle drive device
US7719238B2 (en) 2006-03-03 2010-05-18 Panasonic Ev Energy Co., Ltd. System for controlling charge/discharge of secondary battery, and battery controller
JP2011018485A (en) * 2009-07-07 2011-01-27 Toyota Motor Corp Fuel cell system
FR2952864A1 (en) * 2009-11-25 2011-05-27 Renault Sa Electric machine controlling method for e.g. hybrid motor vehicle, involves determining torque values limiting torque set point to maximum and/or minimal values, by using maximum mechanical torque values in motor mode and/or generator mode
WO2012111111A1 (en) * 2011-02-16 2012-08-23 スズキ株式会社 Hybrid vehicle
US9242640B2 (en) 2011-02-16 2016-01-26 Suzuki Motor Corporation Hybrid vehicle control device
DE112011104893T5 (en) 2011-02-16 2013-12-12 Suzuki Motor Corporation hybrid vehicle
DE112011104893B4 (en) 2011-02-16 2021-12-30 Suzuki Motor Corporation Hybrid vehicle
JP5648984B2 (en) * 2011-02-16 2015-01-07 スズキ株式会社 Hybrid vehicle
JP2013014282A (en) * 2011-07-06 2013-01-24 Toyota Motor Corp Brake control system
FR3007221A1 (en) * 2013-06-17 2014-12-19 Renault Sa METHOD OF SECURING THE HIGH VOLTAGE NETWORK OF AN ELECTRIC OR HYBRID VEHICLE
JP5673768B1 (en) * 2013-09-27 2015-02-18 ダイキン工業株式会社 Hydraulic device
US9156358B2 (en) * 2013-10-15 2015-10-13 Ford Global Technologies, Llc Regenerative braking in the presence of an antilock braking system control event
CN105313704A (en) * 2014-07-01 2016-02-10 现代自动车株式会社 Method for calculating amount of regenerative braking for environmentally-friendly vehicle
CN105313704B (en) * 2014-07-01 2019-03-08 现代自动车株式会社 Method for calculating the amount of the regenerative braking of environment-friendly type vehicle
JP2017539190A (en) * 2014-10-27 2017-12-28 エネルジカ モーター カンパニー エス.ピー.エー. System for manipulating electric motors in electric motorcycles
CN106541933A (en) * 2015-09-21 2017-03-29 上海汽车集团股份有限公司 brake energy recovery control method and system
CN106828114A (en) * 2015-12-03 2017-06-13 财团法人车辆研究测试中心 Kinetic energy recharges controller, kinetic energy and recharges control system and its control method
CN106828114B (en) * 2015-12-03 2019-05-10 财团法人车辆研究测试中心 Kinetic energy recharges controller, kinetic energy recharges control system and its control method
CN113580948A (en) * 2021-08-11 2021-11-02 华人运通(江苏)技术有限公司 Brake control method, device, equipment and storage medium for electric automobile

Also Published As

Publication number Publication date
JP3360499B2 (en) 2002-12-24
JP2003125502A (en) 2003-04-25
JP3838169B2 (en) 2006-10-25

Similar Documents

Publication Publication Date Title
JP3360499B2 (en) Regenerative braking control apparatus and method for electric vehicle
US7034482B2 (en) Regeneration control for hybrid vehicle
EP1129889B1 (en) Regeneration control device of hybrid electric vehicle
KR100491492B1 (en) Vehicle control system and control method
US6739677B2 (en) Brake control apparatus
JP3582479B2 (en) Vehicle battery charge control device
US20090069149A1 (en) Brake force control device and method
JPH11332017A (en) Controller for hybrid car
KR100705137B1 (en) A method for decision driving mode of hybrid vehicle
WO2007091722A1 (en) Secondary cell residual capacity estimating device and residual capacity estimating method
JP2004509598A (en) Adjustment method of generator voltage in automobile
JP5131175B2 (en) Electric vehicle and control method thereof
WO2005012029A1 (en) Hybrid power output apparatus and control method
CN107264259B (en) The traveling driving equipment of vehicle
JP2005063682A (en) Battery cooling control device
JP4026013B2 (en) Torque control device
JP2006280161A (en) Regenerative controller for hybrid electric vehicle
JP2008295300A (en) Power restrictions arrangement of vehicle equipped with capacitor
JPH11289607A (en) Controller for hybrid vehicle
US9783189B2 (en) Control apparatus for vehicle and control method for vehicle
JPH10271605A (en) Brake control equipment of electric vehicle
JP3395670B2 (en) Hybrid vehicle
JP2000225932A (en) Brake control device of electric vehicle
JP4064398B2 (en) Charge / discharge control device for motor battery
JP5961558B2 (en) Vehicle travel control device

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081018

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081018

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091018

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091018

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101018

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101018

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111018

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111018

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121018

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121018

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131018

Year of fee payment: 11

EXPY Cancellation because of completion of term