JPH10120437A - Low dielectric constant glass fiber - Google Patents

Low dielectric constant glass fiber

Info

Publication number
JPH10120437A
JPH10120437A JP27362596A JP27362596A JPH10120437A JP H10120437 A JPH10120437 A JP H10120437A JP 27362596 A JP27362596 A JP 27362596A JP 27362596 A JP27362596 A JP 27362596A JP H10120437 A JPH10120437 A JP H10120437A
Authority
JP
Japan
Prior art keywords
glass
dielectric constant
glass fiber
low dielectric
loss tangent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP27362596A
Other languages
Japanese (ja)
Inventor
Shinichi Tamura
進一 田邨
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nitto Glass Fiber Manufacturing Co Ltd
Nitto Boseki Co Ltd
Original Assignee
Nitto Glass Fiber Manufacturing Co Ltd
Nitto Boseki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nitto Glass Fiber Manufacturing Co Ltd, Nitto Boseki Co Ltd filed Critical Nitto Glass Fiber Manufacturing Co Ltd
Priority to JP27362596A priority Critical patent/JPH10120437A/en
Publication of JPH10120437A publication Critical patent/JPH10120437A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C13/00Fibre or filament compositions
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/11Glass compositions containing silica with 40% to 90% silica, by weight containing halogen or nitrogen
    • C03C3/112Glass compositions containing silica with 40% to 90% silica, by weight containing halogen or nitrogen containing fluorine
    • C03C3/115Glass compositions containing silica with 40% to 90% silica, by weight containing halogen or nitrogen containing fluorine containing boron
    • C03C3/118Glass compositions containing silica with 40% to 90% silica, by weight containing halogen or nitrogen containing fluorine containing boron containing aluminium
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • H05K1/0313Organic insulating material
    • H05K1/0353Organic insulating material consisting of two or more materials, e.g. two or more polymers, polymer + filler, + reinforcement
    • H05K1/0366Organic insulating material consisting of two or more materials, e.g. two or more polymers, polymer + filler, + reinforcement reinforced, e.g. by fibres, fabrics

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Glass Compositions (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain a glass fiber, having a low dielectric constant and a low dielectric dissipation factor, excellent in water resistance, having a low spinning temperature and excellent in productivity and operating efficiency by including a specific glass composition therein. SOLUTION: This glass fiber is obtained by providing a glass composition of 50-56wt.% SiO2 , 10-18wt.% Al2 O3 , 18-25wt.% B2 O3 , >10 and <=17wt.% CaO, 0-4wt.% MgO, 0-1.0wt.% total amount of Li2 O, Na2 O and K2 O and 0-2wt.% F2 , preferably a glass composition of 52-55wt.% SiO2 , 12-15wt.% Al2 O3 , 20-24wt.% B2 O3 , 11-15wt.% CaO, 0-3wt.% MgO, 0-0.3wt.% Li2 O, 0-0.3wt.% Na2 O, 0-0.4wt.% K2 O and 0-1wt.% F2 . As a result, the glass fiber having <=5.5 dielectric constant, <=10×10<-4> dielectric dissipation factor, <=1,300 deg.C spinning temperature and <=1% percentage loss of weight is obtained.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、低誘電率ガラス繊
維に関し、特に低い誘電正接を要求される高密度プリン
ト配線基板を強化するのに用いるに好適な低い誘電正接
を有する低誘電率ガラス繊維に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a low dielectric constant glass fiber, and more particularly, to a low dielectric constant glass fiber having a low dielectric loss tangent suitable for reinforcing a high-density printed wiring board requiring a low dielectric loss tangent. About.

【0002】[0002]

【従来の技術】近年、高度情報化社会の時代を迎え、衛
星放送や移動無線などの通信機器は、デジタル化、信号
の高速処理化の傾向にある。これらには補強材、樹脂、
改質剤、充填材等の材料からなる複合材料から構成され
るプリント配線基板が使用されており、その補強材とし
てはガラス繊維が広く用いられている。従来、この種の
商業的に生産されているガラス繊維としてはEガラスが
知られている。
2. Description of the Related Art In recent years, in the era of the advanced information society, communication devices such as satellite broadcasting and mobile radio tend to be digitized and processed at high speed. These include reinforcements, resins,
A printed wiring board composed of a composite material composed of a material such as a modifier and a filler is used, and glass fiber is widely used as a reinforcing material thereof. Conventionally, E glass is known as this kind of commercially produced glass fiber.

