JPH0972898A - Analyzing method for soil - Google Patents

Analyzing method for soil

Info

Publication number
JPH0972898A
JPH0972898A JP8163975A JP16397596A JPH0972898A JP H0972898 A JPH0972898 A JP H0972898A JP 8163975 A JP8163975 A JP 8163975A JP 16397596 A JP16397596 A JP 16397596A JP H0972898 A JPH0972898 A JP H0972898A
Authority
JP
Japan
Prior art keywords
soil
liquid
extracted
extract
measured
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8163975A
Other languages
Japanese (ja)
Other versions
JP3614568B2 (en
Inventor
Motoyuki Jinno
基行 神野
Hiromitsu Daigobou
弘充 大悟法
Yoshiharu Fukui
芳治 福井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SUMIKA BUNSEKI CENTER KK
Original Assignee
SUMIKA BUNSEKI CENTER KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SUMIKA BUNSEKI CENTER KK filed Critical SUMIKA BUNSEKI CENTER KK
Priority to JP16397596A priority Critical patent/JP3614568B2/en
Publication of JPH0972898A publication Critical patent/JPH0972898A/en
Application granted granted Critical
Publication of JP3614568B2 publication Critical patent/JP3614568B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a method for simply and rapidly measuring contaminant substance even at the site by adding and mixing extract to and with sampled soil to analyze the soil, then efficiently separating the mixed liquid, easily obtaining the liquid to be extracted which can be measured without abnormal value even it is measured. SOLUTION: The method for analyzing soil has the steps of adding and mixing extract to and with the sampled coil, and then analyzing the liquid to be extracted obtained by separating the mixed liquid of the soil and the extract, and comprises the steps of adding the extract to the soil to extract the contaminant substance in the soil, then adding flocculant containing no contaminant substance to the contaminant substance to be measured, thereby expediting the separation of the liquid to be extracted from the mixed liquid of the soil and the extract, and further simply and rapidly measuring the contaminant substance of the liquid to be extracted by a simple analyzing method.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は土壌の分析方法に関
し、特に土壌中から汚染物質を抽出する方法と、さらに
この抽出された汚染物質を現地で簡易分析する方法に関
する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a soil analysis method, and more particularly to a method for extracting pollutants from soil and a simple method for on-site analysis of the extracted pollutants.

【0002】[0002]

【従来の技術】最近、土壌の汚染が大きな環境問題とな
っている。特に、無機物、重金属、PCB、農薬及び有
機塩素系化合物等の汚染物質が問題にされている。土地
を有効活用するためには汚染された土壌を修復しなけれ
ばならないが、土壌の修復には莫大な費用がかかるため
修復範囲は可能な限り小さくするのが通常である。その
ためには土壌調査を行い、汚染物質の特定化と汚染の程
度及び土壌汚染範囲(面積と深さ)を出来るだけ正確に
評価しなければならない。
2. Description of the Related Art Recently, soil pollution has become a major environmental problem. In particular, pollutants such as inorganic substances, heavy metals, PCBs, pesticides and organic chlorine compounds have become a problem. Contaminated soil must be rehabilitated in order to make effective use of the land, but rehabilitation of soil is extremely expensive and the rehabilitation area is usually kept as small as possible. For this purpose, soil surveys must be carried out, and the identification of pollutants, the extent of contamination, and the extent of soil contamination (area and depth) must be evaluated as accurately as possible.

【0003】土壌の分析は、通常、現地で土壌をボーリ
ングして採取し、土壌を実験室に持ち帰り、一定量の土
壌を容器にサンプリングしこの土壌の測定成分を溶かし
て抽出するための液体(以後抽出液と称す)を添加・混
合後、静置、遠心分離、自然濾過または強制濾過工程を
経てこの混合液から土壌の測定上不要でかつ邪魔になる
成分を分離して得られた液体(以後被抽出液と称す)
を、原子吸光法、ICP発光分光分析法、ICP−質量
分析法、吸光光度法(分光光度計法)、蛍光光度法、ガ
スクロマトグラフ法、ガスクロマトグラフィー質量分析
法、イオンクロマトグラフ法、液体クロマトグラフ法な
どの機器分析装置で測定することによって行われてい
る。上記の一連の分析においては、簡単・高能率で行
え、高感度・高精度の結果が得られてかつ低コストであ
る方法が求められる。
[0003] Soil analysis is usually carried out by boring the soil at the site, bringing the soil back to the laboratory, sampling a certain amount of soil in a container, and dissolving and extracting the measured components of this soil ( (Hereinafter referred to as "extract") is added and mixed, and then the mixture is allowed to stand, centrifuge, natural filtration or forced filtration, and then the liquid obtained by separating unnecessary and disturbing components from the mixture ( Hereinafter referred to as the liquid to be extracted)
Atomic absorption method, ICP emission spectral analysis method, ICP-mass spectrometry method, absorptiometric method (spectrophotometer method), fluorometric method, gas chromatograph method, gas chromatography mass spectrometry method, ion chromatograph method, liquid chromatography It is performed by measuring with an instrumental analyzer such as a graph method. In the series of analyzes described above, there is a demand for a method that can be performed easily and with high efficiency, obtains highly sensitive and highly accurate results, and is low in cost.

【0004】また汚染されている可能性のある土壌は、
現地の土地を、例えば5mまたは30m間隔のメッシュ
に区切ってボーリングを行い、その中心の土壌の表面及
び深さ方向に土壌を採取する。ボーリングはその方法及
び土質にもよるが、一日に1箇所ないし数箇所しか行う
ことができないので、調査すべき土地の面積が広いと、
土壌の採取件数が多くなるため土壌を採取するだけで多
くの日数が必要となり多額の費用がかかり、また測定す
べき件数に応じて分析コストも高くなる。よって土壌調
査費用をできるだけ節約するため、汚染されていない土
壌をできるだけ採取しないようにし、採取件数を少なく
する必要がある。それには、採取した土壌を迅速に分析
し、その結果をさらにボーリングを続けるかどうかの判
定に活かさなければならない。すなわち土壌を採取しな
がら、現地で簡単、迅速に高い精度でしかも低コストで
土壌を分析することが求められる。
Soil which may be polluted is
Boring is performed by dividing the local land into meshes having an interval of 5 m or 30 m, for example, and the soil is sampled on the surface of the center soil and in the depth direction. Depending on the method and soil quality, boring can be done only once or several times a day, so if the area of land to be surveyed is large,
Since the number of soil samples is large, it takes a lot of days just to collect the soil, which results in a large amount of cost, and the analysis cost increases depending on the number of samples to be measured. Therefore, in order to save soil investigation costs as much as possible, it is necessary to collect uncontaminated soil as little as possible and reduce the number of samples. To do this, the soil sampled must be rapidly analyzed and the results used to determine whether to continue drilling. That is, it is required to analyze soil easily, quickly, with high accuracy and at low cost while collecting soil.

【0005】そのため水や被抽出液の汚染物質の測定
を、上記の実験室に設けられる必要があるような大型機
器分析装置等を使用しないで、途中の操作や条件を簡略
し、簡易な装置を使用して、手数、用具、時間を節約す
る簡易分析法も利用されている。この簡易分析法として
は、例えば科学機器総合カタログ(´95/´96年版
−発行者:Fineグループ)の水質検査器の欄で簡易
水質検査器具のパックテスト(共立)や迅速水質計用試
薬の“共立”迅速水質計用試薬や分光光度計を用いた方
法および汚染水質簡易検査器としてヨシテストがあり、
またHACH法(PAS方式多項目迅速水質/土壌/食
品分析計使用による)、ポナールキット法、イムノアッ
セイ法及びポータブルガスクロマトグラフ法などがあげ
られる。
Therefore, the measurement of the pollutants of water and the liquid to be extracted does not use a large-scale instrumental analyzer which is required to be installed in the above-mentioned laboratory, and the operation and conditions on the way are simplified to simplify the device. Simple analytical methods have also been used to save labor, equipment and time. Examples of this simple analytical method include, for example, a pack test (Kyoritsu) of a simple water quality tester and a reagent for a quick water quality tester in the column of water quality tester in the scientific equipment general catalog ('95 / '96 edition-publisher: Fine group). "Kyoritsu" method using a reagent for rapid water quality meter and spectrophotometer, and Yoshitest as a contaminated water quality simple tester,
Further, the HACH method (using the PAS method multi-item rapid water quality / soil / food analyzer), the Ponard kit method, the immunoassay method, the portable gas chromatograph method and the like can be mentioned.

