JPH0974255A - Glass fiber woven textile for printed-wiring board - Google Patents

Glass fiber woven textile for printed-wiring board

Info

Publication number
JPH0974255A
JPH0974255A JP8191602A JP19160296A JPH0974255A JP H0974255 A JPH0974255 A JP H0974255A JP 8191602 A JP8191602 A JP 8191602A JP 19160296 A JP19160296 A JP 19160296A JP H0974255 A JPH0974255 A JP H0974255A
Authority
JP
Japan
Prior art keywords
glass fiber
wiring board
glass
woven textile
printed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8191602A
Other languages
Japanese (ja)
Inventor
Koichi Matsumoto
公一 松本
Yoshiharu Suzuki
芳治 鈴木
Shinichi Tamura
進一 田邨
Masahiro Mori
政博 森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nitto Glass Fiber Manufacturing Co Ltd
Nitto Boseki Co Ltd
Original Assignee
Nitto Glass Fiber Manufacturing Co Ltd
Nitto Boseki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nitto Glass Fiber Manufacturing Co Ltd, Nitto Boseki Co Ltd filed Critical Nitto Glass Fiber Manufacturing Co Ltd
Priority to JP8191602A priority Critical patent/JPH0974255A/en
Publication of JPH0974255A publication Critical patent/JPH0974255A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C13/00Fibre or filament compositions
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/089Glass compositions containing silica with 40% to 90% silica, by weight containing boron
    • C03C3/091Glass compositions containing silica with 40% to 90% silica, by weight containing boron containing aluminium

Abstract

PROBLEM TO BE SOLVED: To make it possible to obtain a glass fiber woven textile, which can obtain a low dielectric constant and a low dielectric loss tangent as the material for a printed-wiring board and is superior also in durability and drill processability, by a method wherein the woven textile is woven of a glass fiber having a specified composition. SOLUTION: A glass fiber woven textile for printed-wiring board use is woven of a glass fiber having a composition of SiO2 : 50 to 60% Al2 O3 : 10 to 20% B2 O3 : 20 to 30% CaO: 0 to 5% MgO: 0 to 74%, Li2 O+Na2 O+K2 O: 0 to 0.5% and TiO2 : 0.5 to 5% at wt.%. Accordingly, the printed-wiring board, which is obtained using such the glass fiber, has a low dielectric constant and a low dielectric loss tangent. In particular, the glass fiber woven textile is superior as a glass fiber woven textile for high-density circuit use printed-wiring board use. Moreover, the glass fiber woven textile is superior also in water resistance, soldering temperature resistance and chemical resistance and hardly causes a separation from a resin constituting the printed-wiring board at the time of heat load. Moreover, as perforating positions on the woven textile are hardly crumbled also in a drill processability and the wear due to a drill is little, the reliability of the woven textile is high.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明はプリント配線基板用
ガラス繊維織物に関し、特に低い誘電率、誘電正接を要
求される高密度プリント配線基板を強化するに用いるに
好適なガラス繊維織物に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a glass fiber woven fabric for a printed wiring board, and more particularly to a glass fiber woven fabric suitable for strengthening a high density printed wiring board required to have a low dielectric constant and dielectric loss tangent.

【0002】[0002]

【従来の技術】近年、高度情報化社会の時代を迎え、衛
星放送や移動無線などの通信機器は、デジタル化、信号
の高速処理化の傾向にあり、それに伴って、これらに用
いられるプリント配線基板に対しても、高密度化、高速
処理化への対応が要求され、その結果、プリント配線基
板の材料を構成する補強材に対して、低誘電率化、低誘
電正接化が望まれている。補強材としては、従来から、
ガラス繊維が用いられているが、この種の商業的に生産
されているガラス繊維としてはEガラスが知られてい
る。一般に、ガラスに交流電流を流すと、ガラスは交流
電流に対してエネルギー吸収を行い熱として吸収する。
吸収される誘電損失エネルギーはガラスの成分及び構造
により定まる誘電率及び誘電正接に比例し、次式で表さ
れる。 W=kfv2 ×εtanδ Wは誘電損失エネルギー、kは定数、fは周波数、v2
は電位傾度、εは誘電率、tanδは誘電正接を表す。
この式から誘電率及び誘電正接が大きい程、また周波数
が高い程、誘電損失が大きくなることがわかる。
2. Description of the Related Art In recent years, with the advent of an advanced information society, communication devices such as satellite broadcasting and mobile radio have tended to be digitized and have high-speed signal processing. High density and high speed processing are also required for the board, and as a result, low dielectric constant and low dielectric loss tangent are desired for the reinforcing material that constitutes the material of the printed wiring board. There is. As a reinforcing material,
Although glass fibers are used, E-glass is known as a commercially produced glass fiber of this type. In general, when an alternating current is passed through the glass, the glass absorbs the alternating current as energy and absorbs it as heat.
The absorbed dielectric loss energy is proportional to the dielectric constant and the dielectric loss tangent determined by the composition and structure of glass, and is represented by the following formula. W = kfv 2 × εtan δ W is the dielectric loss energy, k is a constant, f is the frequency, v 2
Is a potential gradient, ε is a dielectric constant, and tan δ is a dielectric loss tangent.
From this equation, it can be seen that the dielectric loss increases as the dielectric constant and the dielectric loss tangent increase, and the frequency increases.

