JPH0974213A - Manufacture of compound semiconductor thin film - Google Patents

Manufacture of compound semiconductor thin film

Info

Publication number
JPH0974213A
JPH0974213A JP7228774A JP22877495A JPH0974213A JP H0974213 A JPH0974213 A JP H0974213A JP 7228774 A JP7228774 A JP 7228774A JP 22877495 A JP22877495 A JP 22877495A JP H0974213 A JPH0974213 A JP H0974213A
Authority
JP
Japan
Prior art keywords
thin film
metal
compound semiconductor
semiconductor thin
forming
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7228774A
Other languages
Japanese (ja)
Inventor
Takeshi Nishio
剛 西尾
Hideaki Oyama
秀明 大山
Kuniyoshi Omura
邦嘉 尾村
Mikio Murozono
幹夫 室園
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP7228774A priority Critical patent/JPH0974213A/en
Publication of JPH0974213A publication Critical patent/JPH0974213A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/543Solar cells from Group II-VI materials

Landscapes

  • Light Receiving Elements (AREA)
  • Photovoltaic Devices (AREA)

Abstract

PROBLEM TO BE SOLVED: To make it possible to pattern by thinning a film by a method wherein an organic metal, having at least one or more metal-sulfur couplings in its molecule, is dissolved into a solvent and a solution having the viscosity of a specific range is formed. SOLUTION: An organic metal compound, having at least one or more metal- sulfur couplings in the interior is coated on a substrate using an inkjecting method, said organic metal compound is thermally decomposed on the substrate, and a metal sulfide thin film is obtained as a compound semiconductor. As the sulfide thin film can be patterned by having the viscosity of a solution of 1 to 20cp, various kinds of functions can be given to the thin film as a compound thin film. For example, when a thin film solar battery of a cadmium sulfide/cadmium telluride structure is prepared, a very thin cadmium sulfide layer 1 can be formed. As a result conrersion rate of the solar battery can be greatly improved.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、光電変換素子に使用さ
れる化合物半導体薄膜の形成法、特に金属の硫化物薄膜
の形成法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for forming a compound semiconductor thin film used in a photoelectric conversion element, and more particularly to a method for forming a metal sulfide thin film.

【0002】[0002]

【従来の技術】従来より、化合物半導体、特に硫化カド
ミウム、硫化亜鉛、硫化鉛、硫化銅等の硫化物薄膜は光
電変換素子材料として光電子産業分野で幅広く用いられ
てきた。そして、これらの化合物の多くは従来、スパッ
タリング法、蒸着法、CVD法などによって製造されて
きた。これらの手法により製膜された薄膜は光電変換素
子材料として所望の膜質を有するものであるが、何れも
真空装置を必要とするため、大面積均一製膜、高速連続
製膜等が困難であったり、もしくは、できたとしても装
置が非常に高価になる等の問題があった。
2. Description of the Related Art Conventionally, compound semiconductors, particularly sulfide thin films such as cadmium sulfide, zinc sulfide, lead sulfide, and copper sulfide, have been widely used as photoelectric conversion element materials in the field of optoelectronics. Many of these compounds have been conventionally produced by a sputtering method, an evaporation method, a CVD method, or the like. The thin film formed by these methods has a desired film quality as a photoelectric conversion element material, but all of them require a vacuum device, so that large area uniform film formation, high-speed continuous film formation, etc. are difficult. Or, even if it is possible, there is a problem that the device becomes very expensive.

【0003】大面積薄膜の形成をより安価に行う方法と
して溶液法もあるが、しかし、この手法を用いたとして
も、確かに装置およびプロセスは安価であるが、化合物
半導体薄膜の大面積製膜において、膜質の均一性および
再現性に大きな問題があった。
There is a solution method as a method for forming a large-area thin film at a lower cost. However, even if this method is used, the apparatus and process are certainly inexpensive, but a large-area compound semiconductor thin film is formed. However, there was a big problem in the uniformity and reproducibility of the film quality.

【0004】そこで、化合物半導体薄膜の大面積製膜を
安価な装置で再現性良く行う手法として塗布・焼結法を
用いた太陽電池が提案された。これは、化合物半導体の
微粉末分散ペーストを基板上にスクリーン印刷し、連続
ベルト炉で焼結する手法による硫化カドミウム焼結膜上
に、同じ手法によりテルル化カドミウム焼結膜を積層形
成したテルル化カドミウム太陽電池が開示されている
(特公昭56−28386号公報)。
Therefore, a solar cell using a coating / sintering method has been proposed as a method for forming a large area of a compound semiconductor thin film with an inexpensive apparatus with good reproducibility. This is a cadmium telluride solar cell in which a fine powder dispersion paste of a compound semiconductor is screen-printed on a substrate, and a cadmium sulfide sintered film is laminated on the cadmium sulfide sintered film by a method of sintering in a continuous belt furnace by the same method. A battery is disclosed (Japanese Patent Publication No. 56-28386).

【0005】この塗布・焼結法は、前記した通り安価な
装置で、均一にかつ再現性良く化合物半導体薄膜の大面
積製膜を連続して行え、かつ製膜と同時にパターンニン
グが可能であるという極めて優れた特徴がある。しか
し、塗布・焼結法にも幾つかの問題があった。それら
は、焼結温度が約700℃と高温であるため基板として
低価格の並ガラスが使えないこと、2時間以上の長時間
の焼結反応を必要とするため高速・大量生産に不向きな
こと、焼結時に融点降下剤の蒸発を制御するためのセラ
ミック製の高価な焼結ケースが必要であること、焼結時
に窒素等の不活性雰囲気が必要であること、原材料の粒
径(通常2〜4μm)よりも薄い膜ができないこと、さ
らに、同焼結膜中には多数の空隙があり膜質が均一でな
いこと、等であるが、これらの問題は金属化合物の微粉
末を原材料とする塗布・焼結法では解決が極めて難し
い、とされていた。
As described above, this coating / sintering method can continuously and uniformly form a large area of a compound semiconductor thin film with an inexpensive apparatus, and patterning can be performed simultaneously with the film formation. There is an extremely excellent feature. However, the coating / sintering method also has some problems. Since they have a high sintering temperature of about 700 ° C, low-priced ordinary glass cannot be used as a substrate, and they require a long-time sintering reaction of 2 hours or more, which makes them unsuitable for high-speed mass production. , An expensive sintering case made of ceramic for controlling the evaporation of the melting point depressant at the time of sintering, an inert atmosphere such as nitrogen is required at the time of sintering, the particle size of the raw material (usually 2 However, there are many voids in the sintered film and the film quality is not uniform. However, these problems are caused by applying fine powder of metal compound as a raw material. It was said that the sintering method was extremely difficult to solve.

【0006】最近、塗布・焼結法の特徴を生かしこれら
の諸課題を解決する手法として、金属−硫黄結合を少な
くとも一つ内部に有する有機金属化合物層を基板上に塗
布し、酸化雰囲気中で上記有機金属化合物を熱分解して
金属の硫化物薄膜を形成するという提案がなされている
(特公平6−99809号公報)。
Recently, as a method for solving these problems by taking advantage of the characteristics of the coating / sintering method, an organometallic compound layer having at least one metal-sulfur bond inside is coated on a substrate and then in an oxidizing atmosphere. It has been proposed to thermally decompose the organometallic compound to form a metal sulfide thin film (Japanese Patent Publication No. 6-99809).

【0007】[0007]

【発明が解決しようとする課題】上記硫化物薄膜の形成
法は、化合物半導体薄膜の大面積・低コスト製膜方式で
ある塗布・焼結法の特徴を生かしながら、焼結温度を3
20〜450℃で抑えることができるため基板として低
価格の並ガラスが使用可能であること、熱分解を酸化雰
囲気中で行うため有機分である炭素や水素を完全に分解
することができること、また熱分解後不活性雰囲気中で
焼成することが記載されている。
The method for forming a sulfide thin film described above has a sintering temperature of 3 while making the most of the characteristics of the coating / sintering method, which is a large area, low cost film forming method for compound semiconductor thin films.
Since it can be suppressed at 20 to 450 ° C., a low-priced ordinary glass can be used as a substrate, and since thermal decomposition is performed in an oxidizing atmosphere, carbon and hydrogen that are organic components can be completely decomposed. It is described that after pyrolysis, firing is performed in an inert atmosphere.

【0008】しかし、塗布法についてはスピナーを用い
ているだけで、化合物半導体を用いる特徴のひとつでも
あるパターンニングすることができないものであった。
また、この薄膜を太陽電池として用いる場合、膜厚が5
00〜5000Åと厚いため光の透過率が悪く、変換効
率が悪いという課題があった。
However, in the coating method, only the spinner was used, and the patterning, which is one of the features of using the compound semiconductor, could not be performed.
When this thin film is used as a solar cell, the film thickness is 5
Since the thickness is as thick as 00 to 5000 Å, the light transmittance is poor and the conversion efficiency is poor.

【0009】本発明は上記課題を解決するものであり、
膜厚が薄く、パターンニングが可能な化合物半導体薄膜
の形成法を得ることを目的とするものである。
The present invention has been made to solve the above problems, and
It is an object of the present invention to obtain a method for forming a compound semiconductor thin film having a thin film thickness and allowing patterning.

【0010】[0010]

【課題を解決するための手段】本発明は上記目的を達成
するために、金属−硫黄結合を少なくとも一つ以上内部
に有する有機金属化合物を、所定の溶媒に溶解させた1
センチポアズ以上20センチポアズ以下の粘度を有する
溶液を基板上にインクジェット法により塗布し、熱分解
する構成である。
In order to achieve the above object, the present invention comprises dissolving an organometallic compound having at least one metal-sulfur bond therein in a predetermined solvent.
A solution having a viscosity of not less than 20 centipoise and not more than 20 centipoise is applied onto a substrate by an inkjet method and thermally decomposed.

【0011】硫黄と結合する金属としては、カドミウ
ム、亜鉛、銅、鉛もしくは水銀が好ましい。また、金属
−硫黄結合を少なくとも一つ以上内部に有する有機金属
化合物としては、金属メルカプチド、金属のチオ酸塩、
金属のジチオ酸塩、金属のチオカルボナート塩、金属の
ジチオカルボナート塩、金属のトリチオカルボナート
塩、金属のチオカルバミン酸塩もしくは金属のジチオカ
ルバミン酸塩が好ましい。
Cadmium, zinc, copper, lead or mercury is preferred as the metal that binds to sulfur. Further, as the organometallic compound having at least one metal-sulfur bond inside, a metal mercaptide, a metal thioate,
A metal dithioate, a metal thiocarbonate salt, a metal dithiocarbonate salt, a metal trithiocarbonate salt, a metal thiocarbamate or a metal dithiocarbamate is preferred.

【0012】有機金属化合物を溶解させる溶媒は、少な
くとも0.1モル/リットル以上1モル/リットル以下
の有機金属化合物を溶解させるものが好ましい。同溶媒
としては1−メチル−2−ピロリドン、γ−ブチロラク
トン、テトラリン、ジメチルホルムアミド、ジメチルス
ルホキシド、トルエン、クロロホルム、アルコール類お
よびセロソルプ系、カルビトール系等の多価アルコール
とその誘導体を用いることが好ましい。また、熱分解後
の膜質をより向上させるため溶解液を濾過し残留物を除
去、もしくは遠心分離し沈殿物を除去することが好まし
い。
The solvent for dissolving the organometallic compound is preferably one which dissolves at least 0.1 mol / liter and not more than 1 mol / liter of the organometallic compound. As the solvent, it is preferable to use 1-methyl-2-pyrrolidone, γ-butyrolactone, tetralin, dimethylformamide, dimethylsulfoxide, toluene, chloroform, alcohols and polyhydric alcohols such as cellosolve and carbitol, and their derivatives. . Further, in order to further improve the film quality after thermal decomposition, it is preferable to remove the residue by filtering the solution or to remove the precipitate by centrifugation.

【0013】有機金属化合物を熱分解する温度は、10
0℃以上500℃以下であることが好ましい。また、基
板として並ガラス、金属もしくは樹脂フィルムを使用す
ることが好ましい。本発明により金属の硫化物薄膜を形
成する場合、同薄膜が700ナノメータ以下であれば極
めて良質な化合物半導体薄膜を得ることができる。
The temperature at which an organometallic compound is thermally decomposed is 10
It is preferably 0 ° C. or higher and 500 ° C. or lower. Further, it is preferable to use a normal glass, a metal or a resin film as the substrate. When a metal sulfide thin film is formed according to the present invention, an extremely good quality compound semiconductor thin film can be obtained if the thin film has a thickness of 700 nanometers or less.

【0014】[0014]

【作用】本発明は上記構成により、金属−硫黄結合を少
なくとも一つ以上内部に有する有機金属化合物を基板上
にインクジェット法により塗布し、同有機金属化合物を
同基板上で熱分解させ、化合物半導体としての金属の硫
化物薄膜を得るものであり、溶液の粘度を1センチポア
ズ〜20センチポアズとすることにより、パターンニン
グすることができるため、化合物薄膜としてさまざまな
機能(例えば太陽電池)を持たせることができる。つま
り、同薄膜は、基板上に塗布された金属−硫黄結合を少
なくとも一つ以上内部に有する有機金属化合物が、熱分
解反応により有機物と金属−硫黄に分離し、有機物が飛
散すると同時に分子状に分離した金属硫化物が同基板上
で規則配列し得られるものであるため、機能的であって
極めて緻密な薄い膜が形成可能である。
According to the present invention, with the above structure, an organometallic compound having at least one metal-sulfur bond inside is coated on a substrate by an ink jet method, and the organometallic compound is thermally decomposed on the substrate to form a compound semiconductor. The metal sulfide thin film as described above is obtained, and patterning can be performed by setting the viscosity of the solution to 1 centipoise to 20 centipoise. Therefore, the compound thin film should have various functions (for example, a solar cell). You can That is, the thin film is an organometallic compound having at least one or more metal-sulfur bonds coated on the substrate inside, which is separated into an organic substance and a metal-sulfur by a thermal decomposition reaction, and the organic substance scatters into a molecular form at the same time. Since the separated metal sulfides can be regularly arranged on the same substrate, a functional and extremely dense thin film can be formed.

【0015】また、同熱分解反応は100℃〜500℃
の温度で10分以下の時間で終了するため、熱分解反応
のための特別なガラスやケースも必要なく、かつ、同熱
分解反応は空気中で行うことができる。無論、窒素等の
不活性ガ中でも良い。
The thermal decomposition reaction is 100 ° C to 500 ° C.
Since it is completed at a temperature of 10 minutes or less, no special glass or case for the thermal decomposition reaction is required, and the thermal decomposition reaction can be carried out in the air. Of course, it may be used in an inert gas such as nitrogen.

【0016】[0016]

【実施例】以下に実施例により説明する。EXAMPLES Examples will be described below.

【0017】(実施例1)有機金属化合物としてのイソ
プロピルキサントゲン酸カドミウムを、溶媒である1−
メチル−2−ピロリドンに0.2モル/リットル溶解さ
せ、その後、同溶液を遠心分離し沈殿物を除去させ、粘
度約5センチポアズの溶液を作製する。同溶液を、表面
に約600ナノメータの厚さにSnO2膜を形成した3
5cm角の並ガラス基板上にインクジェット法を用いて
塗布し、同塗布基板を110℃で乾燥し溶媒を揮発させ
る。その後、大気中にて、450℃・3分間の熱分解反
応を行う。同熱分解反応は窒素等の不活性雰囲気下でも
同様に行えることが確認されている。このようにして、
膜厚300ナノメータの均一な膜が得られた。この膜の
X線回折の測定結果の解析から、六方晶硫化カドミウム
の(002)ピークが観察された。また、同膜のカドミ
ウムの結合をX線光電子分光法により分析した結果、カ
ドミウム−硫黄の結合が単結晶硫化カドミウムのカドミ
ウム−硫黄の結合と同じであることが確認された。さら
に、同分析の結果から同硫化カドミウム膜表面および同
膜中に顕著なカーボンの残留が無いことも確認された。
なお、溶液を濾過し沈殿物を除去しても同様の結果が得
られた。
Example 1 Cadmium isopropylxanthogenate as an organometallic compound was used as a solvent 1-
0.2 mol / liter is dissolved in methyl-2-pyrrolidone, and then the same solution is centrifuged to remove the precipitate to prepare a solution having a viscosity of about 5 centipoise. A SnO 2 film was formed on the surface of the same solution to a thickness of about 600 nanometers 3.
A 5 cm square glass substrate is coated using an inkjet method, and the coated substrate is dried at 110 ° C. to volatilize the solvent. After that, a thermal decomposition reaction is performed at 450 ° C. for 3 minutes in the atmosphere. It has been confirmed that the same thermal decomposition reaction can be similarly performed in an inert atmosphere such as nitrogen. In this way,
A uniform film having a film thickness of 300 nanometer was obtained. From the analysis of the measurement result of X-ray diffraction of this film, a (002) peak of hexagonal cadmium sulfide was observed. In addition, as a result of analyzing the cadmium bond of the same film by X-ray photoelectron spectroscopy, it was confirmed that the cadmium-sulfur bond was the same as the cadmium-sulfur bond of the single crystal cadmium sulfide. Furthermore, it was also confirmed from the results of the analysis that there was no significant carbon residue on the surface of the cadmium sulfide film and in the film.
Similar results were obtained even if the solution was filtered to remove the precipitate.

【0018】一方、同実験でイソプロピルキサントゲン
酸カドミウムを0.05モル/リットル溶解した溶液の
粘度は0.8センチポアズであった。インクジェット法
で同溶液を基板上に塗布し、その後上記と同様の乾燥・
熱分解を行ったが、同溶液は粘度が低すぎたため、均一
な膜は得られなかった。また、遠心分離あるいは濾過に
より沈殿物を除去していない溶液を用いて同様の実験を
試みたが、やはり均一で良好な膜は得られなかった。
On the other hand, in the same experiment, the viscosity of the solution in which cadmium isopropylxanthogenate was dissolved at 0.05 mol / liter was 0.8 centipoise. The same solution was applied on the substrate by the inkjet method, and then the same drying and
Pyrolysis was performed, but a uniform film could not be obtained because the viscosity of the solution was too low. Further, a similar experiment was tried using a solution in which the precipitate was not removed by centrifugation or filtration, but a uniform and good membrane was not obtained.

【0019】同様に、イソプロピルキサントゲン酸カド
ミウムを0.1モル/リットル、0.8モル/リット
ル、1.0モル/リットル、1.1モル/リットル溶解
した溶液で同様の実験を行った。溶液の粘度はそれぞれ
1、10、20、30センチポアズであった。インクジ
ェット法で各溶液を基板上に塗布し、その後上記と同様
の乾燥・熱分解を行った結果、0.1モル/リットル、
0.8モル/リットル、1.0モル/リットルの溶液を
用いたものは均一で良好な膜が得られたが、1.1モル
/リットルの溶液は同溶液は粘度が高すぎたため、イン
クジェット法を用いて均一に塗布することが難しく、均
一な膜は得られなかった。
Similarly, the same experiment was carried out with a solution in which cadmium isopropylxanthogenate was dissolved in 0.1 mol / liter, 0.8 mol / liter, 1.0 mol / liter and 1.1 mol / liter. The viscosities of the solutions were 1, 10, 20, and 30 centipoise, respectively. Each solution was applied onto the substrate by the inkjet method, and then dried and pyrolyzed in the same manner as above, and as a result, 0.1 mol / liter,
A uniform and good film was obtained using the 0.8 mol / liter and 1.0 mol / liter solutions, but the 1.1 mol / liter solution had an excessively high viscosity. It was difficult to apply it uniformly using the method, and a uniform film could not be obtained.

【0020】以上の結果をまとめて表1に示す。The above results are summarized in Table 1.

【0021】[0021]

【表1】 [Table 1]

【0022】表に示したように、イソプロピルキサント
ゲン酸カドミウム溶液の濃度が0.1モル/リットル、
0.2モル/リットル、0.8モル/リットル、1.0
モル/リットルの場合、粘度がそれぞれ1センチポア
ズ、5センチポアズ、10センチポアズ、20センチポ
アズで、同溶液をインクジェット法を用いて基板上に塗
布し、乾燥、熱分解を行った結果、均一な膜が得られ
た。一方、イソプロピルキサントゲン酸カドミウム溶液
の濃度が0.05モル/リットル、1.1モル/リット
ルの場合、粘度がそれぞれ0.8センチポアズ、30セ
ンチポアズで、インクジェット法を用いて基板上に塗布
し、乾燥、熱分解を行ったが、均一な膜は得られなかっ
た。
As shown in the table, the concentration of the cadmium isopropylxanthogenate solution was 0.1 mol / liter,
0.2 mol / l, 0.8 mol / l, 1.0
In the case of mol / liter, the viscosities are 1 centipoise, 5 centipoise, 10 centipoise, and 20 centipoise, respectively, and the solution is applied onto a substrate by an inkjet method, dried and pyrolyzed to obtain a uniform film. Was given. On the other hand, when the concentration of the cadmium isopropylxanthogenate solution is 0.05 mol / liter and 1.1 mol / liter, the viscosities are 0.8 centipoise and 30 centipoise respectively, and the ink is applied onto the substrate by an inkjet method and dried. The film was pyrolyzed, but a uniform film was not obtained.

【0023】以上のように、均一で高品質な膜を得るに
は、溶液の濃度が0.1モル/リットル以上1.0モル
/リットル以下で、溶液の粘度が1センチポアズ以上2
0センチポアズ以下である必要があることがわかる。
As described above, in order to obtain a uniform and high-quality film, the concentration of the solution is 0.1 mol / liter or more and 1.0 mol / liter or less, and the viscosity of the solution is 1 centipoise or more 2
It can be seen that it needs to be 0 centipoise or less.

【0024】(実施例2)有機金属化合物としてのジベ
ンジルジチオカルバミン酸カドミウムを、溶媒である1
−メチル−2−ピロリドンに0.4モル/リットル溶解
させ、その後、同溶液を遠心分離し沈殿物を除去させ、
粘度約10センチポアズの溶液を作製する。同溶液を、
表面に約600ナノメータの厚さにSnO2膜を形成し
た35cm角の並ガラス基板上にフレキソ印刷を用いて
塗布し、同塗布基板を150℃で乾燥し溶媒を揮発させ
る。その後、大気中で、450℃・3分間の熱分解反応
を行う。同熱分解反応は窒素等の不活性雰囲気下でも同
様に行えることが確認されている。このようにして、膜
厚100ナノメータの均一な膜が得られた。この膜のX
線回折の測定結果の解析から、六方晶硫化カドミウムの
(002)ピークが観察された。また、同膜のカドミウ
ムの結合をX線光電子分光法により分析した結果、カド
ミウム−硫黄の結合が単結晶硫化カドミウムのカドミウ
ム−硫黄の結合と同じであることが確認された。さら
に、同分析の結果から同硫化カドミウム膜表面および同
膜中に顕著なカーボンの残留が無いことも確認された。
なお、溶液を濾過し沈殿物を除去しても同様の結果が得
られた。また、遠心分離あるいは濾過により沈殿物を除
去していない溶液を用いて同様の実験を試みたが、やは
り均一で良好な膜は得られなかった。
Example 2 Cadmium dibenzyldithiocarbamate as an organometallic compound was used as a solvent 1
-Dissolved in methyl-2-pyrrolidone at 0.4 mol / l, then centrifuge the solution to remove the precipitate,
Make a solution with a viscosity of about 10 centipoise. The same solution
It is applied by flexographic printing on a 35 cm square normal glass substrate on the surface of which a SnO 2 film is formed to a thickness of about 600 nm, and the applied substrate is dried at 150 ° C. to volatilize the solvent. After that, a thermal decomposition reaction is performed at 450 ° C. for 3 minutes in the atmosphere. It has been confirmed that the same thermal decomposition reaction can be similarly performed in an inert atmosphere such as nitrogen. In this way, a uniform film having a film thickness of 100 nanometer was obtained. X of this film
From the analysis of the measurement results of the line diffraction, the (002) peak of hexagonal cadmium sulfide was observed. In addition, as a result of analyzing the cadmium bond of the same film by X-ray photoelectron spectroscopy, it was confirmed that the cadmium-sulfur bond was the same as the cadmium-sulfur bond of the single crystal cadmium sulfide. Furthermore, it was also confirmed from the results of the analysis that there was no significant carbon residue on the surface of the cadmium sulfide film and in the film.
Similar results were obtained even if the solution was filtered to remove the precipitate. Further, a similar experiment was tried using a solution in which the precipitate was not removed by centrifugation or filtration, but a uniform and good membrane was not obtained.

【0025】一方同実験でジベンジルジチオカルバミン
酸カドミウムを1.2モル/リットル溶解した溶液の粘
度は50センチポアズであったが、同溶液は粘度が高す
ぎたため、インクジェット法を用いて均一に塗布するこ
とが難しく、均一な膜は得られなかった。
On the other hand, in the same experiment, the viscosity of the solution in which 1.2 mol / l of cadmium dibenzyldithiocarbamate was dissolved was 50 centipoise, but since the viscosity of this solution was too high, it was applied uniformly by the ink jet method. It was difficult to obtain a uniform film.

【0026】(実施例3)有機金属化合物としてのn−
ブチルキサントゲン酸カドミウムを、溶媒である1−メ
チル−2−ピロリドンに0.6モル/リットル溶解さ
せ、その後、同溶液を遠心分離し沈殿物を除去させ、粘
度約10センチポアズの溶液を作製する。同溶液を、表
面に約600ナノメータの厚さにSnO2膜を形成した
35cm角の並ガラス基板上にフレキソ印刷を用いて塗
布し、同塗布基板を100℃で乾燥し溶媒を揮発させ
る。その後、大気中で、450℃・3分間の熱分解反応
を行う。同熱分解反応は窒素等の不活性雰囲気下でも同
様に行えることが確認されている。このようにして、膜
厚150ナノメータの均一な膜が得られた。この膜のX
線回折の測定結果の解析から、六方晶硫化カドミウムの
(002)ピークが観察された。また、同膜のカドミウ
ムの結合をX線光電子分光法により分析した結果、カド
ミウム−硫黄の結合が単結晶硫化カドミウムのカドミウ
ム−硫黄の結合と同じであることが確認された。さら
に、同分析の結果から同硫化カドミウム膜表面および同
膜中に顕著なカーボンの残留が無いことも確認された。
なお、溶液を濾過し沈殿物を除去しても同様の結果が得
られた。また、遠心分離あるいは濾過により沈殿物を除
去していない溶液を用いて同様の実験を試みたが、やは
り均一で良好な膜は得られなかった。
Example 3 n- as an organometallic compound
Cadmium butylxanthogenate is dissolved in a solvent, 1-methyl-2-pyrrolidone, at 0.6 mol / liter, and then the solution is centrifuged to remove precipitates to prepare a solution having a viscosity of about 10 centipoise. The solution is applied by flexographic printing on a normal glass substrate having a side of 35 cm and a SnO 2 film having a thickness of about 600 nanometers formed on the surface by flexographic printing, and the applied substrate is dried at 100 ° C. to volatilize the solvent. After that, a thermal decomposition reaction is performed at 450 ° C. for 3 minutes in the atmosphere. It has been confirmed that the same thermal decomposition reaction can be similarly performed in an inert atmosphere such as nitrogen. Thus, a uniform film having a film thickness of 150 nanometer was obtained. X of this film
From the analysis of the measurement results of the line diffraction, the (002) peak of hexagonal cadmium sulfide was observed. In addition, as a result of analyzing the cadmium bond of the same film by X-ray photoelectron spectroscopy, it was confirmed that the cadmium-sulfur bond was the same as the cadmium-sulfur bond of the single crystal cadmium sulfide. Furthermore, it was also confirmed from the results of the analysis that there was no significant carbon residue on the surface of the cadmium sulfide film and in the film.
Similar results were obtained even if the solution was filtered to remove the precipitate. Further, a similar experiment was tried using a solution in which the precipitate was not removed by centrifugation or filtration, but a uniform and good membrane was not obtained.

【0027】(実施例4)有機金属化合物としてのチオ
安息香酸カドミウムを、溶媒であるγ−ブチロラクトン
に0.5モル/リットル溶解させ、その後、同溶液を遠
心分離し沈殿物を除去させ、粘度約15センチポアズの
溶液を作製する。同溶液を、表面に約600ナノメータ
の厚さにSnO2膜を形成した35cm角の並ガラス基
板上にフレキソ印刷を用いて塗布し、同塗布基板を10
0℃で乾燥し溶媒を揮発させる。その後、大気中で、4
50℃・3分間の熱分解反応を行う。同熱分解反応は窒
素等の不活性雰囲気下でも同様に行えることが確認され
ている。このようにして、膜厚約500ナノメータの均
一な膜が得られた。この膜のX線回折の測定結果の解析
から、六方晶硫化カドミウムの(002)ピークが観察
された。また、同膜のカドミウムの結合をX線光電子分
光法により分析した結果、カドミウム−硫黄の結合が単
結晶硫化カドミウムのカドミウム−硫黄の結合と同じで
あることが確認された。さらに、同分析の結果から同硫
化カドミウム膜表面および同膜中に顕著なカーボンの残
留が無いことも確認された。なお、溶液を濾過し沈殿物
を除去しても同様の結果が得られた。また、遠心分離あ
るいは濾過により沈殿物を除去していない溶液を用いて
同様の実験を試みたが、やはり均一で良好な膜は得られ
なかった。
Example 4 Cadmium thiobenzoate as an organometallic compound was dissolved in γ-butyrolactone as a solvent in an amount of 0.5 mol / liter, and then the solution was centrifuged to remove a precipitate, and the viscosity was increased. Make a solution of about 15 centipoise. The solution was applied by flexographic printing on a 35 cm square normal glass substrate on the surface of which an SnO 2 film was formed to a thickness of about 600 nanometers.
Dry at 0 ° C. and evaporate the solvent. Then in the atmosphere, 4
Carry out thermal decomposition reaction at 50 ° C for 3 minutes. It has been confirmed that the same thermal decomposition reaction can be similarly performed in an inert atmosphere such as nitrogen. In this way, a uniform film having a film thickness of about 500 nanometers was obtained. From the analysis of the measurement result of X-ray diffraction of this film, a (002) peak of hexagonal cadmium sulfide was observed. In addition, as a result of analyzing the cadmium bond of the same film by X-ray photoelectron spectroscopy, it was confirmed that the cadmium-sulfur bond was the same as the cadmium-sulfur bond of the single crystal cadmium sulfide. Furthermore, it was also confirmed from the results of the analysis that there was no significant carbon residue on the surface of the cadmium sulfide film and in the film. Similar results were obtained even if the solution was filtered to remove the precipitate. Further, a similar experiment was tried using a solution in which the precipitate was not removed by centrifugation or filtration, but a uniform and good membrane was not obtained.

【0028】さて、実施例1から実施例4に示した手法
で作製した硫化カドミウム薄膜を用いて硫化カドミウム
/テルル化カドミウム構造の薄膜太陽電池を作製した。
尚、テルル化カドミウム薄膜の作製には近接昇華法を用
いた。図1に本実施例の薄膜太陽電池の断面構造を示
す。また、参考のために、従来の塗布・焼結法により作
製した太陽電池の断面構造を図3に示す。図より明らか
なように、本実施例の太陽電池の硫化カドミウム層1の
厚みは、従来の塗布・焼結法で試作した太陽電池の硫化
カドミウム層7の厚みに比べはるかに薄いことが分か
る。図2および図4に本実施例の太陽電池と従来の塗布
・焼結法で試作した太陽電池の電圧−電流特性を示す。
図2より、本実施例で作製した太陽電池の変換効率は1
4.6%(1cm2)であり、開放端電圧は813m
V、短絡電流密度は24.8mA、曲線因子は72.6
%という高い値であることが分かった。一方、従来の塗
布・焼結法で作製した硫化カドミウム/テルル化カドミ
ウム構造の太陽電池の性能は図4に示す通り変換効率1
1.3%(1cm2)であり、開放端電圧は797m
V、短絡電流密度は21.1mA、曲線因子は67.2
%である。これらから、本実施例の太陽電池の変換効率
は大幅に向上していることが分かる。これは、本実施例
の太陽電池は硫化カドミウム層の厚みが薄く、かつ空隙
の無い緻密な膜であるため、短波長感度が増し、結果と
して短絡電流が増加したことによるものである。
A thin film solar cell having a cadmium sulfide / cadmium telluride structure was produced by using the cadmium sulfide thin film produced by the method shown in Examples 1 to 4.
The proximity sublimation method was used for the production of the cadmium telluride thin film. FIG. 1 shows the cross-sectional structure of the thin-film solar cell of this example. For reference, FIG. 3 shows a cross-sectional structure of a solar cell manufactured by a conventional coating / sintering method. As is apparent from the figure, the thickness of the cadmium sulfide layer 1 of the solar cell of this example is much thinner than the thickness of the cadmium sulfide layer 7 of the solar cell prototyped by the conventional coating and sintering method. FIGS. 2 and 4 show the voltage-current characteristics of the solar cell of this example and a solar cell prototyped by the conventional coating / sintering method.
From FIG. 2, the conversion efficiency of the solar cell manufactured in this example is 1
It is 4.6% (1 cm 2 ) and the open circuit voltage is 813 m.
V, short circuit current density 24.8 mA, fill factor 72.6
It turned out to be a high value of%. On the other hand, the performance of a cadmium sulfide / cadmium telluride solar cell manufactured by a conventional coating / sintering method has a conversion efficiency of 1 as shown in FIG.
1.3% (1 cm 2 ) and open circuit voltage is 797 m
V, short circuit current density 21.1 mA, fill factor 67.2
%. From these, it can be seen that the conversion efficiency of the solar cell of this example is significantly improved. This is because the solar cell of the present example is a dense film having a thin cadmium sulfide layer and no voids, so that the short wavelength sensitivity is increased, and as a result, the short circuit current is increased.

【0029】また、実施例1で示した手法で作製した硫
化カドミウム薄膜のうち、表1で不均一とした硫化カド
ミウム薄膜を用いて硫化カドミウム/テルル化カドミウ
ム構造の薄膜太陽電池の作製を試みた。図5に太陽電池
の電圧−電流特性を示す。図2の特性と比較すると、す
べてのパラメーターで劣った特性値しか得られていない
ことが分かる。
In addition, among the cadmium sulfide thin films prepared by the method shown in Example 1, a cadmium sulfide thin film made nonuniform in Table 1 was used to try to prepare a thin film solar cell having a cadmium sulfide / cadmium telluride structure. . FIG. 5 shows the voltage-current characteristics of the solar cell. It can be seen from comparison with the characteristics of FIG. 2 that only inferior characteristic values are obtained for all parameters.

【0030】[0030]

【発明の効果】以上示したように、金属−硫黄結合を少
なくとも一つ以上内部に有する有機金属化合物を、所定
の溶媒に溶解させた溶液をインクジェット法により基板
上に塗布し、熱分解することにより、機能的な化合物半
導体としての、高品質の金属の硫化物薄膜を極めて容易
に形成することができる。
As described above, a solution in which an organometallic compound having at least one metal-sulfur bond inside is dissolved in a predetermined solvent is applied on a substrate by an ink jet method and thermally decomposed. This makes it possible to extremely easily form a high-quality metal sulfide thin film as a functional compound semiconductor.

【0031】さらに、700ナノメータ以下であれば、
塗布膜厚もしくは溶解液の濃度等を変えることにより、
任意の厚みをもつ金属の硫化物からなる空隙の無い所望
の高品質化合物半導体薄膜を得ることができ、硫化カド
ミウム/テルル化カドミウム構造の薄膜太陽電池の作製
に応用したところ、従来の塗布・焼結法で試作した同構
造の太陽電池の変換効率が11.3%(1cm2)であ
るのに対し、本発明による製膜方式で試作した太陽電池
の変換効率は14.6%(1cm2)となり、大幅な特
性の向上が確認された。
Furthermore, if it is 700 nanometers or less,
By changing the coating thickness or the concentration of the solution, etc.
It is possible to obtain desired high quality compound semiconductor thin films made of metal sulfides of arbitrary thickness without voids, and when applied to the fabrication of thin film solar cells with a cadmium sulfide / cadmium telluride structure, conventional coating / baking The conversion efficiency of the solar cell of the same structure manufactured by the binding method is 11.3% (1 cm 2 ), whereas the conversion efficiency of the solar cell manufactured by the film forming method of the present invention is 14.6% (1 cm 2). ), It was confirmed that the characteristics were significantly improved.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例により作製した硫化カドミウ
ム/テルル化カドミウム薄膜太陽電池の模式断面図
FIG. 1 is a schematic cross-sectional view of a cadmium sulfide / cadmium telluride thin film solar cell prepared according to an example of the present invention.

【図2】本発明の一実施例により作製した硫化カドミウ
ム/テルル化カドミウム薄膜太陽電池の電圧−電流特性
を示す図
FIG. 2 is a diagram showing voltage-current characteristics of a cadmium sulfide / cadmium telluride thin film solar cell prepared according to an example of the present invention.

【図3】従来の塗布・焼結法で作製した硫化カドミウム
/テルル化カドミウム太陽電池の模式断面図
FIG. 3 is a schematic cross-sectional view of a cadmium sulfide / cadmium telluride solar cell prepared by a conventional coating / sintering method.

【図4】従来の塗布・焼結法で作製した硫化カドミウム
/テルル化カドミウム太陽電池の電圧−電流特性を示す
FIG. 4 is a diagram showing voltage-current characteristics of a cadmium sulfide / cadmium telluride solar cell prepared by a conventional coating / sintering method.

【図5】比較例として作製した硫化カドミウム/テルル
化カドミウム太陽電池の電圧−電流特性を示す図
FIG. 5 is a diagram showing voltage-current characteristics of a cadmium sulfide / cadmium telluride solar cell prepared as a comparative example.

【符号の説明】[Explanation of symbols]

1 硫化カドミウム 2 テルル化カドミウム 3 カーボン電極 4 AgIn電極 5 ガラス基板 6 透明導電膜 7 硫化カドミウム 8 テルル化カドミウム 9 カーボン電極 1 Cadmium Sulfide 2 Cadmium Telluride 3 Carbon Electrode 4 AgIn Electrode 5 Glass Substrate 6 Transparent Conductive Film 7 Cadmium Sulfide 8 Cadmium Telluride 9 Carbon Electrode

───────────────────────────────────────────────────── フロントページの続き (72)発明者 室園 幹夫 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 ──────────────────────────────────────────────────続 き Continued on the front page (72) Inventor Mikio Murozono 1006 Kazuma Kadoma, Kadoma City, Osaka Matsushita Electric Industrial Co., Ltd.

Claims (9)

【特許請求の範囲】[Claims] 【請求項1】金属−硫黄結合を少なくとも一つ以上内部
に有する有機金属化合物を、溶媒に溶解させて1センチ
ポアズ以上20センチポアズ以下の粘度を有する溶液と
し、この溶液を基板上にインクジェット法により塗布
し、熱分解することを特徴とする化合物半導体薄膜の形
成法。
1. An organometallic compound having at least one metal-sulfur bond inside is dissolved in a solvent to form a solution having a viscosity of 1 centipoise or more and 20 centipoise or less, and the solution is applied onto a substrate by an inkjet method. A method for forming a compound semiconductor thin film, which comprises decomposing and thermally decomposing.
【請求項2】金属−硫黄結合を形成する金属がカドミウ
ム、亜鉛、銅、鉛もしくは水銀であることを特徴とする
請求項1記載の化合物半導体薄膜の形成法。
2. The method for forming a compound semiconductor thin film according to claim 1, wherein the metal forming the metal-sulfur bond is cadmium, zinc, copper, lead or mercury.
【請求項3】有機金属化合物は、金属メルカプチド、金
属のチオ酸塩、金属のジチオ酸塩、金属のチオカルボナ
ート塩、金属のジチオカルボナート塩、金属のトリチオ
カルボナート塩、金属のチオカルバミン酸塩もしくは金
属のジチオカルバミン酸塩であることを特徴とする請求
項1記載の化合物半導体薄膜の形成法。
3. The organometallic compound is a metal mercaptide, a metal thioate, a metal dithioate, a metal thiocarbonate salt, a metal dithiocarbonate salt, a metal trithiocarbonate salt, or a metal thiocarbonate. 2. The method for forming a compound semiconductor thin film according to claim 1, which is a carbamate or a metal dithiocarbamate.
【請求項4】溶媒は、1−メチル−2−ピロリドン、γ
−ブチロラクトン、テトラリン、ジメチルホルムアミ
ド、ジメチルスルホキシド、トルエン、クロロホルム、
アルコール類およびセロソルプ系、カルビトール系等の
多価アルコールとその誘導体であることを特徴とする請
求項1記載の化合物半導体薄膜の形成法。
4. The solvent is 1-methyl-2-pyrrolidone, γ
-Butyrolactone, tetralin, dimethylformamide, dimethylsulfoxide, toluene, chloroform,
The method for forming a compound semiconductor thin film according to claim 1, wherein the compound semiconductor thin film is an alcohol and a polyhydric alcohol such as a cellosolve-based or carbitol-based alcohol and a derivative thereof.
【請求項5】溶液の濃度は、0.1モル/リットル以上
1モル/リットル以下であることを特徴とする請求項1
記載の化合物半導体薄膜の形成法。
5. The concentration of the solution is 0.1 mol / liter or more and 1 mol / liter or less.
A method for forming a compound semiconductor thin film as described above.
【請求項6】有機金属化合物を溶媒に溶解させた後、濾
過し残留物を除去するか、または遠心分離し沈殿物を除
去することを特徴とする請求項1記載の化合物半導体薄
膜の形成法。
6. The method for forming a compound semiconductor thin film according to claim 1, wherein the organometallic compound is dissolved in a solvent and then the residue is removed by filtration or the precipitate is removed by centrifugation. .
【請求項7】有機金属化合物を熱分解する温度が100
℃以上500℃以下であることを特徴とする請求項1記
載の化合物半導体薄膜の形成法。
7. A temperature at which an organometallic compound is thermally decomposed is 100.
The method for forming a compound semiconductor thin film according to claim 1, wherein the temperature is not lower than 500 ° C and not higher than 500 ° C.
【請求項8】基板がガラス、金属、セラミックもしくは
樹脂フィルムであることを特徴とする請求項1記載の化
合物半導体薄膜の形成法。
8. The method for forming a compound semiconductor thin film according to claim 1, wherein the substrate is a glass, metal, ceramic or resin film.
【請求項9】熱分解で得られた金属の硫化物薄膜の膜厚
が700ナノメータ以下であることを特徴とする請求項
1記載の化合物半導体薄膜の形成法。
9. The method for forming a compound semiconductor thin film according to claim 1, wherein the film thickness of the metal sulfide thin film obtained by thermal decomposition is 700 nanometers or less.
JP7228774A 1995-09-06 1995-09-06 Manufacture of compound semiconductor thin film Pending JPH0974213A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7228774A JPH0974213A (en) 1995-09-06 1995-09-06 Manufacture of compound semiconductor thin film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7228774A JPH0974213A (en) 1995-09-06 1995-09-06 Manufacture of compound semiconductor thin film

Publications (1)

Publication Number Publication Date
JPH0974213A true JPH0974213A (en) 1997-03-18

Family

ID=16881639

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7228774A Pending JPH0974213A (en) 1995-09-06 1995-09-06 Manufacture of compound semiconductor thin film

Country Status (1)

Country Link
JP (1) JPH0974213A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009041660A1 (en) 2007-09-28 2009-04-02 Fujifilm Corporation Substrate for solar cell and solar cell
WO2009041657A1 (en) 2007-09-28 2009-04-02 Fujifilm Corporation Substrate for solar cell and solar cell
WO2009041659A1 (en) 2007-09-28 2009-04-02 Fujifilm Corporation Solar cell
US8415557B2 (en) 2009-03-09 2013-04-09 Fujifilm Corporation Photoelectric conversion device and solar cell using the photoelectric conversion device
US8686281B2 (en) 2009-04-08 2014-04-01 Fujifilm Corporation Semiconductor device and solar battery using the same

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009041660A1 (en) 2007-09-28 2009-04-02 Fujifilm Corporation Substrate for solar cell and solar cell
WO2009041657A1 (en) 2007-09-28 2009-04-02 Fujifilm Corporation Substrate for solar cell and solar cell
WO2009041659A1 (en) 2007-09-28 2009-04-02 Fujifilm Corporation Solar cell
US8415557B2 (en) 2009-03-09 2013-04-09 Fujifilm Corporation Photoelectric conversion device and solar cell using the photoelectric conversion device
US8686281B2 (en) 2009-04-08 2014-04-01 Fujifilm Corporation Semiconductor device and solar battery using the same

Similar Documents

Publication Publication Date Title
US5920798A (en) Method of preparing a semiconductor layer for an optical transforming device
Murugadoss et al. An efficient electron transport material of tin oxide for planar structure perovskite solar cells
US11177440B2 (en) Method for inkjet printing an organic-inorganic perovskite
JP3681870B2 (en) Method for producing compound semiconductor film and solar cell
US5714391A (en) Method of manufacturing a compound semiconductor thin film for a photoelectric or solar cell device
CN109742246B (en) Controllable mixed solvent system and application thereof in preparing perovskite material
CN102447067A (en) Photoelectric conversion element and solar cell
JP2002145615A (en) TiO2 THIN FILM AND METHOD OF PREPARING WORKING ELECTRODE FOR COLOR SENSITIZING SOLAR BATTERY
JPH0974065A (en) Method of forming compound semiconductor film
JPH0974213A (en) Manufacture of compound semiconductor thin film
US20060057766A1 (en) Method for preparation of semiconductive films
FR2690567A1 (en) Electrochemical generators and super condensers prodn. - by conductive ion ink screen printing current collector, electrode, electrolytic separator and encapsulating layers in situ e.g. on circuit board with electronically conductive material
KR20100048043A (en) Thin film solar cell fabricated using nanoparticles paste
CN113363394B (en) Perovskite battery preparation method
KR20150090022A (en) Method for manufacturing solar cell, and solar cell
WO2013032088A1 (en) Metal oxide-carbon hybrid thin film and method for preparing same
WO2021060866A1 (en) Method for mass-production of perovskite solar cell
Eswaramoorthy Fabrication and manufacturing process of perovskite solar cell
JP2013171661A (en) Method of manufacturing quantum dot sensitization type solar battery
JPH104206A (en) Compound semiconductor thin film forming method and optoelectric transducer using the thin film
JP2003331937A (en) Manufacturing method of photoelectric conversion element
Jeong et al. Facile preparation of black electrochromic ink using a copper oxide nanoparticle suspension
Kang et al. Lead-Free Perovskite and Improved Processes and Techniques for Creating Future Photovoltaic Cell to Aid Green Mobility
JP3461620B2 (en) Method for manufacturing compound semiconductor thin film and method for manufacturing photoelectric conversion element
US8647897B2 (en) Air-stable ink for scalable, high-throughput layer deposition