【0006】[0006]

【発明が解決しようとする課題】土壌にはいろいろの土
質があり、例えば、礫、礫質土、砂、砂質土、シルト、
粘性土、有機質土、火山灰質粘性土、高有機質土などが
ある。実際の土壌はこれらが混じり合い、複雑な土質を
形成している。土壌は1mm以上の大きな粒子から0.
1μm以下の微粒子まで幅広く分布している。このよう
に土壌試料に抽出液を添加して混合後、静置または濾過
により被抽出液を採取するが、特に微粒子の土壌は沈降
しにくく、また土壌と抽出液との混合液を濾過する時に
フィルターを透過し易い。その結果土壌と抽出液との混
合液の分離が不完全になり、混合液から分離される被抽
出液中に土壌の微粒子が多数残存して濁り、被抽出液の
濁度が高くなる。微粒子を完全に補足するためフィルタ
ーの孔径を小さくすると、自然濾過に長時間を要するこ
とになってしまう。また土壌によっては一昼夜を費やし
ても土壌と抽出液との混合液の分離が全くできない場合
もあり、吸引濾過等の強制濾過を行うが、それでも長時
間を要する場合があるので、先に遠心分離を行った後
で、濾過を行わねばならなくなってしまう。
Soil has various soil types, for example, gravel, gravel soil, sand, sandy soil, silt,
Cohesive soil, organic soil, volcanic ash cohesive soil, and high organic soil. In the actual soil, these are mixed and form a complicated soil quality. Soil is larger than 1 mm with large particles of 0.1.
Widely distributed up to fine particles of 1 μm or less. In this way, after adding the extract to the soil sample and mixing, the extract to be extracted is collected by standing or filtering, but especially fine-grained soil is difficult to settle, and when filtering the mixture of soil and extract. Easy to pass through the filter. As a result, the separation of the mixed liquid of the soil and the extract becomes incomplete, and many fine particles of soil remain in the liquid to be extracted separated from the mixed liquid and become turbid, and the turbidity of the liquid to be extracted becomes high. If the pore size of the filter is made small in order to completely capture the fine particles, it takes a long time for the natural filtration. In addition, depending on the soil, it may not be possible to separate the mixed liquid of the soil and the extract at all even after spending all day and night, and forced filtration such as suction filtration is performed.However, it may take a long time, so centrifuge first. After doing, you have to do the filtration.

【0007】このように従来では土壌と抽出液を分離し
て被抽出液を得るため、多大の労力や長時間を必要と
し、さらに遠心分離機や強制濾過装置などの大型の機器
装置も必要としていた。またこの混合液からの被抽出液
の分離がうまくできないと、被抽出液の汚染物質を測定
する時に分析目的成分によっては異常に高い値を示した
り、また分析方法によっては測定が出来ない等の問題が
あった。特に被抽出液の濁度が50度以上になると、値
がふらついて分光光度計で測定ができなかったり、測定
機器の被抽出液の注入孔が詰まってICP−発光分光分
析装置または原子吸光分析装置で測定できなかったり、
または土壌の主成分の元素が検出されて目的とする汚染
物質の微量分析がまったく行うことができなかったりす
る等の問題点があった。
As described above, conventionally, a large amount of labor and a long time is required to obtain the liquid to be extracted by separating the soil and the extraction liquid, and further, a large-scale device such as a centrifuge or a forced filtration device is required. I was there. In addition, if the liquid to be extracted cannot be separated from this mixed solution well, it may show an abnormally high value depending on the analysis target component when measuring contaminants in the liquid to be extracted, or it may not be possible depending on the analysis method. There was a problem. In particular, when the turbidity of the liquid to be extracted becomes 50 degrees or more, the value fluctuates and the measurement cannot be performed by the spectrophotometer, or the injection hole of the liquid to be extracted of the measuring instrument is clogged and the ICP-emission spectrophotometer or atomic absorption spectrometry is used. I can not measure with the device,
There is also a problem that the element of the main component of the soil is detected and the trace analysis of the target pollutant cannot be performed at all.

【0008】また現地で土壌を分析するために、上述の
大型の機器分析装置を現地に持ち込むことは困難である
ので、それに代わる方法として上記の簡易分析法が適用
される。その場合、分析工程は土壌に抽出液を添加し、
混合後、土壌と抽出液との混合液を分離して得られる被
抽出液を簡易分析法に供することになる。この全行程を
迅速に行うためには被抽出液が簡単、迅速にしかも低コ
ストで得られなければならない。被抽出液を得るのに長
時間、多大の労力を費やしていると初期の目的が達成で
きない。
Further, since it is difficult to bring the above-mentioned large-sized instrumental analysis device to the site for analyzing soil at the site, the above-mentioned simple analysis method is applied as an alternative method. In that case, the analysis step adds the extract to the soil,
After mixing, the liquid to be extracted obtained by separating the mixed liquid of soil and extract will be subjected to a simple analysis method. In order to carry out this whole process quickly, the liquid to be extracted must be obtained easily, quickly and at low cost. If a large amount of labor is spent for a long time to obtain the liquid to be extracted, the initial purpose cannot be achieved.

【0009】本発明の目的は土壌中の汚染物質の溶出量
及び又は含有量を測定するため、サンプリングされた土
壌に抽出液を添加・混合後、その混合液を効率良く分離
して、測定に供しても精度の良い正確な測定が可能な被
抽出液を容易に得ることのできる抽出方法を提供するこ
とである。また本発明の目的は、現地で簡単・迅速に低
コストで精度良く汚染物質を測定する方法を提供するこ
とにある。
The object of the present invention is to measure the elution amount and / or content of pollutants in soil. Therefore, after adding and mixing the extract to the sampled soil, the mixture is efficiently separated for measurement. It is an object of the present invention to provide an extraction method by which a liquid to be extracted can be easily obtained with high accuracy and precision even when provided. Another object of the present invention is to provide a method for measuring pollutants easily, quickly and accurately at a low cost on site.

【0010】[0010]

【課題を解決するための手段】上記課題を解決するた
め、本発明は、サンプリングされた土壌に抽出液を添加
・混合後、この土壌と前述の抽出液との混合液を分離し
て得られる被抽出液を分析する土壌の分析方法におい
て、前記土壌に前記抽出液を添加後、さらに測定目的の
汚染物質に対して汚染物質を含有していない凝集剤を添
加することにより土壌と抽出液の混合液から被抽出液の
分離を促進することを特徴とする。
In order to solve the above-mentioned problems, the present invention is obtained by adding and mixing an extract to the sampled soil, and then separating the mixed solution of this soil and the aforementioned extract. In the soil analysis method for analyzing a liquid to be extracted, after the extract is added to the soil, the coagulant containing no pollutant is added to the pollutant for the measurement purpose, whereby the soil and the extract are separated. It is characterized by accelerating the separation of the liquid to be extracted from the mixed liquid.

【0011】また上記の、現地で簡単・迅速に低コスト
で精度良く汚染物質を測定するため、本発明は、サンプ
リングされた土壌に抽出液を添加・混合後、この土壌と
前記抽出液との混合液を分離して得られる被抽出液を分
析する土壌の分析方法において、前記土壌に前記抽出液
を添加後さらに測定目的の汚染物質に対して汚染物質を
含有していない凝集剤を添加することによって土壌と抽
出液の混合液から被抽出液の分離を促進して得られた被
抽出液の中の汚染物質を簡易分析法で測定することを特
徴とする。
Further, in order to measure pollutants easily, quickly and at low cost and with high accuracy in the field, the present invention adds the extract solution to the sampled soil and mixes it with each other. In a soil analysis method for analyzing a liquid to be extracted obtained by separating a mixed liquid, a flocculant containing no pollutant is added to the pollutant to be measured after the extract is added to the soil. This facilitates the separation of the liquid to be extracted from the mixed liquid of the soil and the liquid to be extracted, and the contaminant in the liquid to be extracted is measured by a simple analysis method.

【0012】すなわち本発明の最大の特徴は、土壌に抽
出液を添加し混合後、土壌と抽出液を分離する際に、特
定の凝集剤を存在させて混合することにより、従来面倒
で長時間を要した濾過工程及び/又は遠心分離工程を行
うことなく土壌と抽出液との混合液から被抽出液の分離
を促進して、被抽出液を汚染させることなく測定に供出
可能な被抽出液を容易に得られ、さらにこの凝集剤を添
加しても混合液中に溶解している汚染物質が凝集沈殿し
て除去されないことである。また本発明の特徴は、この
被抽出液を現地で簡単、迅速に分析できることである。
そしてこの構成により分離して得られた被抽出液の濁度
を50度以下にすることが可能である。
That is, the greatest feature of the present invention is that, when an extract is added to soil and mixed, and then a specific flocculant is present when the extract is separated from the soil, mixing is performed, which is troublesome and time-consuming. A liquid to be extracted that can be provided for measurement without contaminating the liquid to be extracted by promoting the separation of the liquid to be extracted from the mixed liquid of the soil and the liquid without performing the filtration step and / or the centrifugal separation step. That is, even if this flocculant is added, the contaminants dissolved in the mixed solution cannot be removed by flocculation and precipitation. A feature of the present invention is that the liquid to be extracted can be easily and quickly analyzed on site.
With this configuration, the turbidity of the liquid to be extracted obtained by separation can be set to 50 degrees or less.

【0013】本発明の係る分析方法において対象とされ
る汚染物質は、無機物、有機物、重金属等が挙げられ
る。無機物としては例えばシアン、アンモニア、硝酸イ
オン等があり、有機物としてはPCB、農薬、有機塩素
系化合物等があり、重金属としては六価クロム、水銀、
ニッケル、銅、鉛、砒素、カドミウム、セレン、ベリリ
ウム、バナジウム、アンチモン、亜鉛等が挙げられる
が、本発明の対象とされる汚染物質はこれらに限定され
るものではない。
The pollutants targeted in the analysis method of the present invention include inorganic substances, organic substances, heavy metals and the like. Inorganic substances include, for example, cyanide, ammonia, nitrate ions, etc., organic substances include PCB, agricultural chemicals, organic chlorine compounds, etc., and heavy metals include hexavalent chromium, mercury,
Examples of the contaminant include nickel, copper, lead, arsenic, cadmium, selenium, beryllium, vanadium, antimony, and zinc, but the pollutants targeted by the present invention are not limited thereto.

【0014】本発明において、これらの汚染物質に対し
用いられる抽出液は、純水、0.01〜10Nの塩酸、
硝酸及び硫酸等の酸性液、0.01〜10Nの苛性ソー
ダ、アンモニア水等のアルカリ性液、ヘキサン、ヘプタ
ン等の脂肪族炭化水素化合物、エチルエーテル等のエー
テル類、メタノール、エタノール等のアルコール類等の
有機溶剤があるが、これらに限定されるものではない。
好ましくは、金属、有機物等の不純物を含まない精製さ
れた純水、希塩酸、希硝酸、希苛性ソーダ、ヘキサン、
ヘプタン等の脂肪族炭化水素化合物、メタノール、エタ
ノール等のアルコール類及びそれらの混合液である。抽
出液の添加量は土壌の性状によって異なるが、一般にサ
ンプリングされた土壌1gに対して1ml〜100m
l、好ましくは2ml〜50mlの範囲が最適である。
In the present invention, the extract used for these contaminants is pure water, 0.01 to 10 N hydrochloric acid,
Acidic liquids such as nitric acid and sulfuric acid, 0.01-10N caustic soda, alkaline liquids such as ammonia water, aliphatic hydrocarbon compounds such as hexane and heptane, ethers such as ethyl ether, alcohols such as methanol and ethanol, etc. Organic solvents include, but are not limited to.
Preferably, purified water containing no impurities such as metals and organic substances, diluted hydrochloric acid, diluted nitric acid, diluted caustic soda, hexane,
They are aliphatic hydrocarbon compounds such as heptane, alcohols such as methanol and ethanol, and mixed solutions thereof. The amount of extract added depends on the soil properties, but generally 1 ml to 100 m per 1 g of sampled soil.
The optimum range is 1, preferably 2 ml to 50 ml.

【0015】そして本発明の抽出において用い得る凝集
剤としては無機凝集剤と有機凝集剤とがあり、測定目的
の汚染物質に対してその汚染物質を含有しておらずかつ
悪影響を及ぼさない凝集剤であれば何を用いても良い。
無機系汚染物質及び重金属を測定する場合には有機凝集
剤を、有機系汚染物質を測定する場合には無機凝集剤と
有機凝集剤が用いられる。なお凝集剤としては有機凝集
剤が好ましい。
As the coagulant that can be used in the extraction of the present invention, there are an inorganic coagulant and an organic coagulant, and the coagulant that does not contain the pollutant and has no adverse effect on the pollutant to be measured. Anything may be used as long as it is used.
Organic coagulants are used when measuring inorganic pollutants and heavy metals, and inorganic coagulants and organic coagulants are used when measuring organic pollutants. An organic coagulant is preferable as the coagulant.

【0016】凝集剤のうち、無機凝集剤としては例え
ば、硫酸バンド、硫酸第一鉄、硫酸第二鉄、塩化第二
鉄、アルミン酸ソーダ、ポリ塩化アルミニウムが使用可
能であり、また有機凝集剤として界面活性剤、高分子凝
集剤がある。高分子凝集剤としては例えば、アルギン酸
ナトリウム、CMC−ナトリウム、水溶性アニリン樹脂
塩酸塩、ポリチオ尿素塩酸塩、水溶性カチオン化アミノ
樹脂、澱粉、ゼラチン、水溶性尿素樹脂、ポリアクリル
酸ナトリウム、ポリアクリルアミド部分加水分解物、ポ
リビニルピリン塩酸塩、ポリエチレンイミン、ポリアク
リルアミドカチオン変性、ポリアクリルアミド、ポリエ
チレンオキシド、ポリプロピレンオキシド等が挙げられ
る。無機及び有機凝集剤は単独あるいは混合して用いて
も良い。さらに凝集剤の添加量は凝集剤、土壌の性状及
び抽出液によって異なるが、凝集剤の濃度が抽出液に対
して1ppm〜10%、好ましくは10ppm〜5%の
範囲になるようにする。
Among the coagulants, as the inorganic coagulant, for example, sulfuric acid band, ferrous sulfate, ferric sulfate, ferric chloride, sodium aluminate, polyaluminum chloride can be used, and organic coagulant. There are surfactants and polymer flocculants. Examples of the polymer flocculant include sodium alginate, CMC-sodium, water-soluble aniline resin hydrochloride, polythiourea hydrochloride, water-soluble cationized amino resin, starch, gelatin, water-soluble urea resin, sodium polyacrylate, polyacrylamide. Partial hydrolysates, polyvinylpyrine hydrochloride, polyethyleneimine, polyacrylamide cation modified, polyacrylamide, polyethylene oxide, polypropylene oxide and the like can be mentioned. The inorganic and organic coagulants may be used alone or as a mixture. Further, the amount of the flocculant added varies depending on the flocculant, the properties of the soil and the extract, but the concentration of the flocculant is set within the range of 1 ppm to 10%, preferably 10 ppm to 5% with respect to the extract.

【0017】なお凝集剤はこれまで、産業排水、生活排
水などを浄化処理する際に排水中の微細な懸濁物を凝集
して分離するため、また水溶液中の排水してはまずい重
金属イオンを不溶化して析出させ除去するために用いら
れてきた。しかし本発明において、従来使用されてきた
凝集剤の使用方法とは異なり、水溶液中に含まれる測定
上不要でかつ測定において邪魔になる物質を析出させて
必要なものだけを水溶液中に残すという、従来では考え
られなかった凝集剤の全く新しい使用方法を導入して、
汚染物質の測定における被抽出液の分離の促進を極めて
容易に行うことに、本願の新規でかつ進歩的な技術的コ
ンセプトがあるものである。
Incidentally, the coagulant has heretofore been used for coagulating and separating fine suspensions in wastewater when purifying industrial wastewater, domestic wastewater and the like, and also for producing heavy metal ions which are difficult to drain in an aqueous solution. It has been used to insolubilize, precipitate and remove. However, in the present invention, unlike the method of using the coagulant that has been conventionally used, the substance contained in the aqueous solution which is unnecessary for measurement and which interferes in the measurement is deposited to leave only the necessary substance in the aqueous solution, Introducing a completely new method of using a flocculant that was not possible in the past,
It is the novel and progressive technical concept of the present application to make it very easy to facilitate the separation of the liquid to be extracted in the measurement of pollutants.