【0003】しかし、Eガラスは誘電率及び誘電正接が
比較的高いため、Eガラスを用いたプリント配線基板で
は、高密度化や信号の高速処理化の要求には、十分に
は、応えられない。そのため、Eガラスより低い誘電
率、誘電正接を持つガラスが望まれているが、その1つ
のガラスとしてDガラスと呼ばれているガラスが開発さ
れている。Dガラスは、一例として、SiO2 73%、
Al2 3 1.0%、B2 3 22%、CaO 0.6
%、MgO 0.5%、Li2 O 0.6% Na2
1.2% K2 O 1.1%の組成を有するガラスで
ある。
However, since the E-glass has a relatively high dielectric constant and dielectric loss tangent, the printed wiring board using the E-glass cannot sufficiently meet the demands for high density and high-speed signal processing. . Therefore, a glass having a lower dielectric constant and dielectric loss tangent than E glass is desired, but a glass called D glass has been developed as one of the glasses. D glass is, as an example, SiO 2 73%,
Al 2 O 3 1.0%, B 2 O 3 22%, CaO 0.6
%, MgO 0.5%, Li 2 O 0.6% Na 2 O
It is a glass having a composition of 1.2% K 2 O 1.1%.

【0004】[0004]

【発明が解決しようとする課題】しかしDガラスは、
1)耐水性が悪いため、プリント配線基板中の樹脂との
剥離を起こしやすく、このガラス繊維織物を用いてプリ
ント配線基板とした場合に高い信頼性が得られない。 2)またこのガラス繊維織物を用いたプリント配線基板
材料は、ドリル穴あけ時、ドリルの磨耗、損傷が大き
く、また穴あけの位置がずれやすいなど、ドリル加工性
が悪い。 3)更に、溶融性が悪く脈理や泡が発生し易いため、紡
糸工程において、ガラス繊維の切断が多く、生産性、作
業性が悪いという問題がある。
However, the D glass is
1) Due to poor water resistance, peeling from the resin in the printed wiring board is likely to occur, and high reliability cannot be obtained when a printed wiring board is formed using this glass fiber woven fabric. 2) Further, a printed wiring board material using this glass fiber woven fabric has poor drilling workability such that the drill is greatly worn and damaged during drilling and the drilling position is easily displaced. 3) Furthermore, since the meltability is poor and striae and bubbles are likely to occur, there is a problem that glass fibers are often cut in the spinning process, resulting in poor productivity and workability.

【0005】本発明は、上記事情に鑑みてなされたもの
であり、プリント配線基板材料として、低誘電率、低誘
電正接が得られ、かつ耐水性、ドリル加工性にも優れた
ガラス繊維織物を提供することを目的とする。
The present invention has been made in view of the above circumstances, and as a printed wiring board material, a glass fiber woven fabric which has a low dielectric constant and a low dielectric loss tangent and is excellent in water resistance and drill workability is also provided. The purpose is to provide.

【0006】[0006]

【課題を解決するための手段】本発明者らは、上記目的
を達成するために、種々検討を重ねた結果、ガラス繊維
の組成において、特にSiO2 を60%以下、TiO2
を0.5〜5%として、ガラスの溶解性を良くしなが
ら、Li2 O、Na2 O、K2 Oの合計を0.5%以下
とすることにより、低誘電率、低誘電正接であって、か
つ耐水性、ドリル加工性の良いプリント配線基板用ガラ
ス繊維織物を得ることが可能であることを見出だし、本
発明を完成するに至った。
The inventors of the present invention have conducted various studies in order to achieve the above-mentioned object, and as a result, in the composition of glass fiber, especially SiO 2 is 60% or less, TiO 2
Is set to 0.5 to 5%, and the solubility of glass is improved, while the total of Li 2 O, Na 2 O, and K 2 O is set to 0.5% or less, whereby a low dielectric constant and a low dielectric loss tangent are obtained. It has been found that it is possible to obtain a glass fiber woven fabric for a printed wiring board which is water resistant and has good drilling workability, and has completed the present invention.

【0007】即ち、本発明のプリント配線基板用ガラス
繊維織物は、重量%で、SiO2 50〜60%、Al2
3 10〜20%、B2 3 20〜30%、CaO 0
〜5%、MgO 0〜4%、Li2 O+Na2 O+K2
O 0〜0.5%、TiO20.5〜5%の組成を有す
るガラス繊維で織られていることを特徴とする。
That is, the glass fiber woven fabric for a printed wiring board according to the present invention has a SiO 2 content of 50 to 60% and an Al 2 content of 2 % by weight.
O 3 10-20%, B 2 O 3 20-30%, CaO 0
~5%, 0~4% MgO, Li 2 O + Na 2 O + K 2
It is characterized by being woven with glass fibers having a composition of O 0 to 0.5% and TiO 2 0.5 to 5%.

【0008】本発明のガラス繊維織物は、好ましくは、
重量%で、SiO2 50〜56%、Al2 3 14〜1
8%、B2 3 24〜28%、CaO 0〜2.5%、
MgO 0〜2.5%、Li2 O 0〜0.15%、N
2 O 0〜0.15%、K2 O 0〜0.15%、T
iO2 1〜4%の組成を有するガラス繊維で織られてい
る。
The glass fiber fabric of the present invention is preferably
% By weight, SiO 2 50-56%, Al 2 O 3 14-1
8%, B 2 O 3 24~28 %, CaO 0~2.5%,
MgO 0~2.5%, Li 2 O 0~0.15 %, N
a 2 O 0 to 0.15%, K 2 O 0 to 0.15%, T
It is woven with glass fibers having an iO 2 1 to 4% of the composition.

【0009】[0009]

【発明の実施の形態】本発明のガラス繊維織物は、通常
シランカップリング剤で表面処理が施されている。表面
処理に用いるシランカップリング剤は、任意であり、従
来公知のものが使用できる。例えば、ビニルトリクロロ
シラン、ビニルトリス(2ーメトキシ)シラン、γーグ
リシドキシプロピルトリメトキシシラン、メタクリロキ
シプロピルトリメトキシシラン、γーアミノプロピルト
リエトキシシラン、γー(2−アミノエチル)アミノプ
ロピルトリメトキシシラン、N−β−(N−ビニルベン
ジルアミノエチル)−γ−アミノプロピルトリメトキシ
シラン塩酸塩、N−フェニル−γ−アミノプロピルトリ
メトキシシラン、γ−クロロプロピルトリメトキシシラ
ン、γ−メルカプトプロピルトリメトキシシラン、ビニ
ルトリエトキシシラン、β−(3, 4エポキシシクロ
ヘキシル)エチルトリメトキシシランが使用できる。
BEST MODE FOR CARRYING OUT THE INVENTION The glass fiber woven fabric of the present invention is usually surface-treated with a silane coupling agent. The silane coupling agent used for the surface treatment is optional, and conventionally known ones can be used. For example, vinyltrichlorosilane, vinyltris (2-methoxy) silane, γ-glycidoxypropyltrimethoxysilane, methacryloxypropyltrimethoxysilane, γ-aminopropyltriethoxysilane, γ- (2-aminoethyl) aminopropyltrimethoxysilane. Silane, N-β- (N-vinylbenzylaminoethyl) -γ-aminopropyltrimethoxysilane hydrochloride, N-phenyl-γ-aminopropyltrimethoxysilane, γ-chloropropyltrimethoxysilane, γ-mercaptopropyltri Methoxysilane, vinyltriethoxysilane and β- (3,4epoxycyclohexyl) ethyltrimethoxysilane can be used.

【0010】本発明のガラス繊維織物のガラス組成を限
定した理由は以下の通りである。SiO2 はAl
2 3 、B2 3 とともに、ガラスの骨格を形成する成
分であるが、50%未満では誘電率が大きくなり過ぎ
る。60%を超えると、ドリル加工性が悪くなりすぎ
る。また粘度が高くなり過ぎて、紡糸時、溶出量が低く
なって生産性が落ち、場合によっては、繊維化が困難と
なる。好ましくは50〜56%である。
The reasons for limiting the glass composition of the glass fiber woven fabric of the present invention are as follows. SiO 2 is Al
It is a component that forms a glass skeleton together with 2 O 3 and B 2 O 3 , but if it is less than 50%, the dielectric constant becomes too large. If it exceeds 60%, the drill workability becomes too poor. Further, the viscosity becomes too high, the amount of elution becomes low during spinning, and the productivity decreases, and in some cases, fiberization becomes difficult. It is preferably 50 to 56%.

【0011】Al2 3 は10%未満では、分相を生じ
易く、そのため耐水性が悪くなる。20%を超えると液
相温度が上昇し紡糸性が悪くなる。従ってAl2 3
10〜20%に限定され、好ましくは14〜18%であ
る。
If Al 2 O 3 is less than 10%, a phase separation is likely to occur, resulting in poor water resistance. If it exceeds 20%, the liquidus temperature rises and the spinnability deteriorates. Therefore, Al 2 O 3 is limited to 10 to 20%, preferably 14 to 18%.

【0012】B2 3 は融剤として使用し、粘度を低下
させ、溶融を容易にする成分であるが、20%未満で
は、誘電正接が大きくなり過ぎる。30%を超えると耐
水性、ドリル加工性が悪くなり過ぎる。従ってB2 3
は10〜20%に限定され、好ましくは24〜28%で
ある。
B 2 O 3 is a component used as a fluxing agent to lower the viscosity and facilitate melting, but if it is less than 20%, the dielectric loss tangent becomes too large. If it exceeds 30%, the water resistance and the drilling workability are deteriorated too much. Therefore B 2 O 3
Is limited to 10 to 20%, preferably 24 to 28%.

【0013】CaO、MgOは、ともに耐水性を向上さ
せる成分であるが、CaOが5%、MgOが4%を超え
ると誘電率、誘電正接が大きくなり過ぎるのでCaOは
0〜5%、MgOは0〜4%に限定され、好ましくはC
aO 0〜2.5%、MgO0〜2.5%である。
CaO and MgO are both components that improve water resistance. However, when CaO exceeds 5% and MgO exceeds 4%, the dielectric constant and dielectric loss tangent become too large, so CaO is 0 to 5%, and MgO is It is limited to 0 to 4%, preferably C
aO is 0 to 2.5% and MgO is 0 to 2.5%.

【0014】Li2 O、Na2 O、K2 Oは、ともに融
剤として使用するが、これらの合計が0.5%を超える
と誘電正接が高くなり過ぎ、また耐水性も悪くなる。従
ってLi2 O+Na2 O+K2 Oは0〜0.5%に限定
され、好ましくはLi2 O0〜0.15%、Na2
0〜0.15%、K2 O 0〜0.15%である。
Li 2 O, Na 2 O and K 2 O are all used as fluxing agents, but if the total amount of these exceeds 0.5%, the dielectric loss tangent becomes too high and the water resistance becomes poor. Thus Li 2 O + Na 2 O + K 2 O is limited to 0 to 0.5%, preferably Li 2 O0~0.15%, Na 2 O
It is 0 to 0.15% and K 2 O is 0 to 0.15%.

【0015】TiO2 は粘性を低下させ、誘電正接を下
げるのに有効であるが、0.5%未満では紡糸時、脈
理、未溶融を発生させて溶融性が悪くなったり、また、
誘電正接が高くなる。逆に5%を超えると分相を生じ易
く、化学的耐久性が悪くなる。従って、TiO2 は0.
5〜5%に限定され、好ましくは、1〜4%である。
TiO 2 is effective for lowering the viscosity and the dielectric loss tangent, but if it is less than 0.5%, striae and unmelting may occur during spinning, resulting in poor meltability.
The dielectric loss tangent becomes high. On the other hand, if it exceeds 5%, phase separation is likely to occur, resulting in poor chemical durability. Therefore, TiO 2 is less than 0.
It is limited to 5 to 5%, preferably 1 to 4%.

【0016】本発明においては上記成分以外にもガラス
特性を損なわない程度に、ZrO2、As2 3 、Sb
2 3 、ZnO、SrO、Fe2 3 、Cr2 3 、P
2 5 、F2 、Cl2 、SO3等の成分を3%まで含有
することが可能である。
In the present invention, other than the above components, ZrO 2 , As 2 O 3 and Sb are added to the extent that glass properties are not impaired.
2 O 3 , ZnO, SrO, Fe 2 O 3 , Cr 2 O 3 , P
It is possible to contain up to 3% of components such as 2 O 5 , F 2 , Cl 2 , SO 3 .

【0017】[0017]

【実施例】本発明のガラス繊維織物を実施例に基づき詳
しく説明する。 1)表1に示すガラス組成になるように調合したバッチ
を、白金ルツボに入れ電気炉中で1500〜1550℃
で8時間の条件で、撹拌を加えながら溶融した。次にこ
の溶融ガラスをカーボン板上に流し出し、ガラスカレッ
トを作成した。このガラスカレットをガラス繊維製造炉
に投入後、1300〜1400℃で溶融し、紡糸して、
ガラス繊維を製造した。製造時、Dガラスを紡糸した時
に生じる硼酸(B2 3 )の多量の揮発も見られず、不
都合なく紡糸できた。
EXAMPLES The glass fiber woven fabric of the present invention will be described in detail based on examples. 1) A batch prepared to have a glass composition shown in Table 1 was placed in a platinum crucible and placed in an electric furnace at 1500 to 1550 ° C.
It melted for 8 hours under stirring. Next, this molten glass was cast on a carbon plate to prepare a glass cullet. This glass cullet is put into a glass fiber manufacturing furnace, melted at 1300 to 1400 ° C., spun,
Glass fiber was produced. During production, no large amount of volatilization of boric acid (B 2 O 3 ) generated when spinning D glass was observed, and spinning could be performed without any inconvenience.

【0018】2)このガラス繊維(繊維径7μm)を用
いて、JIS R3414に規定するガラスクロスの種
類EP10Aに準じて、下記のガラス繊維織物を製織し
た。 〈ガラスクロスの種類〉 使用ガラス糸:E225 1/0 1Z 密度 :たて60本/25mm、よこ58本/25mm 厚さ :0.1mm 質量 :105g/mm2 織り方 :平織
2) Using this glass fiber (fiber diameter 7 μm), the following glass fiber woven fabric was woven in accordance with glass cloth type EP10A specified in JIS R3414. <Type of glass cloth> Glass thread used: E225 1/0 1Z Density: 60 warps / 25mm, 58 wefts / 25mm horizontal Thickness: 0.1mm Mass: 105g / mm 2 Weave: Plain weave

【0019】3)次に、ヒ−トクリ−ニング処理をした
後、シランカップリング剤としてN−β−(N−ビニル
ベンジルアミノエチル)−γ−アミノプロピルトリメト
キシシラン塩酸塩を、1重量%の酢酸水溶液に加えて、
7g/lになるように溶解して得られた処理液に、前記
ガラス繊維織物を浸し、ピックアップ量が28重量%と
なるようにマングルで絞った後、110℃で5分間乾燥
して、処理ガラス繊維織物を得た。
3) Next, after heat cleaning treatment, 1% by weight of N-β- (N-vinylbenzylaminoethyl) -γ-aminopropyltrimethoxysilane hydrochloride as a silane coupling agent. In addition to the acetic acid aqueous solution of
The glass fiber woven fabric was dipped in a treatment solution obtained by dissolving it so as to have a concentration of 7 g / l, squeezed with a mangle so that a pickup amount was 28% by weight, and then dried at 110 ° C. for 5 minutes to be treated. A glass fiber woven fabric was obtained.

【0020】4)得られた処理ガラス繊維織物を、下記
に示すNEMA規格FR−4組成のエポキシワニスに含
浸させ、130℃で6分間乾燥してプリプレグを得た。 <エポキシワニス(FR−4)の組成> 臭素化エポキシ樹脂 100重量部 (エピコ−ト5046−b−8、油化シェルエポキシ樹脂(株)製) ノボラック型エポキシ樹脂 20重量部 (エピコ−ト154、油化シェルエポキシ樹脂(株)製) ジシアンジアミド 4重量部 2−エチル−4−メチルイミダゾ−ル 0.2重量部 メチルエチルケトン 15重量部 ジメチルホルムアミド 30重量部
4) The obtained treated glass fiber woven fabric was impregnated with an epoxy varnish of NEMA standard FR-4 composition shown below and dried at 130 ° C. for 6 minutes to obtain a prepreg. <Composition of epoxy varnish (FR-4)> 100 parts by weight of brominated epoxy resin (Epicote 5046-b-8, manufactured by Yuka Shell Epoxy Resin Co., Ltd.) 20 parts by weight of novolac type epoxy resin (Epicote 154 , Yuka Shell Epoxy Resin Co., Ltd.) Dicyandiamide 4 parts by weight 2-ethyl-4-methylimidazole 0.2 parts by weight Methylethylketone 15 parts by weight Dimethylformamide 30 parts by weight

【0021】5)得られたプリプレグを4枚重ねたもの
と16枚重ねたものの2種類を作製し、それぞれ上下に
銅箔を重ね、30kg/cm2 の荷重のもとで175℃
で90分加熱して積層板を作製した。試験片は、この銅
張り積層板をエッチングにより銅を除去したものを用い
た。このうち、プリプレグを4枚重ねた試験片は、半田
耐熱性、吸水率、耐薬品性の試験に用い、16枚重ねた
試験片は、誘電率、誘電正接、ドリル加工性の試験に用
いた。主な試験方法を下記に示す。これらの試験の結果
を表1に示す。
5) Two kinds of the obtained prepregs were prepared, that is, 4 sheets and 16 sheets were piled up, and copper foils were piled up and down respectively, and 175 ° C. under a load of 30 kg / cm 2.
And heated for 90 minutes to prepare a laminated plate. As the test piece, a copper-clad laminate obtained by removing copper by etching was used. Of these, the test piece with four prepregs stacked was used for the solder heat resistance, water absorption, and chemical resistance tests, and the test piece with 16 prepregs was used for the dielectric constant, dielectric loss tangent, and drill workability tests. . The main test methods are shown below. The results of these tests are shown in Table 1.

【0022】[試験方法] 1)ドリル加工性 試験片を3枚重ね、ドリル径0.3mm、回転数60,0
00rpm、送り速度50μm/revの条件で、穴あ
け回数8000穴後のドリルの磨耗の程度、加工穴の内
壁粗さ、穴位置精度について総合的に評価した。評価
は、従来よく使用されていて、ドリル加工性に問題のな
いガラスといわれているEガラスと比較し、Eガラスと
同等程度であれば「優」とし、またドリル加工性に問題
があると見られているDガラスと同等程度であれば
「不」とした。Eガラス、Dガラスの中間程度であれば
「良」とした。
[Test method] 1) Drill workability Three test pieces were stacked, a drill diameter of 0.3 mm and a rotation speed of 60,0.
Under the conditions of 00 rpm and a feed rate of 50 μm / rev, the degree of wear of the drill after the number of drilling of 8000 holes, the inner wall roughness of the processed hole, and the hole position accuracy were comprehensively evaluated. The evaluation is “excellent” if it is about the same as E glass, and that there is a problem with drill workability, as compared with E glass that has been often used and is said to have no problem with drill workability. If it was about the same as the D glass seen, it was regarded as "not good". If it was about the middle of E glass and D glass, it was judged as “good”.

【0023】2)半田耐熱性、吸水率 半田耐熱性は、前記試験片を4cm四方に切り出し、1
21℃に設定されたプレッシャークッカーに所定時間入
れ、次に260℃の半田浴に20秒間浸漬した後、試験
片のふくれの状態(デラミネーション)を目視により、
○、△、×の3段階に分けて、評価した。評価において
「○」はふくれなし。「△」は小さなふくれ1つあり。
「×」はふくれ2つ以上ありを示す。吸水率は、前記半
田耐熱性の試験における、121℃に設定されたプレッ
シャークッカーに105分間投入したときの、投入前後
の試験片の重量から、次式を用いて吸水率(%)を算出
した。 吸水率(%)=(W2−W1)×100/W1 ここで、W1はプレッシャークッカー投入前の試験片の
重量を示し、W2はプレッシャークッカー投入後の試験
片の重量を示す。
2) Soldering heat resistance and water absorption rate As for the soldering heat resistance, the test piece was cut into 4 cm squares, and 1
After putting it in a pressure cooker set to 21 ° C for a predetermined time, and then immersing it in a solder bath at 260 ° C for 20 seconds, visually observing the blister state (delamination) of the test piece,
The evaluation was made in three grades of ◯, Δ, and ×. In the evaluation, "○" means no blister. "△" has one small blister.
“X” indicates that there are two or more blisters. The water absorption rate was calculated from the weights of the test pieces before and after charging in a pressure cooker set at 121 ° C. for 105 minutes in the solder heat resistance test, using the following formula, to calculate the water absorption rate (%). . Water absorption rate (%) = (W 2 −W 1 ) × 100 / W 1 Here, W 1 indicates the weight of the test piece before the pressure cooker is charged, and W 2 indicates the weight of the test piece after the pressure cooker is charged. .

【0024】3)耐薬品性 試験片を、沸騰した塩化メチレンに60分間浸漬し、浸
漬後の表面状態を目視により評価した。「優」は、外観
上変化のなかったものをいい、「不」は、表面がざらつ
いた、クロス目が浮いて見えたなど、外観上、変化が見
られたものをいう。
3) Chemical resistance The test piece was immersed in boiling methylene chloride for 60 minutes, and the surface condition after immersion was visually evaluated. “Excellent” means that there was no change in appearance, and “Fail” means that there was a change in appearance, such as the surface being rough or the cross eyes appearing to float.

【0025】[0025]

【表1】 [Table 1]

【0026】[結果]表1に示すように、本発明のガラ
ス繊維織物を用いた実施例の積層板は、誘電率が約3.
9、誘電正接は約17.6×10-4であって、比較例2
のEガラスを用いた積層板の、それぞれ4.67、1
8.24×10-4よりも低く、比較例1のDガラスを用
いた積層板の、それぞれ3.83、17.66×10-4
と同程度の低誘電率、低誘電正接を示す。また、実施例
の積層板のドリル加工性は、比較例1のDガラスの場合
より優れており、比較例2のEガラスの場合と同程度で
ある。更に、実施例の積層板の吸水率は、比較例1のD
ガラスの場合より小さく、耐水性が優れている。更に、
実施例の積層板の半田耐熱性は、比較例1のDガラスの
場合より優れており、比較例2のEガラスと同程度であ
る。更に、実施例の積層板の耐薬品性は、比較例1のD
ガラスの場合より優れており、比較例2のEガラスの場
合と同程度である。
[Results] As shown in Table 1, the laminates of the examples using the glass fiber woven fabric of the present invention have a dielectric constant of about 3.
9, the dielectric loss tangent was about 17.6 × 10 −4 , and Comparative Example 2
4.67 and 1 of the laminated plate using E glass of
It is lower than 8.24 × 10 −4 and is 3.83 and 17.66 × 10 −4 of the laminated plate using the D glass of Comparative Example 1, respectively.
Shows low dielectric constant and low dielectric loss tangent. Further, the drill workability of the laminated plate of the example is superior to that of the D glass of the comparative example 1, and is about the same as that of the E glass of the comparative example 2. Further, the water absorption of the laminated plate of the example is D of the comparative example 1.
It is smaller than glass and has excellent water resistance. Furthermore,
The solder heat resistance of the laminated board of the example is superior to that of the D glass of the comparative example 1, and is about the same as that of the E glass of the comparative example 2. Furthermore, the chemical resistance of the laminate of the example is D of Comparative Example 1.
It is superior to the case of glass and is almost the same as that of the E glass of Comparative Example 2.

【0027】[0027]

【発明の効果】本発明のガラス繊維織物を用いて得られ
るプリント配線基板は、低誘電率、低誘電正接を有して
いるので、特に、高密度回路用プリント配線基板用のガ
ラス繊維織物として優れている。また、耐水性、半田耐
熱性、耐薬品性にも優れており、熱負荷時におけるプリ
ント配線基板を構成する樹脂との剥離を起こしにくい。
更にドリル加工性においても、穴あけの位置がずれにく
く、ドリルの磨耗が少ないので、信頼性の高いプリント
配線基板が安定して得られるなどの効果も有する。
Since the printed wiring board obtained by using the glass fiber woven fabric of the present invention has a low dielectric constant and a low dielectric loss tangent, it is particularly useful as a glass fiber woven fabric for a high density circuit printed wiring board. Are better. Further, it is also excellent in water resistance, solder heat resistance, and chemical resistance, and is unlikely to peel off from the resin constituting the printed wiring board when subjected to a heat load.
Further, in terms of drill workability, the drilling position is unlikely to shift and the drill wear is small, so that a highly reliable printed wiring board can be stably obtained.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 // B32B 17/04 B32B 17/04 A D01F 9/08 D01F 9/08 A ─────────────────────────────────────────────────── ─── Continuation of front page (51) Int.Cl. 6 Identification number Office reference number FI technical display location // B32B 17/04 B32B 17/04 A D01F 9/08 D01F 9/08 A

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 重量%で、SiO2 50〜60%、Al
2 3 10〜20%、B2 3 20〜30%、CaO
0〜5%、MgO 0〜4%、Li2 O+Na2 O+K
2 O 0〜0.5%、TiO2 0.5〜5%の組成を有
するガラス繊維で織られていることを特徴とするプリン
ト配線基板用ガラス繊維織物。
1. The composition according to claim 1, wherein the content of SiO 2 is 50-60% by weight,
2 O 3 10-20%, B 2 O 3 20-30%, CaO
0-5%, MgO 0-4%, Li 2 O + Na 2 O + K
A glass fiber woven fabric for a printed wiring board, which is woven with a glass fiber having a composition of 0 to 0.5% of 2 O and 0.5 to 5% of TiO 2 .
【請求項2】 重量%で、SiO2 50〜56%、Al
2 3 14〜18%、B2 3 24〜28%、CaO
0〜2.5%、MgO 0〜2.5%、Li2 O 0〜
0.15%、Na2 O 0〜0.15%、K2 O 0〜
0.15%、TiO2 1〜4%の組成を有する請求項1
に記載のガラス繊維で織られているプリント配線基板用
ガラス繊維織物。
2. By weight%, SiO 2 50-56%, Al
2 O 3 14-18%, B 2 O 3 24-28%, CaO
0-2.5%, MgO 0-2.5%, Li 2 O 0-
0.15%, Na 2 O 0~0.15% , K 2 O 0~
A composition having a composition of 0.15% and TiO 2 of 1 to 4%.
A glass fiber woven fabric for a printed wiring board, which is woven with the glass fiber according to 1.
JP8191602A 1995-07-03 1996-07-03 Glass fiber woven textile for printed-wiring board Pending JPH0974255A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8191602A JPH0974255A (en) 1995-07-03 1996-07-03 Glass fiber woven textile for printed-wiring board

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP7-187727 1995-07-03
JP18772795 1995-07-03
JP8191602A JPH0974255A (en) 1995-07-03 1996-07-03 Glass fiber woven textile for printed-wiring board

Publications (1)

Publication Number Publication Date
JPH0974255A true JPH0974255A (en) 1997-03-18

Family

ID=26504525

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8191602A Pending JPH0974255A (en) 1995-07-03 1996-07-03 Glass fiber woven textile for printed-wiring board

Country Status (1)

Country Link
JP (1) JPH0974255A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002307611A (en) * 2001-04-12 2002-10-23 Chuko Kasei Kogyo Kk Fluoroplastic copper-clad laminated sheet
US6846761B2 (en) 1998-04-14 2005-01-25 Nitto Boseki Co., Ltd. Low-dielectric-constant glass fiber and glass fiber fabric made thereof
US7678721B2 (en) 2006-10-26 2010-03-16 Agy Holding Corp. Low dielectric glass fiber
US8115105B2 (en) 2008-01-15 2012-02-14 Hitachi Chemical Co., Ltd. Prepreg and its application products for low thermal expansion and low dielectric tangent
US8227361B2 (en) 2008-04-28 2012-07-24 Hitachi Chemical Company, Ltd. Prepreg and printed wiring board using thin quartz glass cloth
JPWO2016175248A1 (en) * 2015-04-27 2018-02-08 旭化成株式会社 Glass cloth
JP2018518440A (en) * 2015-05-13 2018-07-12 ピーピージー・インダストリーズ・オハイオ・インコーポレイテッドPPG Industries Ohio,Inc. Use of MgO, ZnO, and rare earth oxides to make improved low dielectric constant fibers with improved low thermal expansion coefficient for high boron aluminosilicate composition
JP2018127749A (en) * 2017-02-10 2018-08-16 旭化成株式会社 Glass cloth, prepreg and printed wiring board
KR20190088904A (en) 2018-01-19 2019-07-29 신에쓰 가가꾸 고교 가부시끼가이샤 Quartz glass fiber-containing prepreg, quartz glass fiber-containing film and quartz glass fiber-containing substrate
KR20190126244A (en) 2018-05-01 2019-11-11 신에쓰 가가꾸 고교 가부시끼가이샤 Prepreg containing quartz glass fiber and substrate containing quartz glass fiber
CN113135666A (en) * 2020-11-18 2021-07-20 南京玻璃纤维研究设计院有限公司 Low-dielectric glass fiber, preparation method, glass fiber product, composite material and application

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6846761B2 (en) 1998-04-14 2005-01-25 Nitto Boseki Co., Ltd. Low-dielectric-constant glass fiber and glass fiber fabric made thereof
JP2002307611A (en) * 2001-04-12 2002-10-23 Chuko Kasei Kogyo Kk Fluoroplastic copper-clad laminated sheet
US7678721B2 (en) 2006-10-26 2010-03-16 Agy Holding Corp. Low dielectric glass fiber
US8115105B2 (en) 2008-01-15 2012-02-14 Hitachi Chemical Co., Ltd. Prepreg and its application products for low thermal expansion and low dielectric tangent
US8227361B2 (en) 2008-04-28 2012-07-24 Hitachi Chemical Company, Ltd. Prepreg and printed wiring board using thin quartz glass cloth
JPWO2016175248A1 (en) * 2015-04-27 2018-02-08 旭化成株式会社 Glass cloth
KR20200009140A (en) * 2015-04-27 2020-01-29 아사히 가세이 가부시키가이샤 Glass cloth
JP2018518440A (en) * 2015-05-13 2018-07-12 ピーピージー・インダストリーズ・オハイオ・インコーポレイテッドPPG Industries Ohio,Inc. Use of MgO, ZnO, and rare earth oxides to make improved low dielectric constant fibers with improved low thermal expansion coefficient for high boron aluminosilicate composition
JP2018127749A (en) * 2017-02-10 2018-08-16 旭化成株式会社 Glass cloth, prepreg and printed wiring board
KR20190088904A (en) 2018-01-19 2019-07-29 신에쓰 가가꾸 고교 가부시끼가이샤 Quartz glass fiber-containing prepreg, quartz glass fiber-containing film and quartz glass fiber-containing substrate
KR20190126244A (en) 2018-05-01 2019-11-11 신에쓰 가가꾸 고교 가부시끼가이샤 Prepreg containing quartz glass fiber and substrate containing quartz glass fiber
CN113135666A (en) * 2020-11-18 2021-07-20 南京玻璃纤维研究设计院有限公司 Low-dielectric glass fiber, preparation method, glass fiber product, composite material and application

Similar Documents

Publication Publication Date Title
JP4269194B2 (en) Low dielectric constant glass fiber
JP3228945B2 (en) Low dielectric constant glass fiber
WO1996039363A1 (en) Low-permittivity glass fibers
US7449419B2 (en) Glass compositions, glass fibers, and methods of inhibiting boron volatization from glass compositions
JPH0974255A (en) Glass fiber woven textile for printed-wiring board
US6846761B2 (en) Low-dielectric-constant glass fiber and glass fiber fabric made thereof
JP3409806B2 (en) Low dielectric constant glass fiber
US20040175557A1 (en) Reinforcing glass yarns with low dielectric constants
WO2013036505A1 (en) Low dielectric glass and fiber glass
JPH10167759A (en) Low dielectric constant glass fiber
JP3116341B2 (en) Glass woven fabric for laminates and laminate substrates, and methods of using laminates
JPH06211543A (en) Glass fiber
JPH092839A (en) Glass fiber having low dielectric loss tangent
JPH10120437A (en) Glass fiber with low dielectric constant
CN113307993A (en) Glass yarn and glass fiber cloth and preparation process thereof
JP3965533B2 (en) Water-resistant high borate glass fiber manufacturing method and water-resistant high borate glass fiber
TWI784902B (en) Glass fiber cloth, printed circuit boards, integrated circuit substrates and electronic products
JP2008101062A (en) Resin composition, prepreg, laminated plate and semiconductor device
JPH11157876A (en) Corrosion resistant glass fiber
JPH11246741A (en) Epoxy resin composition for laminate
JP2010265415A (en) Epoxy resin composition and laminate
JP3390346B2 (en) Glass cloth
US20230265011A1 (en) Laminate
JPH05147979A (en) Glass fiber base material and glass fiber reinforced resin laminated sheet using the same
JPH0967757A (en) Ultrathin-treated glass fiber woven fabric and production of the same woven fabric

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060214

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20060801