【0003】一般に、ガラスに交流電流を流すと、ガラ
スは交流電流に対してエネルギー吸収を行い熱として吸
収する。吸収される誘電損失エネルギーはガラスの成分
及び構造により定まる誘電率及び誘電正接に比例し、次
式で表される。
Generally, when an alternating current is applied to glass, the glass absorbs energy with respect to the alternating current and absorbs heat as heat. The absorbed dielectric loss energy is proportional to the dielectric constant and the dielectric loss tangent determined by the composition and structure of the glass, and is expressed by the following equation.

【0004】W=kfv2 ×εtanδ ここに、Wは誘電損失エネルギー、kは定数、fは周波
数、v2 は電位傾度、εは誘電率、tanδは誘電正接
を表す。
W = kfv2 × εtanδ where W is the dielectric loss energy, k is a constant, f is the frequency, v2 is the potential gradient, ε is the dielectric constant, and tanδ is the dielectric loss tangent.

【0005】この式から誘電率及び誘電正接が大きい
程、また周波数が高い程、誘電損失が大きくなることが
わかる。
From this equation, it can be seen that as the dielectric constant and the dielectric loss tangent increase, and as the frequency increases, the dielectric loss increases.

【0006】Eガラスの場合、一例として室温における
周波数1MHzでの誘電率が6.7、誘電正接が12×
10-4であって、Eガラスを用いたプリント配線基板
は、高密度化や信号の高速処理化の要求に応えるには不
十分である。そのため、Eガラスより低い誘電率、誘電
正接を持つガラスが望まれているが、、その1つのガラ
スとして、Dガラスと呼ばれているガラスが開発されて
いる。Dガラスは一例として、SiO2 75.3%、
B2 O3 20.5%、CaO 0.6%、MgO0.4
%、Li2 O 0.6%、Na2 O 1.1%、K2 O
1.5%の組成を有するガラスであり、一例として、室
温における周波数1MHzでの誘電率が4.3、誘電正
接が10×10-4である。
In the case of E glass, for example, the dielectric constant at a frequency of 1 MHz at room temperature is 6.7 and the dielectric loss tangent is 12 ×.
10-4, which is insufficient for a printed wiring board using E glass to meet the demands for higher density and faster signal processing. Therefore, a glass having a dielectric constant and a dielectric loss tangent lower than that of E glass is desired. As one such glass, a glass called D glass has been developed. D glass is, for example, 75.3% of SiO2,
B2O3 20.5%, CaO 0.6%, MgO0.4
%, Li2 O 0.6%, Na2 O 1.1%, K2 O
It is a glass having a composition of 1.5%. For example, the dielectric constant at a frequency of 1 MHz at room temperature is 4.3 and the dielectric loss tangent is 10.times.10@-4.

【0007】[0007]

【発明が解決しようとする課題】しかし、Dガラスは、
溶融性が悪く脈理や泡が発生し易いため、紡糸工程にお
いて、ガラス繊維の切断が多く生産性、作業性が悪い、
また紡糸温度が非常に高いため、炉の寿命が短いという
欠点がある。更にDガラスは、耐水性が悪く、また樹脂
との接着性が悪いため、プリント配線基板中の樹脂との
剥離を起こしやすく、プリント配線基板とした場合に高
い信頼性が得られないという問題もある。
However, D glass is
Because the meltability is poor and striae and bubbles are likely to occur, in the spinning process, glass fiber is often cut and productivity and workability are poor.
Further, since the spinning temperature is very high, there is a disadvantage that the life of the furnace is short. Further, D glass has poor water resistance and poor adhesion to resin, so that it is liable to peel off from resin in a printed wiring board, and high reliability cannot be obtained when the printed wiring board is used. is there.

【0008】特開平6−219780号公報では、Si
O2 50.0〜65.0%、Al2O3 10.0〜1
8.0%、B2 O3 11.0〜25.0%、MgO
6.0〜14.0%、CaO 1.0〜10.0%、Z
nO 0〜10であって、MgO+CaO+ZnO 1
0.5〜15%の低誘電率ガラスを開示している。この
ガラスは、特にMgOを6%以上とし、かつCaO+M
gO+ZnOを10.5%以上とすることにより、紡糸
温度を下げて、生産性の改善を図るものであるが、分相
性が強く、また誘電正接が高くなりがちな成分であるM
gOを6%以上としているため、十分な耐水性が得られ
ず、またその誘電正接も比較的高いものとなる。
Japanese Patent Application Laid-Open No. 6-219780 discloses that Si
O2 50.0 to 65.0%, Al2 O3 10.0 to 1
8.0%, B2O3 11.0-25.0%, MgO
6.0-14.0%, CaO 1.0-10.0%, Z
nO 0 to 10, MgO + CaO + ZnO 1
A low dielectric constant glass of 0.5-15% is disclosed. This glass has a content of MgO of 6% or more, and CaO + M
By increasing the ratio of gO + ZnO to 10.5% or more, the spinning temperature is lowered to improve productivity. However, M is a component that has a strong phase separation property and a high dielectric loss tangent.
Since gO is 6% or more, sufficient water resistance cannot be obtained, and the dielectric loss tangent thereof is relatively high.

【0009】また、特開平7−10598号公報は S
iO2 50.0〜65.0%、Al2 O3 10.0〜
18%、B2 O3 11.0〜25.0%、CaO 0〜
10.0%、MgO 0〜10.0%、MgO+CaO
1.0〜15.0%、ZnO 0〜10.0%、SrO
0〜10.0%、BaO 1〜10.0%の組成を有す
るガラスを開示している。しかし、このガラスも、誘電
率が高くなる成分であるBaOを必須成分としているた
め、十分に低い誘電率を得ることが困難であって、低い
誘電率を得るためには、BaOの割合を下げざる得ず、
その場合には、ガラスの粘度が高くなって、紡糸作業性
が悪くなるという問題がある。またBaOは、ガラス溶
融炉の炉材に対する浸食が大きいため、溶融炉の寿命が
短いという問題もある。
Japanese Patent Application Laid-Open No. 7-10598 discloses S
iO2 50.0 to 65.0%, Al2 O3 10.0 to
18%, B2O3 11.0-25.0%, CaO 0-0
10.0%, MgO 0 to 10.0%, MgO + CaO
1.0-15.0%, ZnO 0-10.0%, SrO
A glass having a composition of 0 to 10.0% and BaO of 1 to 10.0% is disclosed. However, since this glass also contains BaO, which is a component that increases the dielectric constant, as an essential component, it is difficult to obtain a sufficiently low dielectric constant. In order to obtain a low dielectric constant, the ratio of BaO must be reduced. I cannot help but
In that case, there is a problem that the viscosity of the glass increases and the spinning workability deteriorates. In addition, BaO also has a problem that the life of the melting furnace is short because the erosion of the furnace material of the glass melting furnace is large.

【0010】本発明は、上記事情に鑑みてなされたもの
であり、誘電率、誘電正接が低いという特性を有し、か
つ生産性、作業性に優れ、しかも耐水性にも優れたガラ
ス繊維を提供することを目的としている。
The present invention has been made in view of the above circumstances, and provides a glass fiber having characteristics of low dielectric constant and dielectric loss tangent, excellent productivity, workability, and excellent water resistance. It is intended to provide.

【0011】[0011]

【課題を解決するための手段】本発明者らは、上記目的
を達成するために、種々検討を重ねた結果、ガラス繊維
の組成において、特にSiO2 を56%以下とし、Ca
Oを10%以上とすることによって、ガラスの紡糸温度
を低くするとともに、更にB2 O3 を18%以上とする
ことで、誘電率が5.5以下、誘電正接が10×10-4
の低誘電率ガラス繊維が得ることができた。
Means for Solving the Problems The inventors of the present invention have conducted various studies to achieve the above object, and as a result, in the glass fiber composition, in particular, the content of SiO2 was reduced to 56% or less,
By setting O to 10% or more, the spinning temperature of the glass is lowered, and by further setting B2 O3 to 18% or more, the dielectric constant is 5.5 or less and the dielectric loss tangent is 10.times.10@-4.
Was obtained.

【0012】従って、本発明は、重量%で、SiO2
50〜56%、Al2 O3 10〜18%、B2 O3 1
8〜25%、CaO 10%を越えて17%以下、Mg
O 0〜4%、Li2 O+Na2 O+K2 O 0〜1.0
%、F2 0〜2%のガラス組成を有することを特徴と
する低誘電率ガラス繊維を要旨とする。
Accordingly, the present invention relates to a method for preparing SiO2
50 to 56%, Al2 O3 10 to 18%, B2 O3 1
8 to 25%, CaO over 10% and up to 17%, Mg
O 0-4%, Li2 O + Na2 O + K2 O 0-1.0
% And a glass composition of F2 0 to 2%.

【0013】[0013]

【発明の実施の形態】本発明において、ガラス繊維の組
成を限定した理由は以下の通りである。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The reasons for limiting the composition of glass fibers in the present invention are as follows.

【0014】SiO2 はAl2 O3 、B2 O3 ととも
に、ガラスの骨格を形成する成分であるが、SiO2 が
50%未満では誘電率が大きくなり過ぎるとともに、耐
水性及び耐酸性が低下して、ガラス繊維及びこれを補強
材として用いたプリント配線基板の劣化を引き起こす。
56%を越えると、粘度が高くなり過ぎて、紡糸時、繊
維化が困難となる場合がある。従ってSiO2 は50〜
56%に限定され、好ましくは52〜55%である。
[0014] SiO2 is a component that forms a glass skeleton together with Al2O3 and B2O3. If the content of SiO2 is less than 50%, the dielectric constant becomes too large, and the water resistance and acid resistance are reduced. This causes deterioration of the printed wiring board using the reinforcing material.
If it exceeds 56%, the viscosity may be too high, and fiberization may be difficult during spinning. Therefore, SiO2 is 50 ~
It is limited to 56%, preferably 52 to 55%.

【0015】Al2O3は10%未満では、分相性が強く
なり、そのため耐水性が悪くなる。18%を越えると、
液相温度が上昇し紡糸性が悪くなる。従ってAl2 O3
は10〜18%に限定され、好ましくは12〜15%で
ある。
If the content of Al 2 O 3 is less than 10%, the phase separation becomes strong and the water resistance becomes poor. If it exceeds 18%,
The liquidus temperature rises and spinnability deteriorates. Therefore, Al2 O3
Is limited to 10 to 18%, preferably 12 to 15%.

【0016】B2 O3 は融剤として使用し、粘度を低下
させ、溶融を容易にする成分であるが、18%未満で
は、誘電率、誘電正接が大きくなり過ぎる。25%を越
えると、溶融時の揮発量が増大し、均質なガラスが得ら
れないとともに、耐水性が悪くなり過ぎる。従ってB2
O3 は18〜25%に限定され、好ましくは20〜24
%である。
B 2 O 3 is used as a flux to lower the viscosity and facilitate melting, but if it is less than 18%, the dielectric constant and the dielectric loss tangent become too large. If it exceeds 25%, the amount of volatilization at the time of melting increases, so that a homogeneous glass cannot be obtained and the water resistance becomes too poor. Therefore B2
O3 is limited to 18 to 25%, preferably 20 to 24%.
%.

【0017】CaOは、MgOとともに融剤として作用
する成分であるが、MgOと比較して、分相性が弱いこ
とと、またCaOは水に対しCa(OH)2 として溶出
する際に、B2 O3 のH3 BO3 化を抑制するため、耐
水性の低下を防ぐことができる。10%以下では、粘度
が高くなり溶融性悪くなるとともに、耐水性が悪くな
る。17%を越えると、誘電率が大きくなり過ぎる。従
って、CaOは10%を越えて17%以下に限定され、
好ましくは11〜15%である。
CaO is a component that acts as a flux together with MgO. However, it has a weaker phase separation property than MgO, and when CaO elutes with water as Ca (OH) 2, B 2 O 3 Of H3BO3, it is possible to prevent a decrease in water resistance. If it is less than 10%, the viscosity increases and the meltability deteriorates, and the water resistance also deteriorates. If it exceeds 17%, the dielectric constant becomes too large. Therefore, CaO is limited to more than 10% and 17% or less,
Preferably it is 11 to 15%.

【0018】MgOは、融剤として使用し、粘度を低下
させて、溶融を容易にする成分であるが、MgOが4%
を越えると誘電正接が大きくなるとともに、分相性が強
くなる。従って、MgOは0〜4%に限定され、好まし
くは0〜3%である。
MgO is a component used as a flux to lower the viscosity and facilitate melting.
When it exceeds, the dielectric loss tangent becomes large and the phase separation becomes strong. Therefore, MgO is limited to 0-4%, preferably 0-3%.

【0019】Li2 O、Na2 O、K2 Oは、融剤とし
て有効な成分であるが、合計が1.0%を越えると誘電
正接が高くなり過ぎ、また耐水性も悪くなる。従ってL
i2O+Na2 O+K2 Oは0〜1.0%に限定され、
好ましくは0〜0.6%である。
Li2 O, Na2 O, and K2 O are effective components as fluxing agents. However, if the total exceeds 1.0%, the dielectric loss tangent becomes too high and the water resistance deteriorates. Therefore L
i2O + Na2O + K2O is limited to 0 to 1.0%,
Preferably it is 0 to 0.6%.

【0020】Li2O及びNa2Oは、0.3%を越える
と、またK2Oは0.4%を越えると、誘電正接が高く
なり過ぎる場合がある。従って、好ましくはLi2O、
Na2Oは、0〜0.3%、K2Oは0〜0.4%であ
る。更に好ましくはLi2Oは、0〜0.2%、Na2O
は0.1〜0.2%、K2Oは0〜0.2%である。
If the content of Li 2 O and Na 2 O exceeds 0.3%, and if the content of K 2 O exceeds 0.4%, the dielectric loss tangent may become too high. Therefore, preferably Li2O,
Na2O is 0 to 0.3%, and K2O is 0 to 0.4%. More preferably, Li2O is 0-0.2%, Na2O
Is 0.1 to 0.2% and K2O is 0 to 0.2%.

【0021】F2 は融剤としてガラスの粘度を低下させ
るとともに、誘電率及び特に誘電正接を低下させる成分
であるが、2%を超えると分相性が強くなるとともに、
耐熱性が悪くなる。従って、F2 は0〜2%に限定さ
れ、好ましくは0〜1%である。
F2 is a component as a flux that lowers the viscosity of the glass and lowers the dielectric constant and especially the dielectric loss tangent.
Heat resistance deteriorates. Therefore, F2 is limited to 0-2%, preferably 0-1%.

【0022】尚、本発明のガラス組成においては、更に
上記成分以外にもガラス特性を損なわない程度に、Zn
O、SrO、TiO2、Cr2 O3 、As2 O3、Sb2
O3、P2O5 、ZrO2 、Cl2 、SO3 、MoO2 等
の成分を2%まで含有することが可能である。
Incidentally, in the glass composition of the present invention, other than the above components, Zn is added to such an extent that the glass properties are not impaired.
O, SrO, TiO2, Cr2 O3, As2 O3, Sb2
Components such as O3, P2O5, ZrO2, Cl2, SO3 and MoO2 can be contained up to 2%.

【0023】本発明の低誘電率ガラス繊維の好ましい物
性を挙げると、5.5以下の誘電率、10×10-4以下
の誘電正接、1300℃以下の紡糸温度および1重量%
以下の重量減少率である。
Preferred physical properties of the low dielectric constant glass fiber of the present invention include a dielectric constant of 5.5 or less, a dielectric loss tangent of 10 × 10 −4 or less, a spinning temperature of 1300 ° C. or less, and 1% by weight.
The weight loss rate is as follows.

【0024】本発明のガラス繊維は、好ましくは、重量
%で、SiO2 52〜55%、Al2 O3 12〜15
%、B2 O3 20〜24%、CaO 11〜15%、M
gO 0〜3%、Li2 O 0〜0.3%、Na2 O 0
〜0.3%、K2 O 0〜0.4%、F2 0〜1%のガ
ラス組成を有する。
The glass fiber of the present invention is preferably 52 to 55% by weight of SiO 2 and 12 to 15% of Al 2 O 3 by weight.
%, B2O3 20-24%, CaO 11-15%, M
gO 0-3%, Li2 O 0-0.3%, Na2 O0
It has a glass composition of 0.3%, K2 O 0-0.4% and F2 0-1%.

【0025】本発明のガラス繊維は、Eガラス、Cガラ
ス、Dガラスなどの公知のガラス製造技術に準じて製造
される。
The glass fiber of the present invention is produced according to a known glass production technique such as E glass, C glass, D glass and the like.

【0026】本発明のガラス繊維は、低誘電率、低誘電
正接を有しており、プリント配線基板用のガラス繊維と
して、特に高密度配線化、信号の高速処理化に対応する
プリント配線基板に強化用として優れている。また紡糸
温度が低く、耐水性も優れているので、品質の優れた低
誘電率ガラス繊維が安定して得られる。
The glass fiber of the present invention has a low dielectric constant and a low dielectric loss tangent, and is used as a glass fiber for a printed wiring board, particularly for a printed wiring board corresponding to high-density wiring and high-speed signal processing. Excellent for strengthening. Further, since the spinning temperature is low and the water resistance is excellent, a low-dielectric-constant glass fiber having excellent quality can be stably obtained.

【0027】また本発明の低誘電率ガラス繊維を用いて
ガラス繊維織物、不織布、編物、ガラスパウダー、ガラ
スチョップドストランドなどの各種の繊維強化樹脂用基
材を得ることができる。
The low dielectric glass fiber of the present invention can be used to obtain various fiber reinforced resin base materials such as glass fiber woven fabric, nonwoven fabric, knit, glass powder, glass chopped strand and the like.

【0028】例えば、ガラスパウダーを得るには、ガラ
スバルクを粉砕してもよく、或いはガラス繊維化した後
に粉砕することでもよい。ガラスバルク又は繊維化した
ガラス繊維を粉砕するには、ボールミル、フレッドミ
ル、ハンマーミル、オリエントミル、インペラーミルな
ど公知の装置の単独または組合せを用いることで得られ
る。
For example, in order to obtain a glass powder, the glass bulk may be pulverized, or may be pulverized after forming into glass fibers. In order to pulverize the glass bulk or the fiberized glass fiber, it can be obtained by using a known apparatus alone or in combination such as a ball mill, a fred mill, a hammer mill, an orient mill, and an impeller mill.

【0029】本発明のガラス繊維からなる各種の基材、
例えば、織物、不織布、編物、チョップドストランド、
ロービング、ガラスパウダー、マットなど、及びそれら
の基材と各種の熱硬化性樹脂、熱可塑性樹脂との混合物
からなる複合材料(例えば、シートモールディングコン
パウンド、バルクモールディングコンパウンド、プリプ
レグ)は、低誘電率、低誘電正接という特性を活かし
て、例えば通信機器類の周辺部材などに各種の樹脂強化
用基材として用いることも可能である。
Various substrates comprising the glass fiber of the present invention,
For example, woven, non-woven, knitted, chopped strand,
Roving, glass powder, mats and the like, and a composite material (eg, sheet molding compound, bulk molding compound, prepreg) composed of a mixture of a base material thereof, various thermosetting resins, and a thermoplastic resin have a low dielectric constant, Taking advantage of the characteristic of low dielectric loss tangent, it can be used as a base material for reinforcing various resins in, for example, peripheral members of communication devices.

【0030】[0030]

【実施例】本発明の低誘電率ガラス繊維を実施例に基づ
き詳しく説明する。
EXAMPLES The low dielectric constant glass fiber of the present invention will be described in detail based on examples.

【0031】[実施例1〜8]表1は、本発明の低誘電
率ガラス繊維を示す。まず表1に示す各試料のガラス組
成になるように調合したバッチを、白金ルツボに入れ電
気炉中で1500〜1550℃で8時間の条件で、攪拌
を加えながら溶融した。次にこの溶融ガラスをカーボン
板上に流し出し、ガラスカレットを作成した。このガラ
スカレットをガラス繊維製造炉に投入後1200〜13
00℃で溶融し、紡糸したところ、Dガラスを紡糸した
ときに生ずる硼酸の多量の揮発も見られず、不都合なく
紡糸できた。
Examples 1 to 8 Table 1 shows the low dielectric constant glass fibers of the present invention. First, a batch prepared so as to have a glass composition of each sample shown in Table 1 was put in a platinum crucible and melted in an electric furnace at 1500 to 1550 ° C. for 8 hours while stirring. Next, the molten glass was poured onto a carbon plate to prepare a glass cullet. After putting this glass cullet into a glass fiber manufacturing furnace, it is 1200 to 13
When the mixture was melted at 00 ° C. and spun, a large amount of boric acid generated when D glass was spun was not observed, and the spinning was performed without any inconvenience.

【0032】一方、ガラスカレットを板状に溶融、徐冷
し直径45mm、厚さ2mmの両面光学研磨した試料を
作成し、インピーダンス アナライザーを使用して、室
温における周波数1MHzでの誘電率および誘電正接を
測定した。また、紡糸温度としては、ガラスカレットを
白金ルツボで再溶融し、その融液の粘度をビスメストロ
ン粘度計で測定しながら、粘度η(ポイズ)が103 の
ときの温度(℃)を測定した。
On the other hand, a glass cullet was melted into a plate, cooled slowly, and a double-sided optically polished sample having a diameter of 45 mm and a thickness of 2 mm was prepared. The dielectric constant and the dielectric loss tangent at a frequency of 1 MHz at room temperature were measured using an impedance analyzer. Was measured. As the spinning temperature, the glass cullet was re-melted with a platinum crucible, and the temperature (° C.) when the viscosity η (poise) was 103 was measured while measuring the viscosity of the melt with a Vismestron viscometer.

【0033】更に、耐水性としては、蒸留水に温度13
3℃、24時間浸漬後のガラス成分の重量減少率を測定
した。
Further, as for the water resistance, distilled water at a temperature of 13
The weight loss rate of the glass component after immersion at 3 ° C. for 24 hours was measured.

【0034】[比較例]比較例としてEガラス、Dガラ
スの例を表1に示す。
Comparative Example Table 1 shows examples of E glass and D glass as comparative examples.

【0035】[0035]

【表1】 [Table 1]

【0036】[結果]表1に示すように実施例のガラス
繊維は誘電率が5.5以下であってEガラスより低い値
を示し、また誘電正接は10×10-4以下であって、E
ガラスより低く、Dガラスと同等又は低い値を示してい
る。
[Results] As shown in Table 1, the glass fibers of Examples have a dielectric constant of 5.5 or less, which is lower than that of E glass, and a dielectric loss tangent of 10 × 10 -4 or less. E
It is lower than glass and shows a value equal to or lower than that of D glass.

【0037】また、実施例のガラス繊維は、紡糸の目安
となる粘度μ(ポイズ)が103 である紡糸温度は、1
300℃以下であって、Dガラスより低く、特に実施例
4においては約200゜も低く生産性に優れている。
The spinning temperature of the glass fiber of the example is 10 3 when the viscosity μ (poise), which is a standard for spinning, is 10 3.
The temperature is 300 ° C. or lower, which is lower than that of D glass.

【0038】更にガラス成分の重量減少率は、Eガラス
とほぼ同等であって、Dガラスの3.7%よりかなり低
い値を示す。
Further, the weight reduction rate of the glass component is almost equal to that of the E glass, and is much lower than 3.7% of the D glass.

【0039】[0039]

【発明の効果】本発明のガラス繊維は、低誘電率、低誘
電正接を有しており、プリント配線基板用のガラス繊維
として、特に高密度配線化、信号の高速処理化に対応す
るプリント配線基板の強化用として優れている。また紡
糸温度が低く、耐水性も優れているので、品質の優れた
低誘電率ガラス繊維が安定して得られる。
The glass fiber of the present invention has a low dielectric constant and a low dielectric loss tangent, and is used as a glass fiber for a printed wiring board, especially for a printed wiring corresponding to high-density wiring and high-speed signal processing. Excellent for strengthening substrates. Further, since the spinning temperature is low and the water resistance is excellent, a low-dielectric-constant glass fiber having excellent quality can be stably obtained.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 重量%で、SiO2 50〜56%、A
l2 O3 10〜18%、B2 O3 18〜25%、Ca
O 10%を越えて17%以下、MgO 0〜4%、Li
2 O+Na2 O+K2 O 0〜1.0%、F2 0〜2%
のガラス組成を有することを特徴とする低誘電率ガラス
繊維。
1. The composition according to claim 1, wherein the content of SiO2 is from 50 to 56% by weight,
l2 O3 10-18%, B2 O3 18-25%, Ca
O 10% to 17% or less, MgO 0 to 4%, Li
2 O + Na2 O + K2 O 0-1.0%, F2 0-2%
Low-permittivity glass fiber, characterized by having the following glass composition:
【請求項2】 重量%で、SiO2 52〜55%、A
l2 O3 12〜15%、B2 O3 20〜24%、Ca
O 11〜15%、MgO 0〜3%、Li2O 0〜
0.3%、Na2 O 0〜0.3%、K2 O 0〜0.4
%、F2 0〜1%のガラス組成を有する請求項1に記
載の低誘電率ガラス繊維。
2. The composition according to claim 1, wherein the content of SiO2 is from 52 to 55% by weight.
l2 O3 12-15%, B2 O3 20-24%, Ca
O 11-15%, MgO 0-3%, Li2O 0
0.3%, Na2 O 0-0.3%, K2 O 0-0.4
The low dielectric constant glass fiber according to claim 1, which has a glass composition of 0% to 1% of F2.
JP27362596A 1996-10-16 1996-10-16 Low dielectric constant glass fiber Withdrawn JPH10120437A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27362596A JPH10120437A (en) 1996-10-16 1996-10-16 Low dielectric constant glass fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27362596A JPH10120437A (en) 1996-10-16 1996-10-16 Low dielectric constant glass fiber

Publications (1)

Publication Number Publication Date
JPH10120437A true JPH10120437A (en) 1998-05-12

Family

ID=17530326

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27362596A Withdrawn JPH10120437A (en) 1996-10-16 1996-10-16 Low dielectric constant glass fiber

Country Status (1)

Country Link
JP (1) JPH10120437A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006064878A1 (en) * 2004-12-16 2006-06-22 Nippon Sheet Glass Company, Limited Glass composition and process for producing the same
US7678721B2 (en) 2006-10-26 2010-03-16 Agy Holding Corp. Low dielectric glass fiber
US7786035B2 (en) * 2005-08-15 2010-08-31 Avanstrate Inc. Glass composition and process for producing glass composition
US7960301B2 (en) 2005-08-15 2011-06-14 Avanstrate Inc. Glass composition
JPWO2016175248A1 (en) * 2015-04-27 2018-02-08 旭化成株式会社 Glass cloth
CN108249770A (en) * 2018-03-28 2018-07-06 济南大学 One kind contains Y2O3Floride-free dielectric glass fibre and preparation method thereof
WO2022105185A1 (en) * 2020-11-18 2022-05-27 南京玻璃纤维研究设计院有限公司 Low dielectric glass fiber and preparation method therefor, glass fiber product, composite material and application thereof

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006064878A1 (en) * 2004-12-16 2006-06-22 Nippon Sheet Glass Company, Limited Glass composition and process for producing the same
US7786035B2 (en) * 2005-08-15 2010-08-31 Avanstrate Inc. Glass composition and process for producing glass composition
US7960301B2 (en) 2005-08-15 2011-06-14 Avanstrate Inc. Glass composition
US8129299B2 (en) 2005-08-15 2012-03-06 Avanstrate Inc. Glass composition and process for producing glass composition
US8399370B2 (en) 2005-08-15 2013-03-19 Avanstrate Inc. Glass composition
TWI402236B (en) * 2005-08-15 2013-07-21 Avanstrate Inc Glass composition and glass composition
US7678721B2 (en) 2006-10-26 2010-03-16 Agy Holding Corp. Low dielectric glass fiber
JPWO2016175248A1 (en) * 2015-04-27 2018-02-08 旭化成株式会社 Glass cloth
CN108249770A (en) * 2018-03-28 2018-07-06 济南大学 One kind contains Y2O3Floride-free dielectric glass fibre and preparation method thereof
WO2022105185A1 (en) * 2020-11-18 2022-05-27 南京玻璃纤维研究设计院有限公司 Low dielectric glass fiber and preparation method therefor, glass fiber product, composite material and application thereof

Similar Documents

Publication Publication Date Title
JP3228945B2 (en) Low dielectric constant glass fiber
US4824806A (en) Glass fibers having low dielectric constant
US5958808A (en) Low-permittivity glass fibers
JP5260544B2 (en) Low dielectric glass and glass fiber for electronic applications
EP1086930B1 (en) Glass fiber having low dielectric constant and woven fabric of glass fiber made therefrom
US7449419B2 (en) Glass compositions, glass fibers, and methods of inhibiting boron volatization from glass compositions
TWI662002B (en) Low dielectric glass and fiber glass
JP3409806B2 (en) Low dielectric constant glass fiber
JPH06219780A (en) Glass fiber of low dielectric constant
JPH10167759A (en) Low dielectric constant glass fiber
US5330940A (en) Fiberizable zinc-phosphate glass compositions
JP2006520314A (en) Glass strand capable of reinforcing organic and / or inorganic materials, method for producing said strand and composition used
JPH10120437A (en) Low dielectric constant glass fiber
JPH06211543A (en) Glass fiber
EP1546051B9 (en) Low-temperature, fluoride free fiber glass compositions and products made using same
JPH092839A (en) Low dielectric loss tangent glass fiber
JPH10231143A (en) Corrosion-resistant glass fiber
EP1187793A1 (en) Glass fiber composition
JP3801293B2 (en) Corrosion resistant glass fiber
JPH11157876A (en) Corrosion resistant glass fiber
JPH11157875A (en) Corrosion resistant glass fiber
JPH10203845A (en) Corrosion resistant glass fiber
JPH10120438A (en) Glass composition and glass fiber

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20040106