JPH0972848A - Raman spectroscopic apparatus - Google Patents

Raman spectroscopic apparatus

Info

Publication number
JPH0972848A
JPH0972848A JP25198795A JP25198795A JPH0972848A JP H0972848 A JPH0972848 A JP H0972848A JP 25198795 A JP25198795 A JP 25198795A JP 25198795 A JP25198795 A JP 25198795A JP H0972848 A JPH0972848 A JP H0972848A
Authority
JP
Japan
Prior art keywords
sample
light
aperture
light source
raman
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP25198795A
Other languages
Japanese (ja)
Other versions
JP3667397B2 (en
Inventor
Kanji Fujiwara
幹治 藤原
Masaaki Yumoto
政昭 湯本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jasco Corp
Original Assignee
Jasco Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jasco Corp filed Critical Jasco Corp
Priority to JP25198795A priority Critical patent/JP3667397B2/en
Publication of JPH0972848A publication Critical patent/JPH0972848A/en
Application granted granted Critical
Publication of JP3667397B2 publication Critical patent/JP3667397B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To obtain a Raman spectroscopic apparatus by which the position of an aperture can be confirmed on a sample by a method wherein the sample is irradiated with irradiation light from a light source for aperture irradiation and a formation image on the sample can be monitored. SOLUTION: A comparatively wide range on a sample 34 is irradiated with irradiation light from a light source 74 for sample irradiation via an image formation lens 78, semitransparent mirrors 80, 82 and a condensing lens 72. On the other hand, the slit image of an aperture 52 is projected on the sample 34 by irradiation light from a light source 76 for aperture irradiation via an image formation lens 84, a movable reflecting mirror 86, an aperture 52, an image formation lens 88, the mirror 82 and the lens 72. That is to say, the irradiation range of the light source 74 is projected in a little wide range on the sample 34, the slit image is projected on its inner side, and a laser spot is projected on the innermost side. This state is photographed and displayed by a TV camera 46 via the lens 72, the mirrors 82, 80 and an image formation lens 96. Consequently, an operator confirms a desired part, an instruction is given from an operating part 23, a stage 36 is moved and controlled, and the sample is positioned.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明はラマン分光装置、特
にその試料観察機構の改良に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a Raman spectroscope, and more particularly to improvement of a sample observation mechanism.

【0002】[0002]

【従来の技術】物質に特定の波長の光を照射すると、そ
の照射光は散乱され、その一部は照射光の波長とは異な
る光(ラマン光)となる。このラマン光は試料を構成す
る分子の振動や回転に基づいてある決まった波数に現
れ、その分子に特有であるため物質の同定が可能であ
り、またラマン強度は照射光の強度、分子数(濃度)に
比例するため試料中の特定成分の定量も可能である。こ
のため、従来より各種のラマン分光光度計が開発されて
おり(特開平3−272440,特開平4−99929
など)、各種測定、分析に用いられている。
2. Description of the Related Art When a substance is irradiated with light having a specific wavelength, the irradiation light is scattered and part of the light becomes light (Raman light) having a wavelength different from that of the irradiation light. This Raman light appears at a certain wave number based on the vibrations and rotations of the molecules that make up the sample, and it is possible to identify the substance because it is unique to that molecule.The Raman intensity is the intensity of the irradiation light, the number of molecules ( Since it is proportional to (concentration), it is possible to quantify a specific component in the sample. Therefore, various Raman spectrophotometers have been conventionally developed (JP-A-3-272440, JP-A-4-99929).
Etc.), used for various measurements and analyses.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、従来の
一般的なラマン分光装置では、空間分解設定アパーチャ
ーの試料面における共役位置を確認する手段がなかった
ため、試料の測定領域を設定する際には、テレビモニタ
上で励起レーザーのスポットからの相対位置として測定
者の経験により設定していた。また、測定領域を肉眼に
より確認することは、強力な励起レーザーの散乱光など
により不可能であった。本発明は前記従来技術の課題に
鑑みなされたものであり、その目的はアパーチャーの位
置を試料上で確認することのできるラマン分光装置を提
供することにある。
However, in the conventional general Raman spectroscope, there is no means for confirming the conjugate position of the spatial resolution setting aperture on the sample surface, and therefore, when setting the measurement region of the sample, It was set as a relative position from the spot of the excitation laser on the TV monitor according to the experience of the measurer. In addition, it was impossible to visually confirm the measurement area due to scattered light of a strong excitation laser. The present invention has been made in view of the above problems of the prior art, and an object thereof is to provide a Raman spectroscope capable of confirming the position of an aperture on a sample.

【0004】[0004]

【課題を解決するための手段】前記目的を達成するため
に本発明にかかるラマン分光装置は、試料表面からの散
乱光を集光する集光手段と、前記集光手段により集光さ
れた散乱光から迷光を除去するスリットを有するアパー
チャーと、該アパーチャーを介した散乱光を分光し、ラ
マン光を採取する分光手段と、集光手段とは反対面から
前記アパーチャーを照射するアパーチャー照射用光源
と、前記試料の測定部位近傍を照明する試料照射用光源
と、前記集光手段とアパーチャーの間の光路上に配置さ
れたモニタ用半透鏡と、前記アパーチャー照射用光源お
よび試料照射用光源からの光が試料に反射され、さらに
前記モニタ用半透鏡に反射された光をモニタするモニタ
手段と、を備えたことを特徴とする。
In order to achieve the above-mentioned object, a Raman spectroscopic device according to the present invention comprises a condensing means for condensing scattered light from a sample surface, and a scattering means condensed by the condensing means. An aperture having a slit that removes stray light from the light, a spectroscopic unit that disperses scattered light that passes through the aperture, and collects Raman light, and an aperture irradiation light source that irradiates the aperture from a surface opposite to the condensing unit , A sample irradiation light source for illuminating the vicinity of the measurement site of the sample, a monitor semi-transparent mirror arranged on the optical path between the condensing means and the aperture, and light from the aperture irradiation light source and the sample irradiation light source And a monitor means for monitoring the light reflected by the sample and further reflected by the semitransparent mirror for monitoring.

【0005】なお、本発明にかかる装置において、試料
観察モードおよびラマン光測定モードの選択を可能とす
る操作手段と、前記試料観察モードが選択された場合
に、アパーチャー照射用光源および試料照射用光源を点
灯し、試料照射用光源により照射された試料面およびア
パーチャー照射用光源により形成されたアパーチャー像
のモニタ手段によるモニタを可能とし、また、前記ラマ
ン光測定モードが選択された場合に、アパーチャー照射
用光源および試料用光源を消灯し、かつ分光手段に散乱
光を導入する制御手段と、を備えることが好適である。
In the apparatus according to the present invention, an operating means for selecting a sample observation mode and a Raman light measurement mode, and an aperture irradiation light source and a sample irradiation light source when the sample observation mode is selected. Is turned on to enable the monitoring of the sample surface irradiated by the sample irradiation light source and the aperture image formed by the aperture irradiation light source by the monitoring means, and when the Raman light measurement mode is selected, the aperture irradiation is performed. And a control means for turning off the light source for the sample and the light source for the sample and for introducing scattered light into the spectroscopic means.

【0006】また、本発明にかかる装置において、アパ
ーチャーと分光手段の間に配置され得る可動反射鏡を備
え、制御手段は、試料観察モードにおいて該可動反射鏡
をアパーチャーと分光手段の間に配置しアパーチャー照
射用光源からの光をアパーチャーに導光し、ラマン光測
定モードにおいて前記可動反射鏡をアパーチャーと分光
手段の間から退避させ、アパーチャーを介して得られる
散乱光を分光手段に導光することが好適である。
The apparatus according to the present invention further comprises a movable reflecting mirror which can be arranged between the aperture and the spectroscopic means, and the control means arranges the movable reflecting mirror between the aperture and the spectroscopic means in the sample observation mode. Guide the light from the light source for illuminating the aperture to the aperture, retract the movable reflecting mirror from between the aperture and the spectroscopic means in the Raman light measurement mode, and guide the scattered light obtained through the aperture to the spectroscopic means. Is preferred.

【0007】[0007]

【発明の実施形態】本発明にかかるラマン分光装置は前
述したように構成されているので、アパーチャー照射用
光源からの照射光がアパーチャーのスリットを介して試
料上に照射される。同時に、試料上には試料照射用光源
からの照明光が照射されている。そして、試料上に形成
された像は、モニタ用半透鏡により取り出されてモニタ
手段によりモニタ可能となる。
BEST MODE FOR CARRYING OUT THE INVENTION Since the Raman spectroscopic device according to the present invention is configured as described above, the irradiation light from the light source for irradiating the aperture is irradiated onto the sample through the slit of the aperture. At the same time, the sample is illuminated with the illumination light from the light source for illuminating the sample. Then, the image formed on the sample can be taken out by the monitor semi-transparent mirror and can be monitored by the monitor means.

【0008】以下、図面に基づき本発明の実施態様につ
いてより詳細に説明する。図1は本発明の一実施態様に
かかるラマン分光装置の概略構成が示されている。同図
に示すラマン分光装置10は、レーザー部12と、試料
部14と、ラマン光導入光学系部16と、分光器部18
と、CCD検出部20と、制御部22と、操作部23を
備える。そして、レーザー部12から出射されたレーザ
ー光は、減光器(シャッター付)24により所望強度の
レーザー光に調整され、前置分光器26により派生光が
除去された後、1/2波長板28を介して試料室部14
に送られる。
Hereinafter, embodiments of the present invention will be described in more detail with reference to the drawings. FIG. 1 shows a schematic configuration of a Raman spectroscopic device according to an embodiment of the present invention. The Raman spectroscopic device 10 shown in the figure includes a laser unit 12, a sample unit 14, a Raman light introducing optical system unit 16, and a spectroscope unit 18.
1, a CCD detection unit 20, a control unit 22, and an operation unit 23. Then, the laser light emitted from the laser unit 12 is adjusted to a laser light having a desired intensity by a light reducer (with a shutter) 24, and derived light is removed by a front spectroscope 26, and then a half-wave plate. Sample chamber 14 through 28
Sent to

【0009】本実施例において試料室部14は、大型ク
ライオスタット及びテレビカメラが設置されたマクロ試
料室30と、一般試料室32より構成される。一般試料
室32は試料34を載置するステージ36と、試料34
上の比較的広範囲な部位を観察対象とするマクロ集光系
38、比較的狭範囲な部位を観察対象とするミクロ集光
系40から構成され両者のいずれかが選択される集光系
と、試料照射用光源42、シャッター付減光器44、テ
レビカメラ46及びオートフォーカス機構48より構成
されるモニタ50と、空間分解能用アパーチャー52と
を含む。また、ラマン光導入光学系部16は、レーリー
光除去用スーパーノッチフィルタ54と、偏光測定用偏
光子/解消板56とを含む。
In the present embodiment, the sample chamber section 14 comprises a macro sample chamber 30 in which a large cryostat and a television camera are installed, and a general sample chamber 32. The general sample chamber 32 includes a stage 36 on which a sample 34 is placed and a sample 34
A light condensing system including a macro light condensing system 38 for observing a relatively wide area above and a micro light condensing system 40 for observing a relatively narrow area, and one of the two is selected, A monitor 50 including a sample irradiation light source 42, a shutter dimmer 44, a television camera 46, and an autofocus mechanism 48, and a spatial resolution aperture 52 are included. Further, the Raman light introducing optical system unit 16 includes a Rayleigh light removing super notch filter 54 and a polarization measuring polarizer / elimination plate 56.

【0010】また、分光器部18は、差分散型ダブル分
光器とシングル分光器を接続したトリプル分光器入射口
58と、1つの分光器を介するシングル分光器入射口6
0を備え、ラマン光強度などに応じて必要な分光器を選
択し、ラマン光とレイリー散乱光とを適切且つ効率的に
分光する。そして、分光器部18で分光されたラマン光
はCCD検出部20で検出されることとなる。なお、1
/2波長板からサンプルステージ36上の試料34に導
光されるレーザー光は、反射鏡62に反射された場合に
は直角散乱光の測定に、反射鏡64に反射された場合に
は疑似後方散乱光の測定に、さらに反射鏡66に反射さ
れた場合には後方散乱光の測定に用いられるように、そ
れぞれ所定角度で試料34上に照射される。
Further, the spectroscope section 18 includes a triple spectroscope entrance port 58 in which a difference dispersion type double spectroscope and a single spectroscope are connected, and a single spectroscope entrance port 6 through one spectroscope.
0, a necessary spectroscope is selected according to Raman light intensity and the like, and the Raman light and Rayleigh scattered light are appropriately and efficiently separated. Then, the Raman light split by the spectroscope section 18 is detected by the CCD detection section 20. In addition, 1
The laser light guided from the / 2 wavelength plate to the sample 34 on the sample stage 36 is used for measuring the right-angle scattered light when reflected by the reflecting mirror 62, and pseudo backward when reflected by the reflecting mirror 64. The sample 34 is irradiated at a predetermined angle so as to be used for the measurement of scattered light and for the measurement of backscattered light when reflected by the reflecting mirror 66.

【0011】次に、図2ないし図4により本発明にかか
るラマン分光装置10の試料モニタ機構及びラマン測定
機構の詳細を説明する。図2には本発明にかかるラマン
分光装置10により試料表面を観察しつつ、空間分解設
定アパーチャーの試料面における共役位置の確認方法に
ついて説明する。なお、同図中、図1に対応する部材に
は同一符号を付し、説明を省略する。まず、操作者は操
作部23の操作により試料観察モードを選択する。図2
に示す装置においては、散乱光をレーザー部12からの
励起レーザー光は減光器24及び反射鏡70、集光レン
ズ72を介して試料34上に照射されている。そして、
本実施態様にかかるラマン分光装置10は、試料34の
比較的広い範囲の照明を行う試料照射用光源74と、ア
パーチャー52のスリット周辺を照射するアパーチャー
照射用光源76を備える。
Next, the details of the sample monitor mechanism and the Raman measuring mechanism of the Raman spectroscopic device 10 according to the present invention will be described with reference to FIGS. FIG. 2 illustrates a method for confirming the conjugate position on the sample surface of the spatial resolution setting aperture while observing the sample surface with the Raman spectroscopic device 10 according to the present invention. In the figure, the members corresponding to those in FIG. 1 are designated by the same reference numerals, and the description thereof will be omitted. First, the operator selects the sample observation mode by operating the operation unit 23. FIG.
In the apparatus shown in (1), the excitation light from the laser section 12 is irradiated with scattered light onto the sample 34 via the dimmer 24, the reflecting mirror 70, and the condenser lens 72. And
The Raman spectroscopic apparatus 10 according to the present embodiment includes a sample irradiation light source 74 that illuminates a relatively wide range of the sample 34, and an aperture irradiation light source 76 that irradiates the periphery of the slit of the aperture 52.

【0012】前記試料照射用光源74から出射した照明
光は、結像レンズ78により平行光となり、半透鏡80
及び半透鏡82、集光レンズ72を介して試料34の比
較的広い範囲を照明している。一方、アパーチャー照射
用光源76を出射した照射光は、結像レンズ84を介
し、さらに可動反射鏡86により反射されて図中下方に
進行しアパーチャー52に結像する。該照射光の内、ア
パーチャー52のスリットに位置した照射光がそのまま
下方に進行し、結像レンズ88、半透鏡82、集光レン
ズ72を介して試料34上に照射され、該試料34上に
はアパーチャー52のスリット像が写し出されることと
なる。
The illumination light emitted from the light source 74 for illuminating the sample is collimated by the image forming lens 78, and the semitransparent mirror 80
A relatively wide range of the sample 34 is illuminated via the semi-transparent mirror 82 and the condenser lens 72. On the other hand, the irradiation light emitted from the aperture irradiation light source 76 passes through the imaging lens 84, is further reflected by the movable reflecting mirror 86, travels downward in the figure, and forms an image on the aperture 52. Of the irradiation light, the irradiation light positioned in the slit of the aperture 52 advances downward as it is, and is irradiated onto the sample 34 via the imaging lens 88, the semitransparent mirror 82, and the condenser lens 72, and then onto the sample 34. Means that the slit image of the aperture 52 is projected.

【0013】そして、アパーチャー投影像とアパーチャ
ー自身を結ぶ光軸は、アパーチャー投影像と分光器部の
入射スリットの中心を結ぶ軸と一致させる。また励起レ
ーザーのスポットの中心と、このアパーチャー投影像の
中心は、光学調整により一致させる。以上のようにし
て、試料34上には図3に示すような像が形成されるこ
ととなる。すなわち、試料34上にやや広範囲に試料照
明用光源74の照射範囲90が形成され、その内側にス
リット像92が、さらに内側にレーザースポット94が
写し出される。この状態は、集光レンズ72、半透鏡8
2,80、結像レンズ96を介してテレビカメラ46に
より撮影され、図示を省略したモニタ上で目視観察が可
能となる。
The optical axis connecting the aperture projection image and the aperture itself is made coincident with the axis connecting the aperture projection image and the center of the entrance slit of the spectroscope unit. Further, the center of the spot of the excitation laser and the center of this aperture projection image are matched by optical adjustment. As described above, an image as shown in FIG. 3 is formed on the sample 34. That is, the irradiation range 90 of the sample illuminating light source 74 is formed on the sample 34 in a rather wide range, the slit image 92 is projected inside, and the laser spot 94 is projected further inside. In this state, the condenser lens 72 and the semi-transparent mirror 8
2, 80, an image is taken by the television camera 46 through the imaging lens 96, and visual observation is possible on a monitor (not shown).

【0014】そして、操作者により所望の試料面上のど
の部分の光が分光器部18に取り込まれるかを確認し、
操作部23から指示を与えてステージ36を移動制御
し、試料の位置決めなどを行う。測定部位の確認が終了
したらば、次に操作部23を介してラマン光測定モード
を選択する。そうすると、図4に示すように制御部22
は光源74,76の消灯を行うと共に、反射鏡移動手段
98により前記可動反射鏡86を図中左方向に移動さ
る。この結果、試料34に励起レーザー光を照射して生
じる散乱光は、集光レンズ72により集光され、さらに
結像レンズ88により結像されてアパーチャー52を通
過し、そのまま図中上方に進行してラマン光導入光学系
部16を介して分光器部18に導光される。
Then, the operator confirms which part of the light on the desired sample surface is taken into the spectroscope section 18,
An instruction is given from the operation unit 23 to control the movement of the stage 36 to position the sample. When the confirmation of the measurement site is completed, the Raman light measurement mode is then selected via the operation unit 23. Then, as shown in FIG.
Turns off the light sources 74 and 76, and moves the movable reflecting mirror 86 to the left in the figure by the reflecting mirror moving means 98. As a result, scattered light generated by irradiating the sample 34 with the excitation laser light is condensed by the condensing lens 72, further imaged by the imaging lens 88, passes through the aperture 52, and advances upward in the figure as it is. And is guided to the spectroscope section 18 via the Raman light introducing optical system section 16.

【0015】分光器部18ではレーリー光とラマン光の
分離が行われ、ラマン光がCCD検出部20により検出
される。以上のように本発明にかかるラマン分光装置に
よれば、試料像観察モードでアパーチャー像と試料の観
察像、及びレーザービームとが同時観察できるため、一
目で空間分解能が解る。また、制御部22にビデオキャ
プチャーを内蔵しておくことにより、コンピュータのC
RT上にこの画像を写し出し、そのラマンスペクトルと
共に表示、印刷出力、あるいは画像デジタルデータとし
て外部記憶装置へのダウンロードなどが可能である。
The spectroscope section 18 separates Rayleigh light and Raman light, and the Raman light is detected by the CCD detection section 20. As described above, according to the Raman spectroscopic device of the present invention, since the aperture image, the observation image of the sample, and the laser beam can be simultaneously observed in the sample image observation mode, the spatial resolution can be known at a glance. In addition, by incorporating a video capture in the control unit 22, C of the computer
It is possible to display this image on the RT and display it together with its Raman spectrum, print it out, or download it to an external storage device as image digital data.

【0016】なお、前記図2の状態において、レーザー
部12を停止することにより、空間分解設定アパーチャ
ー52の試料面上の相当部位を、直接肉眼で観察するこ
とも可能である。また、空間分解設定アパーチャーは丸
穴、細隙の何れでもよい。さらに、ラマン光測定モード
では例えば半透鏡82などを光路上から退避させ、ラマ
ン光の減衰を避けることも好適である。
In the state shown in FIG. 2, by stopping the laser section 12, it is possible to directly observe the corresponding portion of the spatial resolution setting aperture 52 on the sample surface with the naked eye. The spatial resolution setting aperture may be a round hole or a slit. Further, in the Raman light measurement mode, for example, it is also preferable to retract the semi-transparent mirror 82 or the like from the optical path to avoid the attenuation of the Raman light.

【0017】[0017]

【発明の効果】以上説明したように本発明にかかるラマ
ン分光装置によれば、空間分解設定アパーチャーの位置
を試料上に投影する機能を備えたので、アパーチャー像
と試料の像を同時に観察することができる。
As described above, the Raman spectroscopic device according to the present invention has a function of projecting the position of the spatially resolved aperture on the sample, so that the aperture image and the sample image can be observed simultaneously. You can

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施態様にかかるラマン分光装置の
全体構成の説明図である。
FIG. 1 is an explanatory diagram of an overall configuration of a Raman spectroscopic device according to an embodiment of the present invention.

【図2】図1に示した装置でアパーチャー設定確認を行
っている状態の詳細説明図である。
FIG. 2 is a detailed explanatory diagram of a state in which aperture setting confirmation is being performed by the device shown in FIG.

【図3】図2に示した状態での試料面モニタ状態の説明
図である。
3 is an explanatory diagram of a sample surface monitor state in the state shown in FIG. 2. FIG.

【図4】図1に示した装置でラマン光の測定を行ってい
る状態の詳細説明図である。
FIG. 4 is a detailed explanatory diagram of a state where Raman light is being measured by the apparatus shown in FIG.

【符号の説明】[Explanation of symbols]

12 レーザ光源 18 分光器部(分光手段) 46 テレビカメラ(モニタ手段) 52 アパーチャー 70 モニタ用半透鏡 72 集光レンズ(集光手段) 74 試料照射用光源 76 アパーチャー照射用光源 12 laser light source 18 spectroscope section (spectral means) 46 television camera (monitor means) 52 aperture 70 semi-transparent mirror for monitor 72 condensing lens (condensing means) 74 light source for sample irradiation 76 light source for aperture irradiation

─────────────────────────────────────────────────────
─────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成7年9月6日[Submission date] September 6, 1995

【手続補正1】[Procedure amendment 1]

【補正対象書類名】図面[Document name to be amended] Drawing

【補正対象項目名】全図[Correction target item name] All figures

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【図3】 [Figure 3]

【図1】 FIG.

【図2】 [Fig. 2]

【図4】 FIG. 4

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 試料上にレーザー光を照射し、試料上で
散乱された光から、照射レーザ光とは異なる波長の散乱
光を採取し、試料の特性分析を行うラマン分光装置にお
いて、 試料表面からの散乱光を集光する集光手段と、 前記集光手段により集光された散乱光から迷光を除去す
るスリットを有するアパーチャーと、 該アパーチャーを介した散乱光を分光し、ラマン光を採
取する分光手段と、 集光手段とは反対面から前記アパーチャーを照射するア
パーチャー照射用光源と、 前記試料の測定部位近傍を照明する試料照射用光源と、 前記集光手段とアパーチャーの間の光路上に配置された
モニタ用半透鏡と、 前記アパーチャー照射用光源および試料照射用光源から
の光が試料に反射され、さらに前記モニタ用半透鏡に反
射された光をモニタするモニタ手段と、を備えたことを
特徴とするラマン分光装置。
1. A Raman spectroscope for irradiating a sample with a laser beam, collecting scattered light having a wavelength different from that of the irradiated laser beam from the light scattered on the sample, and analyzing the characteristics of the sample. Raman light is collected by collecting means for collecting scattered light from the light source, an aperture having a slit for removing stray light from the scattered light collected by the light collecting means, and dispersing the scattered light through the aperture. A light source for illuminating the aperture from a surface opposite to the light collecting means, a light source for illuminating the sample near the measurement site of the sample, and an optical path between the light collecting means and the aperture. And a monitor semi-transparent mirror disposed on the substrate, light from the aperture irradiation light source and the sample irradiation light source is reflected by the sample, and the light reflected by the monitor semi-transparent mirror is monitored. Raman spectroscopy apparatus comprising: the monitoring means.
【請求項2】 請求項1記載の装置において、さらに試
料観察モードおよびラマン光測定モードの選択を可能と
する操作手段と、 前記試料観察モードが選択された場合に、アパーチャー
照射用光源および試料照射用光源を点灯し、試料照射用
光源により照射された試料面およびアパーチャー照射用
光源により形成されたアパーチャー像のモニタ手段によ
るモニタを可能とし、また、前記ラマン光測定モードが
選択された場合に、アパーチャー照射用光源および試料
用光源を消灯し、かつ分光手段に散乱光を導入する制御
手段と、を備えたことを特徴とするラマン分光装置。
2. The apparatus according to claim 1, further comprising an operating means that enables selection of a sample observation mode and a Raman light measurement mode, an aperture irradiation light source and sample irradiation when the sample observation mode is selected. The light source is turned on, and the sample surface illuminated by the light source for illuminating the sample and the aperture image formed by the light source for illuminating the aperture can be monitored by the monitoring means, and when the Raman light measurement mode is selected, A Raman spectroscopic device comprising: a light source for illuminating an aperture and a light source for a sample, and a control means for introducing scattered light into a spectroscopic means.
【請求項3】 請求項2記載の装置において、 アパーチャーと分光手段の間に配置され得る可動反射鏡
を備え、 制御手段は、試料観察モードにおいて該可動反射鏡をア
パーチャーと分光手段の間に配置しアパーチャー照射用
光源からの光をアパーチャーに導光し、ラマン光測定モ
ードにおいて前記可動反射鏡をアパーチャーと分光手段
の間から退避させ、アパーチャーを介して得られる散乱
光を分光手段に導光することを特徴とするラマン分光装
置。
3. The apparatus according to claim 2, further comprising a movable reflecting mirror that can be arranged between the aperture and the spectroscopic means, and the control means arranges the movable reflecting mirror between the aperture and the spectroscopic means in the sample observation mode. Then, the light from the light source for illuminating the aperture is guided to the aperture, the movable reflecting mirror is retracted from between the aperture and the spectroscopic means in the Raman light measurement mode, and the scattered light obtained through the aperture is guided to the spectroscopic means. A Raman spectroscope characterized in that
JP25198795A 1995-09-04 1995-09-04 Raman spectrometer Expired - Fee Related JP3667397B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25198795A JP3667397B2 (en) 1995-09-04 1995-09-04 Raman spectrometer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25198795A JP3667397B2 (en) 1995-09-04 1995-09-04 Raman spectrometer

Publications (2)

Publication Number Publication Date
JPH0972848A true JPH0972848A (en) 1997-03-18
JP3667397B2 JP3667397B2 (en) 2005-07-06

Family

ID=17230978

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25198795A Expired - Fee Related JP3667397B2 (en) 1995-09-04 1995-09-04 Raman spectrometer

Country Status (1)

Country Link
JP (1) JP3667397B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011226916A (en) * 2010-04-20 2011-11-10 Olympus Corp Photometric apparatus
EP2685304A1 (en) 2012-07-10 2014-01-15 Jasco Corporation Spectroscopic confocal microscope with aperture stop for increased spatial resolution and parallelized data acquisition
WO2014050132A1 (en) * 2012-09-28 2014-04-03 富士フイルム株式会社 Optical measurement apparatus using optical electric field amplification device
JP2015166763A (en) * 2014-03-03 2015-09-24 エバ・ジャパン 株式会社 Microscope device, and analysis method
US10295470B2 (en) 2015-03-25 2019-05-21 Jasco Corporation Microspectroscope

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011226916A (en) * 2010-04-20 2011-11-10 Olympus Corp Photometric apparatus
EP2685304A1 (en) 2012-07-10 2014-01-15 Jasco Corporation Spectroscopic confocal microscope with aperture stop for increased spatial resolution and parallelized data acquisition
WO2014050132A1 (en) * 2012-09-28 2014-04-03 富士フイルム株式会社 Optical measurement apparatus using optical electric field amplification device
JP2014070928A (en) * 2012-09-28 2014-04-21 Fujifilm Corp Optical measuring apparatus using photoelectric field amplifying device
US9791375B2 (en) 2012-09-28 2017-10-17 Fujifilm Corporation Light measuring apparatus employing optical electric field enhancing device
JP2015166763A (en) * 2014-03-03 2015-09-24 エバ・ジャパン 株式会社 Microscope device, and analysis method
US10295470B2 (en) 2015-03-25 2019-05-21 Jasco Corporation Microspectroscope

Also Published As

Publication number Publication date
JP3667397B2 (en) 2005-07-06

Similar Documents

Publication Publication Date Title
JP3712937B2 (en) Apparatus and method for calibration of a spectral imaging system
JP5507247B2 (en) Spectroscopic microscopy with image-driven analysis
JP5199539B2 (en) Multispectral technique for defocus detection
US6870612B2 (en) Portable spectral imaging microscope system
JP5507249B2 (en) Spectrometer with spatial resolution control
JP2008281513A (en) Cultural property inspection apparatus
JP4092037B2 (en) Substance identification device
WO2006021929A1 (en) Alignment system for spectroscopic analysis
JP2002055041A (en) Apparatus for measuring opening of probe and near-field optical microscope using the same
JP2002148172A (en) Near field microscope
JP2019020363A (en) Display device for optical analysis apparatus
JP3667397B2 (en) Raman spectrometer
JPH1090064A (en) Microscopic raman system
JP2001021810A (en) Interference microscope
JP2008020332A (en) Method and apparatus for measuring thin film
JP2008529091A (en) Method and apparatus for variable field illumination
JPH08145888A (en) Fluorescence calorimeter
US5241362A (en) Microscopic spectrometer with auxiliary imaging system
JPH09178564A (en) Spectrometric system
JP2002014043A (en) Multicolor analyzer for microscope, and multicolor analysis method using microscope
JP2020148547A (en) Spectrofluorometer and observation method
JP7318868B2 (en) Sample measuring device, measuring method and program
JP2018112762A (en) Infrared microscope
JP3736361B2 (en) Foreign matter identification method, foreign matter identification device, and dust generation source identification method
JPH0524203Y2 (en)

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040512

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040518

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040712

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050315

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050406

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090415

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090415

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100415

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100415

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110415

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120415

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130415

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130415

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140415

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees