JPH0971891A - Method for electrorefining metal - Google Patents

Method for electrorefining metal

Info

Publication number
JPH0971891A
JPH0971891A JP7246650A JP24665095A JPH0971891A JP H0971891 A JPH0971891 A JP H0971891A JP 7246650 A JP7246650 A JP 7246650A JP 24665095 A JP24665095 A JP 24665095A JP H0971891 A JPH0971891 A JP H0971891A
Authority
JP
Japan
Prior art keywords
cathode
anode
electrolytic cell
common conductive
electrolytic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7246650A
Other languages
Japanese (ja)
Inventor
Koji Ando
孝治 安藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP7246650A priority Critical patent/JPH0971891A/en
Publication of JPH0971891A publication Critical patent/JPH0971891A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Electrolytic Production Of Metals (AREA)

Abstract

PROBLEM TO BE SOLVED: To uniformize the amt. of a metal deposited on a cathode face and to improve the type of packing by shifting the center position of a cathode in each electrolytic cell from the center position of the opposed anode toward a positive common conductive part on the electrical contact side of the anode. SOLUTION: The principal part of an electrolytic cell 1 is formed with a square electrolytic cell main body 10, a strip common conductive part 11 provided on the upper faces of both side walls and an insulating coating film 12 laminated on the conductive part 11 and provided with plural almost U-shaped notches 2. One sides of the anodes 3 are restrained on one common conductive part 11 on one side through the notches 2, the other sides of the cathode 4 are restrained on the insulating coating film 12 on the other side, the one sides of the cathodes 4 are restrained on a common conductor 2 through the notches 2, and the other sides are restrained on the insulating coating film 12. At this time, the center position of the cathode in the cell 1 is shifted from the center position of the anode 3 by 5-10mm toward the common conductive part on the electrical contact side of the anode.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は銅などの金属電解精
製方法に係り、特に、カソード面に析出される金属量の
均一化が図れその荷姿を改善できる金属電解精製方法の
改良に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for electrolytically refining metals such as copper, and more particularly, to an improvement in a method for electrolytically refining metals which can make the amount of metal deposited on a cathode surface uniform and improve its packing. is there.

【0002】[0002]

【従来の技術】銅などの金属電解精製は、例えば図3に
示すように種板と称する薄い銅板(カソード本体)a1と
薄い銅板を短冊状に切断して得られた一対の導電性吊り
手部材a2と金属棒等から成りクロスビームと呼ばれる導
電性の棒状部材a3とで構成される複数のカソードaと、
粗銅を鋳込んで製造された複数のアノードbとを用いて
行われる。そして、上記カソードaとこれに対向させた
アノードbとが30mm前後の狭い間隔を介して交互に
複数枚装入された電解槽cを多数用いて行われている。
これ等のカソードaやアノードbは電解槽c内では並列
に結線され、各電解槽c間は直列に結線されることが一
般的である。これは、整流器の能力や設備上の問題から
である。
2. Description of the Related Art Metal electrolytic refining of copper or the like is performed by, for example, as shown in FIG. 3, a thin copper plate (cathode body) a1 called a seed plate and a pair of conductive slings obtained by cutting the thin copper plate into strips. A plurality of cathodes a composed of a member a2 and a conductive rod member a3 made of a metal rod or the like and called a cross beam,
It is performed using a plurality of anodes b manufactured by casting blister copper. Then, a large number of electrolytic cells c in which a plurality of the cathodes a and the anodes b opposed to the cathodes a are alternately inserted at narrow intervals of about 30 mm are used.
It is general that these cathodes a and anodes b are connected in parallel in the electrolytic bath c, and serially connected between the electrolytic baths c. This is due to problems with rectifier capacity and equipment.

【0003】具体的には、図3に示すように電解槽c内
ではカソードaやアノードbはその上端両側を支点とし
電解槽cの両側壁上面に係止させて吊り下げるが、この
際に一方の側壁上面を正とする接点とし、他方の側壁上
面を負とする接点とし、各接点に相対する位置を絶縁体
とする。すなわち、電解槽cの両側壁上面には、図3〜
図4(A)及び(B)に示すように帯状の金属板等から
成る共通導電部dと、この共通導電部d上に積層されか
つ略コ字状の切欠部e1が設けられた絶縁性被膜eとが設
けられており、各アノードbの片側の上端を一方の側壁
上面に設けられた共通導電部d上に上記絶縁性被膜eの
切欠部e1を介して係止させ、他の上端を他方の側壁上面
に設けられた絶縁性被膜e上に係止させて配列されてい
る。また、各カソードaについてもその棒状部材a3の一
端側を他方の側壁上面に設けられた共通導電部d上に上
記絶縁性被膜eの切欠部e1を介して係止させ、棒状部材
a3の他端側を一方の側壁上面に設けられた絶縁性被膜e
上に係止させて配列されている。そして、図4(A)及
び図5に示すように電解槽cの各カソードaを隣接する
他の電解槽cのアノードbに上記共通導電部dを介して
接続させると共に、同じく電解槽cの各アノードbを隣
接する他の電解槽cのカソードaに共通導電部dを介し
て接続させている。尚、図5中、破線で示した領域は電
解槽cであり、また、実線は電源fと各電解槽c内のカ
ソードa並びにアノードbとの配線状態を模式的に示し
たものである。
More specifically, as shown in FIG. 3, in the electrolytic cell c, the cathode a and the anode b are suspended by suspending them on the upper surfaces of both side walls of the electrolytic cell c with their upper ends on both sides as fulcrums. One side wall upper surface has a positive contact, the other side wall upper surface has a negative contact, and a position facing each contact is an insulator. That is, as shown in FIG.
As shown in FIGS. 4 (A) and 4 (B), a common conductive portion d made of a strip-shaped metal plate and the like, and an insulating property provided with a substantially U-shaped cutout portion e1 laminated on the common conductive portion d. A coating e is provided, and the upper end on one side of each anode b is locked onto the common conductive portion d provided on the upper surface of one side wall through the cutout portion e1 of the insulating coating e, and the other upper end. Are locked and arranged on the insulating coating e provided on the upper surface of the other side wall. Also, for each cathode a, one end of the rod-shaped member a3 is locked onto the common conductive portion d provided on the upper surface of the other side wall through the cutout portion e1 of the insulating coating e, and the rod-shaped member
Insulating film e provided on the upper surface of one side wall of the other end of a3
It is arranged to be locked on the top. Then, as shown in FIGS. 4 (A) and 5, each cathode a of the electrolytic cell c is connected to the anode b of another adjacent electrolytic cell c via the common conductive part d, and the electrolytic cell c is also similarly connected. Each anode b is connected to a cathode a of another adjacent electrolytic cell c via a common conductive portion d. In FIG. 5, the region shown by the broken line is the electrolytic cell c, and the solid line schematically shows the wiring state between the power source f and the cathode a and the anode b in each electrolytic cell c.

【0004】[0004]

【発明が解決しようとする課題】ところで、カソードや
アノードについて上述したような結線方式が採られた場
合、カソード内の単位面積当たりの電流密度分布が不均
一となり、得られた電気銅等電気金属板の一方の端部だ
けが成長して厚くなり、他方の端部が薄く細くなってし
まうことがあった。
By the way, when the above-mentioned connection method is adopted for the cathode and the anode, the current density distribution per unit area in the cathode becomes non-uniform, and the obtained electric metal such as copper is obtained. In some cases, only one end of the plate grew and became thick, and the other end became thin and thin.

【0005】そして、この様な電気金属板を積み重ねた
場合、荷姿が矩形とならず見た目が悪化するばかりでな
く、これ等偏った荷姿は崩れ易く運搬に支障を来す問題
点を有していた。
When such electric metal plates are stacked, not only the packing shape is not rectangular but the appearance is deteriorated, but also the unbalanced packing shape is liable to collapse and has a problem in transportation. Was.

【0006】そこで、従来においては厚くなった端が一
方に積み重ならないように電気金属板を1枚毎に反転さ
せて荷姿が矩形に近くなるように積み重ねる方法が採ら
れている。しかし、この方法は複雑な設備を必要としか
つ荷造りの手間がかかり過ぎるという別な問題点を有し
ていた。
Therefore, conventionally, a method has been adopted in which the electric metal plates are inverted one by one so that the thickened ends do not pile up on one side, and are stacked so that the packing shape is close to a rectangle. However, this method has another problem that it requires complicated equipment and it takes too much time for packing.

【0007】本発明はこの様な問題点に着目してなされ
たもので、その課題とするところは、カソード面に析出
される金属量の均一化が図れその荷姿を改善できる金属
電解精製方法を提供することにある。
The present invention has been made by paying attention to such a problem, and a problem thereof is a metal electrolytic refining method capable of making the amount of metal deposited on the cathode surface uniform and improving the packing appearance. To provide.

【0008】[0008]

【課題を解決するための手段】そこで、本発明者は、カ
ソードやアノードについて上記結線方式を採った場合に
カソード内の電流密度分布が不均一になる原因について
鋭意研究を行ったところ、この原因が適用されるカソー
ドとアノードの材質にあることを見出し本発明を完成す
るに至った。
The inventors of the present invention have made extensive studies as to the cause of non-uniformity of the current density distribution in the cathode when the above-mentioned connection method is adopted for the cathode and the anode. The present invention has been completed by finding out that the material is used for the cathode and the anode.

【0009】すなわち、カソードに用いられる種板は電
解精製等で得られた純度99.99%程度の金属板を加
工して製造されているものである。このためその比抵抗
は低い。これに対し、アノードとして用いられる金属
は、例えば銅の電解精製においては99.2%程度の粗
銅でありその比抵抗は上記カソードより高い。
That is, the seed plate used for the cathode is manufactured by processing a metal plate having a purity of about 99.99% obtained by electrolytic refining or the like. Therefore, its specific resistance is low. On the other hand, the metal used as the anode is, for example, about 99.2% crude copper in electrolytic refining of copper, and its specific resistance is higher than that of the cathode.

【0010】そして、カソードとアノードの電気抵抗が
このように異なる場合、当然のことながら抵抗の低い方
が電流は流れ易い。このため、カソードとアノードの接
続について上述したような結線方式を採った場合、電解
槽内でのカソードとアノードとの間では、アノードと隣
接する電解槽のカソードとを結線する接点に近いカソー
ドの部分に電流が集中し易くなり、この部分の電流密度
が増加して電流密度分布が不均一になっている。本発明
はこの様な技術的発見に基づき完成されたものである。
When the electric resistances of the cathode and the anode are different from each other as described above, it is natural that the lower the resistance, the easier the current flows. For this reason, when the above-mentioned connection method is used for connecting the cathode and the anode, between the cathode and the anode in the electrolytic cell, the cathode close to the contact point for connecting the anode and the cathode of the adjacent electrolytic cell is connected. The current is likely to be concentrated in the portion, the current density in this portion increases, and the current density distribution becomes non-uniform. The present invention has been completed based on such technical findings.

【0011】すなわち、請求項1に係る発明は、両側壁
の上面に共通導電部をそれぞれ備える電解槽が隣接して
複数配置され、各電解槽内にはカソードとこれに対向さ
せたアノードとがその上端両側を上記側壁上面にそれぞ
れ係止させて交互に複数配列されると共に、上記共通導
電部の一方を正として各アノードに接続させる一方他の
共通導電部を負として各カソードに接続させ、かつ、電
解槽の各カソードを隣接する他の電解槽のアノードに上
記共通導電部を介して接続させると共に電解槽の各アノ
ードを隣接する他の電解槽のカソードに共通導電部を介
して接続させ、各電解槽内のアノードとカソードに電流
を供給して金属の電解精製を行う金属電解精製方法を前
提とし、各電解槽内のカソードについてその中心位置を
対向するアノードの中心位置に対してアノードの電気接
点側である正の共通導電部側にずらして配置することを
特徴とするものである。
That is, in the invention according to claim 1, a plurality of electrolytic cells each having a common conductive portion are arranged adjacent to each other on the upper surfaces of both side walls, and a cathode and an anode opposed thereto are provided in each electrolytic cell. A plurality of them are alternately arranged by locking both upper ends thereof to the upper surface of the side wall, and one of the common conductive portions is positively connected to each anode, while the other common conductive portion is negatively connected to each cathode, In addition, each cathode of the electrolytic cell is connected to the anode of another adjacent electrolytic cell through the common conductive portion, and each anode of the electrolytic cell is connected to the cathode of another adjacent electrolytic cell through the common conductive portion. Assuming a metal electrorefining method in which electric current is supplied to the anode and cathode in each electrolytic cell to perform electrolytic refining of metal, the anode in which the center position of the cathode in each electrolytic cell opposes It is characterized in that the offset arrangement in the positive common conductive side is the anode of the electrical contact side with respect to the center position.

【0012】そして、電解槽内のカソードについてその
中心位置を対向するアノードの中心位置に対しアノード
の電気接点側である正の共通導電部側にずらして配置す
ると、上記結線方式に起因した電流集中部位における電
流を受けるカソード面積が広くなるため、カソード内に
おける単位面積当たりの電流密度分布の均一化が図れ
る。従って、これに伴いカソード面に析出される金属量
も均一になりその膜厚が略均等になるため、これ等電気
金属板を積載したときの荷姿の改善が図れる。
When the center position of the cathode in the electrolytic cell is displaced from the center position of the opposing anode to the positive common conductive portion side, which is the electric contact side of the anode, the current concentration due to the above-mentioned wiring system is concentrated. Since the area of the cathode that receives the current in the region is widened, the current density distribution per unit area in the cathode can be made uniform. As a result, the amount of metal deposited on the cathode surface becomes uniform and the film thickness becomes substantially uniform, so that the packing appearance when these electric metal plates are stacked can be improved.

【0013】尚、アノードの電気接点側である正の共通
導電部側へ上記カソードをどの程度ずらすかについて
は、適用されるアノードとカソードの材質、構造、寸法
並びに形状、適用される電解液の組成、アノードとカソ
ード間に印加される電圧等の条件により一律に決するこ
とはできないが、以下の発明の実施の形態において開示
した材料並びにスケールの場合には5mm〜10mm程
度である。請求項2に係る発明は上記カソードのずらし
量を特定した発明に関する。
Regarding how much the cathode is displaced to the positive common conductive part side which is the electric contact side of the anode, the material, structure, size and shape of the anode and the cathode to be applied, and the electrolytic solution to be applied Although it cannot be uniformly determined depending on the composition, the voltage applied between the anode and the cathode, and the like, it is about 5 mm to 10 mm in the case of the materials and scales disclosed in the following embodiments of the invention. The invention according to claim 2 relates to the invention in which the shift amount of the cathode is specified.

【0014】すなわち、請求項2に係る発明は、請求項
1記載の発明に係る金属電解精製方法を前提とし、カソ
ードの中心位置をアノードの中心位置からアノードの電
気接点側である正の共通導電部側に5mm〜10mmず
らして配置することを特徴とする。
That is, the invention according to claim 2 is premised on the metal electrolytic refining method according to the invention according to claim 1, in which the central position of the cathode is from the central position of the anode to the electric contact side of the anode, and the positive common conductivity. It is characterized in that they are arranged so as to be displaced from each other by 5 mm to 10 mm.

【0015】また、カソードの中心位置をアノードの中
心位置からアノードの電気接点側である正の共通導電部
側にずらす方法は任意であり、カソード全体をそのまま
正の共通導電部側にずらす方法が例示される。尚、カソ
ードについて、従来技術において述べた導電性の棒状部
材と、板状のカソード本体と、このカソード本体を上記
棒状部材に連結させる一対の導電性吊り手部材とで構成
した場合には、カソードの位置を正の共通導電部側にず
らすことなくカソード内における電流密度分布の均一化
を図ることが可能である。すなわち、導電性の棒状部材
と種板であるカソード本体とを連結させる導電性吊り手
部材の取り付け位置を、アノードの電気接点側である正
の共通導電部側とは反対側にずらして設定することによ
りカソード内における電流密度分布の均一化を図ること
が可能である。これは、種板の両端から等距離になるよ
うに同じ幅の吊り手部材が設けられる通常の方法に代え
て、吊り手部材の取り付け位置をアノードの電気接点側
である正の共通導電部側とは反対側にずらして設定する
ことにより、カソード表面に電流が均等に流れるように
改善できるからである。更に、アノードの電気接点側で
ある正の共通導電部側とは反対側に位置する吊り手部材
の面積及び/又は厚さをもう一方の吊り手部材より大き
く設定することで、アノードの電気接点側とは反対側の
カソード部位へも十分に電流を流させることができる。
請求項3及び請求項4に係る発明はこの様な技術的理由
によりなされている。
Further, the method of displacing the center position of the cathode from the center position of the anode to the positive common conductive part side which is the electric contact side of the anode is arbitrary, and the method of displacing the whole cathode as it is to the positive common conductive part side is as follows. It is illustrated. When the cathode is composed of the conductive rod-shaped member described in the prior art, a plate-shaped cathode main body, and a pair of conductive hanging members that connect the cathode main body to the rod-shaped member, It is possible to make the current density distribution in the cathode uniform without shifting the position of (1) to the positive common conductive portion side. That is, the mounting position of the conductive handle member that connects the conductive rod-shaped member and the cathode body, which is the seed plate, is set so as to be shifted to the side opposite to the positive common conductive portion side, which is the electrical contact side of the anode. This makes it possible to make the current density distribution in the cathode uniform. Instead of the usual method in which a hanging member having the same width is provided so as to be equidistant from both ends of the seed plate, the mounting position of the hanging member is the positive common conductive portion side which is the electric contact side of the anode. This is because it can be improved so that the current flows evenly on the cathode surface by shifting the setting to the opposite side. Further, by setting the area and / or thickness of the hanging member located on the side opposite to the positive common conductive portion side, which is the electric contact side of the anode, larger than that of the other hanging member, the electric contact of the anode is formed. A sufficient current can be made to flow to the cathode portion on the side opposite to the side.
The inventions according to claims 3 and 4 are made for such technical reasons.

【0016】すなわち、請求項3に係る発明は、両側壁
の上面に共通導電部をそれぞれ備える電解槽が隣接して
複数配置され、各電解槽内にはカソードとこれに対向さ
せたアノードとがその上端両側を上記側壁上面にそれぞ
れ係止させて交互に複数配列されると共に、上記共通導
電部の一方を正として各アノードに接続させる一方他の
共通導電部を負として各カソードに接続させ、かつ、電
解槽の各カソードを隣接する他の電解槽のアノードに上
記共通導電部を介して接続させると共に電解槽の各アノ
ードを隣接する他の電解槽のカソードに共通導電部を介
して接続させ、各電解槽内のアノードとカソードに電流
を供給して金属の電解精製を行う金属電解精製方法を前
提とし、各電解槽内のカソードを、その両端側が上記側
壁上面に係止される導電性の棒状部材と、板状のカソー
ド本体と、このカソード本体を上記棒状部材に連結させ
る一対の導電性吊り手部材とで構成し、かつ、上記カソ
ード本体に対する吊り手部材の取付け位置を、アノード
の電気接点側である正の共通導電部側とは反対側にずら
して設定することを特徴とし、また、請求項4に係る発
明は、両側壁の上面に共通導電部をそれぞれ備える電解
槽が隣接して複数配置され、各電解槽内にはカソードと
これに対向させたアノードとがその上端両側を上記側壁
上面にそれぞれ係止させて交互に複数配列されると共
に、上記共通導電部の一方を正として各アノードに接続
させる一方他の共通導電部を負として各カソードに接続
させ、かつ、電解槽の各カソードを隣接する他の電解槽
のアノードに上記共通導電部を介して接続させると共に
電解槽の各アノードを隣接する他の電解槽のカソードに
共通導電部を介して接続させ、各電解槽内のアノードと
カソードに電流を供給して金属の電解精製を行う金属電
解精製方法を前提とし、各電解槽内のカソードを、その
両端側が上記側壁上面に係止される導電性の棒状部材
と、板状のカソード本体と、このカソード本体を上記棒
状部材に連結させる一対の導電性吊り手部材とで構成
し、かつ、アノードの電気接点側である正の共通導電部
側とは反対側に位置する吊り手部材の面積及び/又は厚
さをもう一方の吊り手部材より大きく設定することを特
徴とする。
That is, in the invention according to claim 3, a plurality of electrolytic cells each having a common conductive portion are arranged adjacent to each other on the upper surfaces of both side walls, and a cathode and an anode opposed thereto are provided in each electrolytic cell. A plurality of them are alternately arranged by locking both upper ends thereof to the upper surface of the side wall, and one of the common conductive portions is positively connected to each anode, while the other common conductive portion is negatively connected to each cathode, In addition, each cathode of the electrolytic cell is connected to the anode of another adjacent electrolytic cell through the common conductive portion, and each anode of the electrolytic cell is connected to the cathode of another adjacent electrolytic cell through the common conductive portion. Assuming a metal electrolytic refining method in which electric current is supplied to the anode and cathode in each electrolytic cell to perform electrolytic refining of metal, the cathode in each electrolytic cell has both ends locked to the upper surface of the side wall. A conductive rod-shaped member, a plate-shaped cathode body, and a pair of conductive hanger members for connecting the cathode body to the rod-shaped member, and the mounting position of the hanger member to the cathode body, The invention is characterized in that the anode is set to be shifted to the side opposite to the positive common conductive portion side which is the electric contact side of the anode, and the invention according to claim 4 is an electrolytic cell having a common conductive portion on the upper surfaces of both side walls, respectively. Are arranged adjacent to each other, and a plurality of cathodes and anodes opposed to the cathodes are alternately arranged in the respective electrolytic cells with the upper ends of both sides being locked to the upper surface of the side wall, respectively. One is connected to each anode as positive and the other common conductive part is connected to each cathode as negative, and each cathode of the electrolytic cell is connected to the anode of another adjacent electrolytic cell through the common conductive part. Metal electrorefining in which each anode of the electrolysis cell is connected to the cathode of another adjacent electrolysis cell through the common conductive part and electric current is supplied to the anode and cathode in each electrolysis cell to perform electrorefining of metal. Based on the method, the cathode in each electrolytic cell is provided with a conductive rod-shaped member whose both ends are locked to the upper surface of the side wall, a plate-shaped cathode main body, and a pair of the cathode main body connected to the rod-shaped member. The area and / or the thickness of the suspender member which is composed of the conductive suspender member and is located on the side opposite to the positive common conductive portion side which is the electric contact side of the anode is larger than that of the other suspender member. The feature is that it is set large.

【0017】尚、これ等技術的手段が適用される金属材
料は任意であり、銅、ニッケル、コバルト等の金属精製
が例示される。請求項5に係る発明は請求項1〜4に係
る発明を銅の金属電解精製法に適用した発明に関する。
The metal material to which these technical means are applied is arbitrary, and metal refining of copper, nickel, cobalt or the like is exemplified. The invention according to claim 5 relates to the invention in which the invention according to claims 1 to 4 is applied to a copper metal electrolytic refining method.

【0018】すなわち、請求項5に係る発明は、請求項
1〜4のいずれかに記載の発明に係る金属電解精製方法
を前提とし、銅の電解精製に適用されることを特徴とす
るものである。
That is, the invention according to claim 5 is premised on the electrolytic metal refining method according to any one of claims 1 to 4, and is applied to electrolytic refining of copper. is there.

【0019】[0019]

【発明の実施の形態】以下、本発明の実施の形態につい
て図面を参照して詳細に説明する。
BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.

【0020】まず、発明の実施に際して適用された電解
槽1は、図1に示すように従来において適用されている
電解槽と同一である。すなわち、この電解槽1は、方形
の電解槽本体10と、この両側壁上面に設けられた帯状
の共通導電部11、11と、各共通導電部11、11上
に積層されかつ略コ字状の切欠部2を複数備えた絶縁性
被膜12、12とでその主要部が構成されている。
First, the electrolytic cell 1 applied in the practice of the invention is the same as the electrolytic cell conventionally used as shown in FIG. That is, the electrolytic cell 1 is a rectangular electrolytic cell body 10, strip-shaped common conductive portions 11 and 11 provided on the upper surfaces of both side walls, and stacked on the common conductive portions 11 and 11 and having a substantially U-shape. The insulating coatings 12, 12 having a plurality of cutouts 2 form a main part thereof.

【0021】そして、粗銅を鋳込んで得た横1050m
m、縦1030mm、厚さ38mmでその重量が360
kgの26枚の精製アノード3を、各アノードとの間隔
が105mmになるように電解槽1に装入した。また、
図2に示すように横1070mm、縦1050mm、厚
さ0.7mmの種板(カソード本体)41と、同様の種
板を短冊状に切断して得たリボンから成る一対の吊り手
部材42と、この吊り手部材42に通されたクロスビー
ム43とでカソード4を構成し、かつ、27枚のカソー
ド4を、カソードとカソードとの中間にアノードが配置
されるように電解槽に装入した。尚、一対の上記吊り手
部材42、42の取付け部位については、図2に示すよ
うに種板(カソード本体)41の両端からそれぞれ等距
離となるように設定されている。
1050 m in width obtained by casting blister copper
m, length 1030mm, thickness 38mm and its weight is 360
Twenty-six (26) kg of purified anodes 3 were placed in the electrolytic cell 1 so that the distance between each anode was 105 mm. Also,
As shown in FIG. 2, a seed plate (cathode body) 41 having a width of 1070 mm, a length of 1050 mm, and a thickness of 0.7 mm, and a pair of hanging members 42 made of ribbons obtained by cutting the same seed plate into strips. The cathode 4 is constituted by the cross beam 43 passed through the hanging member 42, and 27 cathodes 4 are placed in the electrolytic cell so that the anode is arranged between the cathode and the cathode. . Incidentally, the mounting portions of the pair of hanging members 42, 42 are set so as to be equidistant from both ends of the seed plate (cathode body) 41 as shown in FIG.

【0022】また、27枚のカソード4については、そ
の一部を種板(カソード本体)41の中心位置が対向す
るアノード3の中心位置から5mm、10mm、15m
mだけアノード3の電気接点側(カソード4の電気接点
側とは反対方向)にずれるように移動させ(図1中、矢
印で示す方向へ移動させ)、種板(カソード本体)41
の吊り下げ位置を破線で示す位置に変更した。
Further, with respect to the 27 cathodes 4, a part thereof is located 5 mm, 10 mm, 15 m from the center position of the anode 3 where the center position of the seed plate (cathode body) 41 is opposed
The seed plate (cathode body) 41 is moved so as to be displaced by m toward the electric contact side of the anode 3 (opposite to the electric contact side of the cathode 4) (moved in the direction indicated by the arrow in FIG. 1).
The hanging position of was changed to the position shown by the broken line.

【0023】電解液は、液温が60℃であり、Cuが4
5g/l、硫酸が190g/lの組成を有しかつ添加剤
としてニカワ80g/Cu−t(電気銅トン当たりの添
加量を示す)、チオ尿素60g/Cu−tが添加されて
いる。そして、平均電流密度を300A/m2 として2
00時間通電した。
The electrolytic solution has a liquid temperature of 60 ° C. and Cu of 4
5 g / l, sulfuric acid has a composition of 190 g / l, and 80 g / Cu-t of glue (the amount added per ton of electrolytic copper) and 60 g / Cu-t of thiourea are added as additives. Then, the average current density is set to 300 A / m 2 and 2
Energized for 00 hours.

【0024】200時間通電した後、生成された電気銅
を引き上げ、洗浄し、かつ、カソード中央部分を横方向
に切断し、2等分した切断部の厚さをマイクロメータに
て端部から5mm間隔で測定した。尚、この例では、ア
ノード接点は北側、カソード接点は南側にある。
After energizing for 200 hours, the generated electrolytic copper was pulled up, washed, and the central portion of the cathode was cut in the lateral direction, and the thickness of the cut portion divided into two equal parts was measured with a micrometer from the end to 5 mm. Measured at intervals. In this example, the anode contact is on the north side and the cathode contact is on the south side.

【0025】そして、断面の厚さのばらつきについて測
定した結果、電着厚さが変化するのはいずれの場合も両
端部より60mm〜80mm以内であることが確認され
た。これより内部はいずれの場合も14mm〜15mm
の厚さであるのに対し、カソードを通常の位置にセット
して得られた電気銅では、北端で1mm前後太くなるが
南端では5mm程度細くなり、南北端で6mmの厚さの
ずれが生じていた。そして、カソードを通常の位置にセ
ットして得られた電気銅を同一方向で18枚積み重ねた
ところ、厚さのずれは約100mmとなり荷姿は極めて
悪いものであった。
As a result of measuring the variation in the thickness of the cross section, it was confirmed that the electrodeposited thickness changed within 60 mm to 80 mm from both ends in each case. 14mm ~ 15mm in this case in any case
In contrast, the thickness of the electrolytic copper obtained by setting the cathode in the normal position is about 1 mm thicker at the north end, but about 5 mm thinner at the south end, and 6 mm thick at the north and south ends. Was there. Then, when 18 sheets of electrolytic copper obtained by setting the cathode in a normal position were stacked in the same direction, the deviation in thickness was about 100 mm and the packing appearance was extremely poor.

【0026】他方、カソード4を北側に5mm〜15m
mずらした場合、そのずらす量が大きくなるほど北端が
薄くなる結果が得られ、5mmずらした場合には14m
m程度の厚さとなり、10mmずらした場合には11m
m程度の厚さに、また、15mmずらした場合には9.
5mm程度の厚さであった。しかし、南端での厚さはほ
とんど14.5mm前後であった。このため、これ等の
条件で得られた電気銅を同じ方向で18枚積み重ねても
厚さのずれは20mm程度でありまったく問題はなかっ
た。
On the other hand, the cathode 4 is 5 mm to 15 m northward.
When the distance is shifted by m, the north end becomes thinner as the amount of shift is increased, and when the distance is shifted by 5 mm, it is 14 m.
The thickness is about m, and it is 11m when displaced by 10mm.
When the thickness is about 15 m, or when it is displaced by 15 mm, it is 9.
The thickness was about 5 mm. However, the thickness at the southern end was almost 14.5 mm. Therefore, even if 18 electrolytic coppers obtained under these conditions were stacked in the same direction, the deviation in thickness was about 20 mm, and there was no problem at all.

【0027】[0027]

【発明の効果】請求項1〜5記載の発明に係る金属電解
精製方法によれば、カソード内における単位面積当たり
の電流密度分布の均一化が図れるため、カソード面に析
出される金属量を均一にできその膜厚を略均等に制御す
ることが可能となる。
According to the metal electrorefining method of the present invention, the current density distribution per unit area in the cathode can be made uniform, so that the amount of metal deposited on the cathode surface can be made uniform. Therefore, the film thickness can be controlled substantially evenly.

【0028】従って、得られた電気金属板を複数枚積み
重ねた荷姿の矩形性が改善され、かつ、カソード端部へ
の電流の偏りも減少することから通電中のショートの減
少も図ることができる効果を有している。
Therefore, the rectangular shape of the packing obtained by stacking a plurality of the obtained electric metal plates is improved, and the bias of the current to the cathode end portion is reduced, so that the short circuit during energization can be reduced. It has the effect that can be done.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施の形態に係る電解槽の概略斜視
図。
FIG. 1 is a schematic perspective view of an electrolytic cell according to an embodiment of the present invention.

【図2】本発明の実施の形態に係るカソードの概略斜視
図。
FIG. 2 is a schematic perspective view of a cathode according to an embodiment of the present invention.

【図3】従来例に係る電解槽の概略斜視図。FIG. 3 is a schematic perspective view of an electrolytic cell according to a conventional example.

【図4】図4(A)は電解槽の平面図、図4(B)は図
4(A)のB−B面断面図。
FIG. 4 (A) is a plan view of an electrolytic cell, and FIG. 4 (B) is a sectional view taken along the line BB of FIG. 4 (A).

【図5】電源と各電解槽内のカソード並びにアノードと
の配線状態を模式的に示した説明図。
FIG. 5 is an explanatory view schematically showing a wiring state between a power source and a cathode and an anode in each electrolytic cell.

【符号の説明】[Explanation of symbols]

1 電解槽 2 切欠部 3 アノード 4 カソード 10 電解槽本体 11 共通導電部 12 絶縁性被膜 DESCRIPTION OF SYMBOLS 1 Electrolyte tank 2 Notch part 3 Anode 4 Cathode 10 Electrolyzer body 11 Common conductive part 12 Insulating film

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】両側壁の上面に共通導電部をそれぞれ備え
る電解槽が隣接して複数配置され、各電解槽内にはカソ
ードとこれに対向させたアノードとがその上端両側を上
記側壁上面にそれぞれ係止させて交互に複数配列される
と共に、上記共通導電部の一方を正として各アノードに
接続させる一方他の共通導電部を負として各カソードに
接続させ、かつ、電解槽の各カソードを隣接する他の電
解槽のアノードに上記共通導電部を介して接続させると
共に電解槽の各アノードを隣接する他の電解槽のカソー
ドに共通導電部を介して接続させ、各電解槽内のアノー
ドとカソードに電流を供給して金属の電解精製を行う金
属電解精製方法において、 各電解槽内のカソードについてその中心位置を対向する
アノードの中心位置に対してアノードの電気接点側であ
る正の共通導電部側にずらして配置することを特徴とす
る金属電解精製方法。
1. A plurality of electrolyzers each having a common conductive part are arranged adjacent to each other on the upper surfaces of both side walls, and a cathode and an anode opposed to the electrolyzer are disposed in the respective electrolyzers on both sides of the upper end on the upper surface of the side wall. A plurality of them are locked and arranged alternately, and one of the common conductive portions is positively connected to each anode, while the other common conductive portion is negatively connected to each cathode, and each cathode of the electrolytic cell is connected to each cathode. The anode of another electrolytic cell is connected to the anode of another adjacent electrolytic cell through the common conductive portion, and each anode of the electrolytic cell is connected to the cathode of another adjacent electrolytic cell through the common conductive portion. In a metal electrolytic refining method in which electric current is supplied to the cathode to perform electrolytic refining of metal, the center position of the cathode in each electrolytic cell is electrically connected to the center position of the opposing anode. A metal electrolytic refining method, wherein the metal electrolytic refining method is arranged so as to be shifted to the positive common conductive portion side which is the point side.
【請求項2】カソードの中心位置をアノードの中心位置
からアノードの電気接点側である正の共通導電部側に5
mm〜10mmずらして配置することを特徴とする請求
項1記載の金属電解精製方法。
2. The center position of the cathode is 5 from the center position of the anode to the positive common conductive portion side which is the electric contact side of the anode.
2. The metal electrolytic refining method according to claim 1, wherein the metal electrolytic refining is performed with a shift of 10 mm to 10 mm.
【請求項3】両側壁の上面に共通導電部をそれぞれ備え
る電解槽が隣接して複数配置され、各電解槽内にはカソ
ードとこれに対向させたアノードとがその上端両側を上
記側壁上面にそれぞれ係止させて交互に複数配列される
と共に、上記共通導電部の一方を正として各アノードに
接続させる一方他の共通導電部を負として各カソードに
接続させ、かつ、電解槽の各カソードを隣接する他の電
解槽のアノードに上記共通導電部を介して接続させると
共に電解槽の各アノードを隣接する他の電解槽のカソー
ドに共通導電部を介して接続させ、各電解槽内のアノー
ドとカソードに電流を供給して金属の電解精製を行う金
属電解精製方法において、 各電解槽内のカソードを、その両端側が上記側壁上面に
係止される導電性の棒状部材と、板状のカソード本体
と、このカソード本体を上記棒状部材に連結させる一対
の導電性吊り手部材とで構成し、かつ、上記カソード本
体に対する吊り手部材の取付け位置を、アノードの電気
接点側である正の共通導電部側とは反対側にずらして設
定することを特徴とする金属電解精製方法。
3. A plurality of electrolyzers each having a common conductive part are arranged adjacent to each other on the upper surfaces of both side walls, and a cathode and an anode opposed to the electrolyzer are disposed in the respective electrolyzers on both sides of the upper end on the upper surface of the side wall. A plurality of them are locked and arranged alternately, and one of the common conductive portions is positively connected to each anode, while the other common conductive portion is negatively connected to each cathode, and each cathode of the electrolytic cell is connected to each cathode. The anode of another electrolytic cell is connected to the anode of another adjacent electrolytic cell through the common conductive portion, and each anode of the electrolytic cell is connected to the cathode of another adjacent electrolytic cell through the common conductive portion. In a metal electrolytic refining method of supplying an electric current to a cathode to perform electrolytic refining of a metal, a cathode in each electrolytic cell is provided with a conductive rod-shaped member whose both end sides are locked to the upper surface of the side wall and a plate-shaped cathode. A cathode main body and a pair of conductive hanging members for connecting the cathode main body to the rod-shaped member, and the mounting position of the hanging hand member with respect to the cathode main body is a positive common that is on the electric contact side of the anode. A metal electrolytic refining method, wherein the metal electrolytic refining method is set so as to be shifted to the side opposite to the conductive portion side.
【請求項4】両側壁の上面に共通導電部をそれぞれ備え
る電解槽が隣接して複数配置され、各電解槽内にはカソ
ードとこれに対向させたアノードとがその上端両側を上
記側壁上面にそれぞれ係止させて交互に複数配列される
と共に、上記共通導電部の一方を正として各アノードに
接続させる一方他の共通導電部を負として各カソードに
接続させ、かつ、電解槽の各カソードを隣接する他の電
解槽のアノードに上記共通導電部を介して接続させると
共に電解槽の各アノードを隣接する他の電解槽のカソー
ドに共通導電部を介して接続させ、各電解槽内のアノー
ドとカソードに電流を供給して金属の電解精製を行う金
属電解精製方法において、 各電解槽内のカソードを、その両端側が上記側壁上面に
係止される導電性の棒状部材と、板状のカソード本体
と、このカソード本体を上記棒状部材に連結させる一対
の導電性吊り手部材とで構成し、かつ、アノードの電気
接点側である正の共通導電部側とは反対側に位置する吊
り手部材の面積及び/又は厚さをもう一方の吊り手部材
より大きく設定することを特徴とする金属電解精製方
法。
4. A plurality of electrolytic cells each having a common conductive portion are arranged adjacent to each other on the upper surfaces of both side walls, and a cathode and an anode opposed to the electrolytic cell are arranged in each electrolytic cell on both sides of the upper end on the upper surface of the side wall. A plurality of them are locked and arranged alternately, and one of the common conductive portions is positively connected to each anode, while the other common conductive portion is negatively connected to each cathode, and each cathode of the electrolytic cell is connected to each cathode. The anode of another electrolytic cell is connected to the anode of another adjacent electrolytic cell through the common conductive portion, and each anode of the electrolytic cell is connected to the cathode of another adjacent electrolytic cell through the common conductive portion. In a metal electrolytic refining method of supplying an electric current to a cathode to perform electrolytic refining of a metal, a cathode in each electrolytic cell is provided with a conductive rod-shaped member whose both end sides are locked to the upper surface of the side wall and a plate-shaped cathode. And a pair of conductive sling members for connecting the cathode body to the rod-shaped member, and the sling is located on the side opposite to the positive common conductive portion side which is the electric contact side of the anode. A metal electrolytic refining method characterized in that the area and / or the thickness of the member is set larger than that of the other lifting member.
【請求項5】銅の電解精製に適用されることを特徴とす
る請求項1〜4のいずれかに記載の金属電解精製方法。
5. The electrolytic metal refining method according to claim 1, which is applied to electrolytic refining of copper.
JP7246650A 1995-08-31 1995-08-31 Method for electrorefining metal Pending JPH0971891A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7246650A JPH0971891A (en) 1995-08-31 1995-08-31 Method for electrorefining metal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7246650A JPH0971891A (en) 1995-08-31 1995-08-31 Method for electrorefining metal

Publications (1)

Publication Number Publication Date
JPH0971891A true JPH0971891A (en) 1997-03-18

Family

ID=17151580

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7246650A Pending JPH0971891A (en) 1995-08-31 1995-08-31 Method for electrorefining metal

Country Status (1)

Country Link
JP (1) JPH0971891A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106435651A (en) * 2016-11-07 2017-02-22 杭州帝洛森科技有限公司 Split type polar plate lap joint structure and electrolytic bath with same
CN109881199A (en) * 2019-04-10 2019-06-14 深圳市铿东科技有限公司 A kind of regenerating alkaline etching liquid and its copper recovery system

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106435651A (en) * 2016-11-07 2017-02-22 杭州帝洛森科技有限公司 Split type polar plate lap joint structure and electrolytic bath with same
CN109881199A (en) * 2019-04-10 2019-06-14 深圳市铿东科技有限公司 A kind of regenerating alkaline etching liquid and its copper recovery system

Similar Documents

Publication Publication Date Title
US4039403A (en) Electrowinning metals
CA2860813C (en) System for power control in cells for electrolytic recovery of a metal
US5015340A (en) Method of continuous coating of electrically conductive substrates
US3821097A (en) Current density redistributing anode
EP0306782A1 (en) Preparation of Zn-Ni alloy plated steel strip
CN203065598U (en) Smelting equipment
CA1072055A (en) Electrolytic cell and circulating method for electrolyte
CA1173782A (en) Method and apparatus for stabilizing aluminum metal layers in aluminum electrolytic cells
US1465034A (en) Process for the electrolytic deposition of copper
CA1178241A (en) Arrangement of busbars for electrolytic reduction cells
JPH0971891A (en) Method for electrorefining metal
US3775281A (en) Plant for production of aluminum by electrolysis
US4261807A (en) Asymmetrical arrangement of busbars for electrolytic cells
JPS61183488A (en) Hall/ale electrolytic cell having asymmetric cathode rod andheat insulating material
US4326939A (en) Anode support system for a molten salt electrolytic cell
US2761830A (en) Wiring arrangement for a series of electrolytic cells
CA1140892A (en) Increased spacing of end electrodes in electro-deposition of metals
JPH04301092A (en) Cathode for forming electrodeposited film and production of electrolytic powder using the same
EP0058506B1 (en) Bipolar refining of lead
US20240003030A1 (en) Removing impurities from an electrolyte
GB543294A (en) Electrolytic production of nickel
JPH0375395A (en) Method and electrolytic cell for electrolytically plating metal surface
CN218621107U (en) Electroplating anode mechanism and electroplating equipment
JP2005163106A (en) Copper removal electrolytic equipment
KR810000248B1 (en) A device for the supply of electric current to transverse igneous electrolysis tanks