【0018】以上の記載にしたがい、分析される土壌の
汚染物質に対して適当な抽出液及び凝集剤を選択する。
そして土壌と抽出液を混合後、凝集剤を添加し、一定時
間ゆるやかに撹拌する等の方法で混合する。その後、静
置して混合液の上澄液を分取又は濾過するか、あるいは
特定な場合には遠心分離等の方法により土壌と抽出液の
混合液を分離する。凝集剤を添加することにより通常は
静置するだけで土壌と抽出液の混合液から被抽出液の分
離が容易に行えるようになり、その後の測定において安
定した測定結果が得られる。
In accordance with the above description, the appropriate extract and flocculant is selected for the soil contaminants being analyzed.
Then, after mixing the soil and the extract, a flocculant is added, and the mixture is gently stirred for a certain period of time or the like. Then, the mixture is left to stand and the supernatant of the mixed solution is collected or filtered, or in a specific case, the mixed solution of the soil and the extract is separated by a method such as centrifugation. By adding the coagulant, it is possible to easily separate the liquid to be extracted from the mixed liquid of the soil and the extraction liquid by simply allowing it to stand still, and stable measurement results can be obtained in the subsequent measurement.

【0019】液体の濁りの程度を表わす尺度として濁度
があり、JIS K0101に規定されている。それに
よると、視覚濁度、透過光濁度、散乱光濁度及び積分球
濁度に区分して表示されている。例えば、積分球濁度の
場合、液中の粒子による散乱光の強度と透過光の強度の
比を求めカオリン1mg/lの濁りを濁度1度として定義
される。
Turbidity is a measure of the degree of turbidity of a liquid and is defined in JIS K0101. According to this, the visual turbidity, transmitted light turbidity, scattered light turbidity, and integrated sphere turbidity are displayed separately. For example, in the case of integrated sphere turbidity, the turbidity of 1 mg / l kaolin is defined as the turbidity of 1 degree by obtaining the ratio of the intensity of the scattered light by the particles in the liquid and the intensity of the transmitted light.

【0020】土壌は前述のように1mm以上の大きな粒
子から0.1μm以下の微粒子まで幅広く分布している
が、特に微粒子の土壌は沈降しにくく、混合液を濾過す
る時フィルターを容易に透過する。混合液からの分離が
不完全であると被抽出液中に微粒子が多数残存し、被抽
出液の濁度が高くなる。
As described above, the soil is widely distributed from large particles of 1 mm or more to fine particles of 0.1 μm or less. Especially, fine particle soil is unlikely to settle and easily permeates through the filter when filtering the mixed solution. . If the separation from the mixed liquid is incomplete, many fine particles remain in the liquid to be extracted, and the turbidity of the liquid to be extracted becomes high.

【0021】土壌中の汚染物質の測定では定量下限とし
てppmからさらにppbという単位での超微量分析が
要求される。このような高精度で高感度の測定をするた
めには被抽出液の濁度を50度以下、好ましくは30度
以下にする必要がある。濁度が50度以上になると、例
えば分光光度計で汚染物質を測定する時に測定値が異常
値を示したり、他の機器分析を行う時、被抽出液を機器
に注入すると注入孔に詰まってしまう等のトラブルが発
生して測定できない。
In the measurement of pollutants in soil, ultra-trace analysis in units of ppm to ppb is required as the lower limit of quantification. In order to perform such highly accurate and highly sensitive measurement, the turbidity of the liquid to be extracted needs to be 50 degrees or less, preferably 30 degrees or less. If the turbidity is 50 degrees or more, for example, when measuring contaminants with a spectrophotometer, the measured value shows an abnormal value, or when performing other device analysis, when the liquid to be extracted is injected into the device, the injection hole is clogged. Measurements cannot be made due to problems such as being lost.

【0022】汚染物質の抽出された被抽出液の測定はそ
の目的成分に対して最適な方法を選択すれば良い。分析
方法として例えば、吸光光度法、蛍光光度法、原子吸光
法、ICP−発光分光分析法、ICP−質量分析法、イ
オン電極、連続流れ及びフローインジェクション分析
法、イオンクロマトグラフ法、高速液体クロマトグラフ
法、ガスクロマトグラフ法、ガスクロマトグラフィー質
量分析法等が挙げられるが、もちろんこれらに限定され
るものではない。現地で行う簡易分析法として例えば、
簡易水質検査器具−パックテスト(共立)、“共立”迅
速水質計用試薬−分光光度計を用いた方法、ヨシテス
ト、HACH法(PAS方式多項目迅速水質/土壌/食
品分析計)、ポナールキット法、イムノアッセイ法、お
よびポータブルガスクロマトグラフ法などがあるが、こ
れらに限定されるものではない。
For the measurement of the liquid to be extracted from which the pollutant has been extracted, an optimum method for the target component may be selected. As the analysis method, for example, absorptiometry, fluorescence spectrophotometry, atomic absorption spectrometry, ICP-emission spectroscopy, ICP-mass spectrometry, ion electrode, continuous flow and flow injection analysis, ion chromatography, high performance liquid chromatography Method, gas chromatography method, gas chromatography mass spectrometry method and the like, but of course the invention is not limited thereto. As a simple analysis method to be performed locally, for example,
Simple water quality tester-pack test (Kyoritsu), "Kyoritsu" rapid water quality reagent-method using spectrophotometer, Yoshitest, HACH method (PAS method multi-item rapid water quality / soil / food analyzer), Ponard kit method, Examples include, but are not limited to, immunoassay methods and portable gas chromatographic methods.

【0023】[0023]

【実施例】以下に本発明の実施例を示す。本発明はこれ
らに限定されるものではない。 実施例1:A工場跡地の地表から深さ3mで採取した土
壌5gを秤量して容器に入れ、0.1Nの塩酸50ml
を添加して2分間激しく振った。その後、凝集剤として
住友化学製スミフロックFN−10H(ポリアクリルア
ミド系高分子凝集剤)の水溶液(0.001g/ml)
1.5mlを添加し、1分間ゆるやかに撹拌した。1分
間静置した後上澄液を傾斜法で採取して被抽出液を得
た。この被抽出液の濁度を積分球式濁度計(三菱化成株
式会社製SEP−PT205型)で測定したところ2
4.0度であった。また浮遊物質量(SS)は7.0mg
/lであった。この被抽出液をICP発光分光分析装置
で亜鉛(Zn)、鉄(Fe)、銅(Cu)、六価クロム
(Cr)を測定するとそれぞれ2.6mg/l、28.0
mg/l、5.1mg/l、0.01mg/lであった。
Examples of the present invention will be described below. The present invention is not limited to these. Example 1: 5 g of soil collected at a depth of 3 m from the surface of the former site of the A factory was weighed and placed in a container, and 50 ml of 0.1N hydrochloric acid was added.
And shaken vigorously for 2 minutes. Then, an aqueous solution of Sumifloc FN-10H (polyacrylamide polymer flocculant) manufactured by Sumitomo Chemical as a flocculant (0.001 g / ml)
1.5 ml was added and gently stirred for 1 minute. After standing still for 1 minute, the supernatant was collected by a gradient method to obtain a liquid to be extracted. The turbidity of the liquid to be extracted was measured with an integrating sphere turbidimeter (SEP-PT205 type manufactured by Mitsubishi Kasei Co., Ltd.).
It was 4.0 degrees. The amount of suspended solids (SS) is 7.0 mg
/ L. Zinc (Zn), iron (Fe), copper (Cu), and hexavalent chromium (Cr) of this liquid to be extracted were measured with an ICP emission spectrophotometer to obtain 2.6 mg / l and 28.0, respectively.
It was mg / l, 5.1 mg / l, and 0.01 mg / l.

【0024】比較例1:公定法に準拠した方法で土壌と
抽出液との混合液から被抽出液の分離操作を行った。実
施例1と同様にA工場跡地の地表から深さ3mで採取し
た土壌5gを秤量して容器に入れ、0.1Nの塩酸50
mlを添加して2分間激しく振った。1時間静置後、回
転速度2000rpmで10分間遠心分離を行った。さ
らに孔径0.45μmのフィルターをつけた注射器を使
用して5分間強制的に濾過を行った。この被抽出液の濁
度は23.0度、浮遊物質量は7.0mg/lであった。
また、亜鉛、鉄、銅、六価クロムを測定するとそれぞれ
2.7mg/l、27.7mg/l、5.2mg/l、0.0
1mg/lであった。上記のこの結果より、実施例1の方
法から公定法に準拠した方法と誤差の範囲内で同等の分
析値が得られたことが理解される。
Comparative Example 1: An extraction liquid was separated from a mixed liquid of soil and an extraction liquid by a method according to the official method. As in Example 1, 5 g of soil collected at a depth of 3 m from the surface of the site of the factory A was weighed and put in a container, and 0.1 N hydrochloric acid 50
ml was added and shaken vigorously for 2 minutes. After standing for 1 hour, centrifugation was performed at a rotation speed of 2000 rpm for 10 minutes. Further, forced filtration was carried out for 5 minutes using a syringe equipped with a filter having a pore size of 0.45 μm. The turbidity of this liquid to be extracted was 23.0 degrees, and the amount of suspended solids was 7.0 mg / l.
When zinc, iron, copper and hexavalent chromium are measured, they are 2.7 mg / l, 27.7 mg / l, 5.2 mg / l and 0.0, respectively.
It was 1 mg / l. From the above results, it is understood that the method of Example 1 gave the same analytical value within the error range as compared with the method based on the official method.

【0025】比較例2:実施例1と同様にA工場跡地の
地表から深さ3mで採取した土壌5gを秤量して容器に
入れ、0.1Nの塩酸50mlを添加して2分間激しく
振った。1時間静置後、孔径0.45μmのフィルター
で6時間かかって自然濾過した。この被抽出液の濁度は
75.0度、浮遊物質量は29.0mg/lであった。ま
た、亜鉛、鉄、銅、六価クロムを測定するとそれぞれ
3.0mg/l、33.2mg/l、5.7mg/l、0.0
2mg/lであった。
Comparative Example 2 As in Example 1, 5 g of soil collected from the surface of the former site of Factory A at a depth of 3 m was weighed and placed in a container, and 50 ml of 0.1N hydrochloric acid was added and shaken vigorously for 2 minutes. . After standing for 1 hour, the mixture was naturally filtered through a filter having a pore size of 0.45 μm for 6 hours. The turbidity of this liquid to be extracted was 75.0 degrees, and the amount of suspended solids was 29.0 mg / l. When zinc, iron, copper and hexavalent chromium are measured, they are 3.0 mg / l, 33.2 mg / l, 5.7 mg / l and 0.0, respectively.
It was 2 mg / l.

【0026】比較例3:実施例1と同様にA工場跡地の
地表から深さ3mで採取した土壌5gを秤量して容器に
入れ、0.1Nの塩酸50mlを添加して2分間激しく
振った。10分間静置後、実施例1と同様に上澄液を傾
斜法で採取して被抽出液を得た。この被抽出液の濁度は
450度以上であり、浮遊物質量は750mg/l以上で
あった。また、亜鉛、鉄、銅、六価クロムは測定できな
かった。
Comparative Example 3: As in Example 1, 5 g of soil sampled at a depth of 3 m from the surface of the site of Factory A was weighed and placed in a container, 50 ml of 0.1N hydrochloric acid was added, and the mixture was shaken vigorously for 2 minutes. . After standing for 10 minutes, the supernatant was collected by the gradient method as in Example 1 to obtain a liquid to be extracted. The turbidity of the liquid to be extracted was 450 degrees or more, and the amount of suspended matter was 750 mg / l or more. In addition, zinc, iron, copper and hexavalent chromium could not be measured.

【0027】実施例2:凝集剤として実施例1で使用し
たものとは別の住友化学製スミフロックFN−20H
(ポリアクリルアミド系高分子凝集剤)の水溶液(0.
001g/ml)を1.0ml添加する以外は実施例1
と同様に行った。この被抽出液の濁度は23.0度、浮
遊物質量は8.0mg/lであった。また、亜鉛、鉄、
銅、六価クロムを測定するとそれぞれ2.6mg/l、2
8.3mg/l、5.3mg/l、0.74mg/lであっ
た。
Example 2: Sumiflon FN-20H manufactured by Sumitomo Chemical Co., Ltd. different from the one used in Example 1 as a flocculant
(Polyacrylamide-based polymer flocculant) aqueous solution (0.
Example 1 except that 1.0 ml of (001 g / ml) was added.
I went the same way. The turbidity of this liquid to be extracted was 23.0 degrees, and the amount of suspended solids was 8.0 mg / l. Also zinc, iron,
When copper and hexavalent chromium are measured, 2.6 mg / l and 2 respectively
The amounts were 8.3 mg / l, 5.3 mg / l and 0.74 mg / l.

【0028】実施例3:別のB工場跡地の表面土壌を試
料とする他は実施例1と同様に行った。この被抽出液の
濁度は9.0度、浮遊物質量は4.0mg/lであった。
また、亜鉛、鉄、銅、六価クロムを測定するとそれぞれ
5.3mg/l、33.9mg/l、8.5mg/l、0.7
4mg/lであった。
Example 3 The same procedure as in Example 1 was carried out except that the surface soil of another site of the B factory was used as a sample. The turbidity of the liquid to be extracted was 9.0 degrees, and the amount of suspended solids was 4.0 mg / l.
When zinc, iron, copper and hexavalent chromium are measured, they are 5.3 mg / l, 33.9 mg / l, 8.5 mg / l and 0.7, respectively.
It was 4 mg / l.

【0029】比較例4:実施例3と同様にB工場跡地の
表面土壌5gを秤量して容器に入れ、0.1Nの塩酸5
0mlを添加して2分間激しく振った。比較例1と同様
にして被抽出液を得た。この被抽出液の濁度は9.0
度、浮遊物質量は4.0mg/lであった。また、亜鉛、
鉄、銅、六価クロムを測定するとそれぞれ5.6mg/
l、33.7mg/l、8.0mg/l、0.75mg/lで
あった。
Comparative Example 4 As in Example 3, 5 g of surface soil on the site of the B factory was weighed and placed in a container, and 0.1 N hydrochloric acid 5 was added.
0 ml was added and shaken vigorously for 2 minutes. A liquid to be extracted was obtained in the same manner as in Comparative Example 1. The turbidity of this liquid to be extracted is 9.0.
The amount of suspended solids was 4.0 mg / l. Also zinc,
When iron, copper and hexavalent chromium are measured, each is 5.6 mg /
1, 33.7 mg / l, 8.0 mg / l, 0.75 mg / l.

【0030】比較例5:0.1Nの塩酸50mlに実施例
1で使用したポリアクリルアミド系高分子凝集剤水溶液
1.5mlを添加し、ゆるやかに撹拌した。この液の濁
度は1度、浮遊物質量は1mg/l以下であった。また、
亜鉛、鉄、銅、六価クロムを測定するとそれぞれ0.0
1mg/l以下であり、六価クロムは0.001mg/l以
下であった。
Comparative Example 5: To 50 ml of 0.1 N hydrochloric acid, 1.5 ml of the polyacrylamide-based polymer flocculant aqueous solution used in Example 1 was added and gently stirred. The turbidity of this liquid was 1, and the amount of suspended solids was 1 mg / l or less. Also,
When measuring zinc, iron, copper, and hexavalent chromium, each is 0.0
It was 1 mg / l or less, and hexavalent chromium was 0.001 mg / l or less.

【0031】実施例4:A工場跡地の地表から深さ3m
で採取した土壌5gを秤量して容器に入れ、純水50m
lを添加して4時間撹拌した。その後、凝集剤として実
施例2で使用したポリアクリルアミド系高分子凝集剤水
溶液を0.5ml添加し、1分間ゆるやかに撹拌した。
1分間静置後、上澄液を採取した。この被抽出液の揮発
性有機物をヘッドスペース試料導入装置付きガスクロマ
トグラフィー質量分析計で測定したところクロロホルム
(CHCl3 )、ベンゼン(C6 6 )、トルエン(C
65 CH3 )のみがそれぞれ0.11mg/l、0.0
10mg/l、0.071mg/l検出された。
Example 4: A depth of 3 m from the surface of the former site of Factory A
Weigh 5g of soil sampled in step 2 and put it in a container.
1 was added and stirred for 4 hours. Thereafter, 0.5 ml of the polyacrylamide-based polymer coagulant aqueous solution used in Example 2 was added as a coagulant, and the mixture was gently stirred for 1 minute.
After standing for 1 minute, the supernatant was collected. The volatile organic substances in the liquid to be extracted were measured with a gas chromatography mass spectrometer equipped with a headspace sample introduction device. Chloroform (CHCl 3 ), benzene (C 6 H 6 ), toluene (C
6 H 5 CH 3 ) only 0.11 mg / l, 0.0
10 mg / l and 0.071 mg / l were detected.

【0032】比較例6:実施例4と同様にA工場跡地の
地表から深さ3mで採取した土壌5gを秤量して容器に
入れ、純水50mlを添加して4時間撹拌した。1時間
静置後、孔径0.45μmのフィルターをつけた注射器
で5分間かけて強制的に濾過を行った。この被抽出液の
揮発性有機物を実施例4と同様に測定したところ、クロ
ロホルム、ベンゼン、トルエンのみがそれぞれ0.12
mg/l、0.009mg/l、0.074mg/l検出され
た。
Comparative Example 6 As in Example 4, 5 g of soil collected at a depth of 3 m from the surface of the former site of Factory A was weighed and placed in a container, 50 ml of pure water was added, and the mixture was stirred for 4 hours. After standing for 1 hour, the mixture was forcibly filtered for 5 minutes with a syringe equipped with a filter having a pore size of 0.45 μm. When the volatile organic substances of this liquid to be extracted were measured in the same manner as in Example 4, only chloroform, benzene and toluene each contained 0.12.
mg / l, 0.009 mg / l, 0.074 mg / l were detected.

【0033】[0033]

【表1】 [Table 1]

【0034】上記の本願発明による実施例とその対応す
る比較例のそれぞれを示す表1から分かるように、比較
例では濾過した被抽出液の濁度は高く、遠心分離工程を
併用することによって低い値を得ている。これに対し
て、本発明の実施例によれば、凝集剤を添加することに
より簡単に分離を行うことができ、しかもこの分離によ
って得られた被抽出液の濁度は低くかつ汚染物質量も妥
当な値を得ることができる。すなわち比較例1の公定法
に準拠するものと比較して明らかなように、本願によっ
て得られる分析値はこの比較例1の分析値と誤差の範囲
内で同等のものであり、測定値として適用可能なもので
あることが理解される。
As can be seen from Table 1 showing the examples according to the present invention and the corresponding comparative examples, in the comparative examples, the turbidity of the filtered liquid to be extracted is high, and the turbidity is low due to the combined use of the centrifugation step. You're getting value. On the other hand, according to the example of the present invention, the separation can be easily performed by adding the coagulant, and the turbidity of the liquid to be extracted obtained by this separation is low and the amount of pollutants is also low. You can get a reasonable value. That is, as is clear from comparison with the method according to the official method of Comparative Example 1, the analytical value obtained by the present application is equivalent to the analytical value of Comparative Example 1 within an error range, and is applied as a measured value. It is understood that this is possible.

【0035】また以下に簡易分析法による実施例および
その比較例について述べる。 実施例5:C工場跡地で、地表から深さ50cmの土壌
を採取して、現地で土壌4gを簡易天秤(パーソナル電
子天秤:(株)エ−・アンド・ディー社製)で秤量して
容器に入れ、1.0Nの塩酸40mlを添加して2分間
激しく振った。その後、実施例1で使用したスミフロッ
クFN−10H水溶液0.5mlを添加し、1分間ゆる
やかに撹拌した。1分間静置したのち上澄液を傾斜法で
採取して被抽出液を得た。採取した土壌を実験室に持ち
帰り、前記と同じ操作を行って得た被抽出液の濁度は
0.5度であった。“共立”迅速水質計用試薬−分光光
度計を用いた方法にしたがって鉛(Pb)の測定を現地
で行った。すなわち上記で得た被抽出液に5N苛性ソー
ダを添加してpHを5〜8に調整後、25mlをセルに
採取し、5%KCNの水溶液1mlを加え、撹拌した。
その後、該方法によるR−1試薬1包みを加え撹拌し、
3分間静置後、HACH社製SPECTROPHOTO
METER DR/2000で鉛を測定した。苛性ソー
ダ添加量を補正して計算すると被抽出液の鉛濃度は0.
7mg/lであった。
Further, examples and comparative examples thereof by the simple analysis method will be described below. Example 5: A soil having a depth of 50 cm was collected from the ground surface at the site of the C factory, and 4 g of the soil was weighed on the site by a simple balance (personal electronic balance: manufactured by A & D Co., Ltd.) to form a container. , 40 ml of 1.0 N hydrochloric acid was added and shaken vigorously for 2 minutes. Then, 0.5 ml of the Sumifloc FN-10H aqueous solution used in Example 1 was added, and the mixture was gently stirred for 1 minute. After leaving still for 1 minute, the supernatant was collected by a gradient method to obtain a liquid to be extracted. The collected soil was brought back to the laboratory, and the turbidity of the liquid to be extracted obtained by performing the same operation as described above was 0.5 degree. Lead (Pb) measurements were performed on site according to the method using a "Kyoritsu" rapid water quality reagent-spectrophotometer. That is, 5N caustic soda was added to the liquid to be extracted obtained above to adjust the pH to 5 to 8, 25 ml was collected in a cell, 1 ml of a 5% KCN aqueous solution was added, and the mixture was stirred.
Then, 1 package of R-1 reagent according to the method is added and stirred,
After standing for 3 minutes, HACH SPECTROPHOTO
Lead was measured by METER DR / 2000. When the amount of caustic soda added is corrected and calculated, the lead concentration in the liquid to be extracted is 0.
It was 7 mg / l.

【0036】比較例7:実施例5と同様に、C工場跡地
で地表から深さ50cmの土壌を採取し、現地で土壌4
gを簡易天秤で秤量して容器に入れ、1.0Nの塩酸4
0mlを添加して2分間激しく振った。10分間静置
後、実施例5と同様に上澄液を傾斜法で採取して被抽出
液を得た。この被抽出液を実施例5と同様に“共立”迅
速水質計用試薬−分光光度計を用いた方法にしたがって
鉛(Pb)の測定操作を現地で行った。しかし、透過光
強度が弱くて測定できなかった。採取した土壌を実験室
に持ち帰り、前記と同じ操作を行って得た被抽出液の濁
度は90度であった。
Comparative Example 7: In the same manner as in Example 5, soil having a depth of 50 cm was sampled from the surface of the site of the C factory, and the soil 4 was collected on site.
Weigh g with a simple balance and put it in a container.
0 ml was added and shaken vigorously for 2 minutes. After standing for 10 minutes, the supernatant was collected by the gradient method as in Example 5 to obtain a liquid to be extracted. In the same manner as in Example 5, the liquid to be extracted was subjected to an on-site measurement of lead (Pb) in accordance with a method using a "Kyoritsu" reagent for rapid water quality meter-spectrophotometer. However, the transmitted light intensity was too weak to measure. The extracted soil was brought back to the laboratory, and the turbidity of the liquid to be extracted obtained by performing the same operation as described above was 90 degrees.

【0037】実験例6:C工場の別の場所で採取した表
面土壌を試料とする他は実施例5と同様に現地で操作を
行い鉛を測定すると1.1mg/lであった。なお、採取
した土壌を実験室に持ち帰り、被抽出液を得る操作を現
地で行うのと同じ操作を行って得た被抽出液の濁度は
3.1度であった。この被抽出液をICP−発光分光分
析法で鉛を測定すると、1.0mg/lであった。
Experimental Example 6: Lead was measured in the same manner as in Example 5 except that the surface soil collected at another place of the C factory was used as a sample and the lead was measured to be 1.1 mg / l. In addition, the turbidity of the liquid to be extracted obtained by carrying out the same operation as the operation to obtain the liquid to be extracted by bringing the collected soil back to the laboratory was 3.1 degrees. The lead in this liquid to be extracted was measured by ICP-emission spectroscopy and found to be 1.0 mg / l.

【0038】実施例7:凝集剤として実施例6で使用し
たものとは別の住友化学製スミフロックFA−50(ポ
リアクリルアミド系高分子凝集剤)の水溶液(0.00
1g/ml)0.5mlを添加する以外は実施例6と同
様に現地で操作を行った。この被抽出液の鉛濃度は1.
2mg/lであった。
Example 7: As an aggregating agent, an aqueous solution (0.006) of Sumifloc FA-50 (polyacrylamide polymer aggregating agent) manufactured by Sumitomo Chemical Co., Ltd. different from the one used in Example 6 was used.
(1 g / ml) 0.5 ml was added, and the same procedure as in Example 6 was carried out. The lead concentration of this liquid to be extracted is 1.
It was 2 mg / l.

【0039】実施例8:D工場跡地で地表の土壌を採取
し、現地で土壌4gを簡易天秤で秤量して容器に入れ、
1.0Nの塩酸40mlを添加して2分間激しく振っ
た。その後、スミフロックFN−10H水溶液0.5m
lを添加し、1分間ゆるやかに撹拌した。1分間静置し
た後、上澄液を傾斜法で採取して被抽出液を得た。ヨシ
テスト法にしたがって鉛(Pb)の測定を現地で行っ
た。上記で得た被抽出液に5N苛性ソーダを添加してp
Hを3〜8に調整後、この被抽出液を蒸留水で最終的に
5倍に希釈した。その後、液を3ml試験管に採り添加
剤(1)を小匙3杯添加し、良く振って溶解後、さらに
添加液(2)を2滴添加して良く振り、さらに添加液
(3)を3滴添加して良く振った。pHが4〜6である
ことを確認後、検知管にスポイトをつけ、赤色まで一定
速度で吸い上げた。検知管の呈色層(赤橙色)の長さを
鉛イオン標準濃度と比較して測定値を読み取った。希釈
倍率を補正して計算すると、被抽出液の鉛濃度は10mg
/lであった。
Example 8: Soil on the surface of the ground was collected at the site of the D factory, and 4 g of the soil was weighed in a simple balance and put in a container.
40 ml of 1.0 N hydrochloric acid was added and shaken vigorously for 2 minutes. After that, Sumifloc FN-10H aqueous solution 0.5m
1 was added and gently stirred for 1 minute. After standing for 1 minute, the supernatant was collected by a gradient method to obtain a liquid to be extracted. Lead (Pb) was measured in the field according to the Yoshitest method. 5N caustic soda was added to the liquid to be extracted,
After adjusting H to 3 to 8, this liquid to be extracted was finally diluted 5-fold with distilled water. Then, add the liquid (3) to a 3 ml test tube, add 3 tablespoons of the additive (1), shake well to dissolve, then add 2 drops of the addition liquid (2), shake well, and add the addition liquid (3). Add 3 drops and shake well. After confirming that the pH was 4 to 6, a dropper was attached to the detection tube, and it was sucked up to red at a constant speed. The measurement value was read by comparing the length of the colored layer (red-orange) of the detector tube with the lead ion standard concentration. Calculated by correcting the dilution factor, the lead concentration in the liquid to be extracted is 10 mg.
/ L.

【0040】比較例8:実施例8と同様のD工場跡地の
地表から採取した土壌を実験室に持ち帰り、実験室で測
定した。土壌5gを秤量して容器に入れ、1.0N塩酸
50mlを添加して激しく振った。1時間静置後、回転
速度2000rpmで10分間遠心分離を行った。さら
に、孔径0.45μmのフィルターをつけた注射器を使
用して5分間強制的に濾過を行った。この被抽出液をI
CP−発光分光分析法で鉛(Pb)を測定すると11mg
/lであった。
Comparative Example 8: The soil sampled from the surface of the site of the D factory similar to that of Example 8 was brought back to the laboratory and measured in the laboratory. 5 g of soil was weighed and put in a container, 50 ml of 1.0N hydrochloric acid was added, and the mixture was vigorously shaken. After standing for 1 hour, centrifugation was performed at a rotation speed of 2000 rpm for 10 minutes. Further, forced filtration was performed for 5 minutes using a syringe equipped with a filter having a pore size of 0.45 μm. This liquid to be extracted is I
Lead (Pb) measured by CP-emission spectroscopy is 11 mg
/ L.

【0041】実施例9:E工場跡地で、地表の土壌を採
取し、現地で土壌4gを簡易天秤で秤量して容器に入
れ、1.0Nの塩酸40mlを添加して2分間激しく振
った。その後、スミフロックFN−10H水溶液0. 5
mlを添加し、1分間ゆるやかに撹拌した。1分間静置
した後、上澄液を傾斜法で採取して被抽出液を得た。P
AS方式多項目迅速水質/土壌/食品分析計法の測定マ
ニュアル(1,5−ジフェニルカルボヒドラジド法)に
したがって六価クロム(Cr6+)の測定を現地で行っ
た。被抽出液の六価クロム濃度は0.55mg/lであっ
た。
Example 9: At the site of the E factory, soil on the surface of the earth was sampled, 4 g of the soil was weighed in a container by a simple balance, put in a container, and 40 ml of 1.0 N hydrochloric acid was added and shaken vigorously for 2 minutes. After that, 0.5% Sumifloc FN-10H solution was added.
ml was added and gently stirred for 1 minute. After standing for 1 minute, the supernatant was collected by a gradient method to obtain a liquid to be extracted. P
Hexavalent chromium (Cr 6+ ) was measured on site according to the measurement manual (1,5-diphenylcarbohydrazide method) of the AS method multi-item rapid water quality / soil / food analysis method. The hexavalent chromium concentration of the liquid to be extracted was 0.55 mg / l.

【0042】上記の本願発明による実施例5以降とその
対応する比較例7、8のそれぞれから分かるように、比
較例7では濾過した被抽出液の濁度は高く、そのままで
は測定を行うことができなかった。また比較例8では本
願発明における凝集剤を適用することによって低い値が
得られている。また本発明の実施例において、凝集剤を
添加することにより簡単に分離を行うことができ、しか
もこの分離によって得られた被抽出液の濁度は低くかつ
汚染物質量も妥当な値を得ることができるため、この被
抽出液に簡易分析法を適用しても誤差の範囲内で妥当な
値が得られる。すなわち比較例8と比較して明らかなよ
うに、本願によって得られる簡易分析法による測定値は
この比較例8の大型分析機器を適用して測定した値と誤
差の範囲内で同等のものであり、これらは測定値として
適用可能なものであることが理解される。
As can be seen from Example 5 onward according to the present invention and the corresponding Comparative Examples 7 and 8, the turbidity of the filtered liquid to be extracted is high in Comparative Example 7, and the measurement can be performed as it is. could not. Further, in Comparative Example 8, a low value is obtained by applying the coagulant according to the present invention. In addition, in the examples of the present invention, the separation can be easily performed by adding a coagulant, and the turbidity of the liquid to be extracted obtained by this separation is low and the amount of pollutants is also a reasonable value. Therefore, even if the simple analysis method is applied to the liquid to be extracted, a reasonable value can be obtained within the error range. That is, as is clear from comparison with Comparative Example 8, the measurement value obtained by the simple analysis method obtained by the present application is equivalent to the value measured by applying the large-sized analytical instrument of Comparative Example 8 within the error range. It is understood that these are applicable as measured values.

【0043】[0043]

【発明の効果】本発明によれば、サンプリングされた土
壌に抽出液を添加し混合後分離するに際し、凝集剤を存
在させることによって、濾過工程及び遠心分離工程を必
要とすることなく効率良く被抽出液を得ることができ、
その被抽出液中の汚染物質を現地でも簡単かつ迅速に測
定することができる。
EFFECTS OF THE INVENTION According to the present invention, when the extract is added to the sampled soil and the mixture is separated after mixing, the presence of the coagulant allows efficient extraction without the need for the filtration step and the centrifugation step. An extract can be obtained,
Contaminants in the liquid to be extracted can be easily and quickly measured on-site.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 サンプリングされた土壌に抽出液を添加
・混合後、この土壌と前記抽出液との混合液を分離して
得られる被抽出液を分析する方法において、前記土壌に
前記抽出液を添加後、さらに測定目的の汚染物質に対し
て、汚染物質を含有していない凝集剤を添加することに
より土壌と抽出液の混合液から被抽出液の分離を促進す
ることを特徴とする土壌の分析方法。
1. A method of analyzing a liquid to be extracted obtained by adding and mixing an extract to a sampled soil and then separating a mixture of the soil and the extract, wherein the extract is added to the soil. After the addition, for the pollutant to be measured, a coagulant containing no pollutant is added to promote separation of the liquid to be extracted from the mixed liquid of the soil and the extract. Analysis method.
【請求項2】 サンプリングされた土壌に抽出液を添加
・混合後、この土壌と前記抽出液との混合液を分離して
得られる被抽出液を分析する方法において、前記土壌に
前記抽出液を添加後、さらに測定目的の汚染物質に対し
て汚染物質を含有していない凝集剤を添加することによ
り土壌と抽出液の混合液から分離を促進して得られた被
抽出液の汚染物質を簡易分析法で測定することを特徴と
する土壌の分析方法。
2. A method for analyzing a liquid to be extracted obtained by adding and mixing an extract to a sampled soil and then separating a mixture of the soil and the extract, wherein the extract is added to the soil. After the addition, by adding a coagulant that does not contain pollutants to the pollutants to be measured, separation from the mixture of soil and extract is promoted, and the pollutants in the extracted liquid are simplified. A soil analysis method characterized by being measured by an analysis method.
JP16397596A 1995-06-26 1996-06-25 Soil analysis method Expired - Fee Related JP3614568B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16397596A JP3614568B2 (en) 1995-06-26 1996-06-25 Soil analysis method

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP7-159021 1995-06-26
JP15902195 1995-06-26
JP16397596A JP3614568B2 (en) 1995-06-26 1996-06-25 Soil analysis method

Publications (2)

Publication Number Publication Date
JPH0972898A true JPH0972898A (en) 1997-03-18
JP3614568B2 JP3614568B2 (en) 2005-01-26

Family

ID=26485951

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16397596A Expired - Fee Related JP3614568B2 (en) 1995-06-26 1996-06-25 Soil analysis method

Country Status (1)

Country Link
JP (1) JP3614568B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003057184A (en) * 2001-08-10 2003-02-26 Toyota Motor Corp Method for quantitative determining of hexavalent chromium
US7105354B1 (en) 1998-06-12 2006-09-12 Asahi Kasei Kabushiki Kaisha Analyzer
WO2007069681A1 (en) * 2005-12-16 2007-06-21 Horiba, Ltd. Kit for assaying active ingredient of termite controlling agent by using immunoassay method
JP2007187650A (en) * 2005-12-16 2007-07-26 Horiba Ltd Fipronyl measuring kit using immunoassay
JP2010271247A (en) * 2009-05-22 2010-12-02 Taisei Kiso Sekkei Kk Method for simultaneously analyzing multielement component such as heavy metal or the like in soil
JP2011145288A (en) * 2009-12-15 2011-07-28 Sumika Chemical Analysis Service Ltd Impurity removal method for heavy metal measuring sample, impurity removing agent, and measuring method of heavy metal
CN102288562A (en) * 2011-07-19 2011-12-21 中国科学院东北地理与农业生态研究所 Method for detecting water-soluble potassium in saline-alkali soil
CN102338742A (en) * 2011-07-19 2012-02-01 中国科学院东北地理与农业生态研究所 Method for detecting water-soluble magnesium in saline-alkali soil
JP2013542442A (en) * 2010-10-29 2013-11-21 ソラム インコーポレイテッド Nutrient measurement by microsampling

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7105354B1 (en) 1998-06-12 2006-09-12 Asahi Kasei Kabushiki Kaisha Analyzer
JP2003057184A (en) * 2001-08-10 2003-02-26 Toyota Motor Corp Method for quantitative determining of hexavalent chromium
WO2007069681A1 (en) * 2005-12-16 2007-06-21 Horiba, Ltd. Kit for assaying active ingredient of termite controlling agent by using immunoassay method
JP2007187650A (en) * 2005-12-16 2007-07-26 Horiba Ltd Fipronyl measuring kit using immunoassay
US8323904B2 (en) 2005-12-16 2012-12-04 Bayer Cropscience Ag Kit for measurement of termite insecticide active ingredient by immunoassay method
JP2010271247A (en) * 2009-05-22 2010-12-02 Taisei Kiso Sekkei Kk Method for simultaneously analyzing multielement component such as heavy metal or the like in soil
JP2011145288A (en) * 2009-12-15 2011-07-28 Sumika Chemical Analysis Service Ltd Impurity removal method for heavy metal measuring sample, impurity removing agent, and measuring method of heavy metal
JP2013542442A (en) * 2010-10-29 2013-11-21 ソラム インコーポレイテッド Nutrient measurement by microsampling
CN102288562A (en) * 2011-07-19 2011-12-21 中国科学院东北地理与农业生态研究所 Method for detecting water-soluble potassium in saline-alkali soil
CN102338742A (en) * 2011-07-19 2012-02-01 中国科学院东北地理与农业生态研究所 Method for detecting water-soluble magnesium in saline-alkali soil

Also Published As

Publication number Publication date
JP3614568B2 (en) 2005-01-26

Similar Documents

Publication Publication Date Title
Li et al. Dispersive liquid–liquid microextraction based on the solidification of floating organic drop followed by ICP-MS for the simultaneous determination of heavy metals in wastewaters
Khan et al. Rapid ionic liquid-based ultrasound assisted dual magnetic microextraction to preconcentrate and separate cadmium-4-(2-thiazolylazo)-resorcinol complex from environmental and biological samples
Prasad et al. Solid phase extraction vis-a-vis coprecipitation preconcentration of cadmium and lead from soils onto 5, 7-dibromoquinoline-8-ol embedded benzophenone and determination by FAAS
Bilal et al. Application of conventional and modified cloud point extraction for simultaneous enrichment of cadmium, lead and copper in lake water and fish muscles
Hołyńska et al. Simple method of determination of copper, mercury and lead in potable water with preliminary pre-concentration by total reflection X-ray fluorescence spectrometry
Kazi et al. Simultaneous determination of silver and other heavy metals in aquatic environment receiving wastewater from industrial area, applying an enrichment method
Ilander et al. The determination of antimony and arsenic concentrations in fly ash by hydride generation inductively coupled plasma optical emission spectrometry
CN104406943A (en) Pretreatment method for liquid sample in laser-induced breakdown spectrum detection technology
Morales-Rubio et al. Rapid determination of mercury in environmental materials using on-line microwave digestion and atomic fluorescence spectrometry
JP3614568B2 (en) Soil analysis method
CN114894913A (en) Method for synchronously and rapidly determining total arsenic and arsenic metabolite content in urine
Zolfonoun et al. Preconcentration procedure using vortex-assisted liquid–liquid microextraction for the fast determination of trace levels of thorium in water samples
Krishnamurty et al. Tris (pyrrolidine dithiocarbamato) cobalt (III) chelate matrix for trace metal preconcentration from aqueous solution by coprecipitation
JP2005331409A (en) Simplified soil elution test method for heavy metal or the like
CN103116007A (en) Method for screening and identifying wastewater and treating poisonous substances in water
Van Loon et al. The determination of heavy metals in domestic sewage treatment plant wastes
Korkisch et al. Determination of seven trace elements in natural waters after separation by solvent extraction and anion-exchange chromatography
Alpdoğan et al. A new dispersive liquid–liquid microextraction method for preconcentration and determination of aluminum, iron, copper, and lead in real water samples by HPLC
Li et al. Separation, preconcentration, and determination of lead, cadmium, and iron using cloud point extraction with flame atomic absorption spectrometry
Jabłońska et al. Determination of mercury content in surface waters using an environmentally non-toxic terminating electrolyte
Li et al. Combining DGT with bioaccessibility methods as tool to estimate potential bioavailability and release of PTEs in the urban soil environment
Sodré et al. Changes in copper speciation and geochemical fate in freshwaters following sewage discharges
Sereshti et al. An investigation on heavy metals bio-sorption by Azolla filiculoides in the international Anzali wetland
Baig et al. Ultratrace determination of Cr (VI) and Pb (II) by microsample injection system flame atomic spectroscopy in drinking water and treated and untreated industrial effluents
Yıldırım et al. Micelle mediated selective extraction of lead after its complexation with thionine in aqueous samples prior to FAAS determination

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040206

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040406

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20041008

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20041027

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071112

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081112

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091112

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101112

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111112

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121112

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121112

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131112

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees