JPH0971609A - Recovery of polymer - Google Patents

Recovery of polymer

Info

Publication number
JPH0971609A
JPH0971609A JP25006295A JP25006295A JPH0971609A JP H0971609 A JPH0971609 A JP H0971609A JP 25006295 A JP25006295 A JP 25006295A JP 25006295 A JP25006295 A JP 25006295A JP H0971609 A JPH0971609 A JP H0971609A
Authority
JP
Japan
Prior art keywords
polymer
coagulation
flow
slurry
polymer latex
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP25006295A
Other languages
Japanese (ja)
Inventor
Takaaki Ito
隆明 伊藤
Akihiro Toritani
明弘 鳥谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Rayon Co Ltd
Original Assignee
Mitsubishi Rayon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Rayon Co Ltd filed Critical Mitsubishi Rayon Co Ltd
Priority to JP25006295A priority Critical patent/JPH0971609A/en
Publication of JPH0971609A publication Critical patent/JPH0971609A/en
Pending legal-status Critical Current

Links

Landscapes

  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for recovering efficiently polymer particles of a narrow range of particle size distribution from a polymer latex by making the polymer latex contact with an aqueous solution of a coagulant in a piston- flow path and flow through the path in condition of a laminar flow to obtain coagulated slurry, and stirring the slurry at a specific temperature. SOLUTION: This method makes a polymer latex obtained by emulsion polymerization (e.g. latex of polybutadiene, butadiene-styrene copolymer, etc.) contact with an aqueous solution of a coagulant such as an inorganic or organic acid (salt) in a path that causes a piston flow in coagulating equipment, and the mixture flow through the path in the coagulating equipment in laminar flow condition of Reynolds number of <=1000 to form coagulated slurry, and then agitates the slurry in an agitating vessel at a temperature higher than the coagulating temperature in the coagulating equipment.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、重合体の回収方法
に関し、より詳しくは乳化重合で得られた重合体ラテッ
クスを凝析・凝集させて重合体粒子を回収する方法に関
する。
TECHNICAL FIELD The present invention relates to a method for recovering a polymer, and more particularly to a method for recovering polymer particles by coagulating / aggregating a polymer latex obtained by emulsion polymerization.

【0002】[0002]

【従来の技術および発明が解決しようとする課題】乳化
重合で得られる重合体ラテックスから重合体を回収する
方法として、安定状態にあるラテックスに酸または塩等
の電解質を加えるか、またはその逆の操作を行って、重
合体を凝固させた後、脱水、乾燥を行い、粉末状の樹脂
を得る方法が一般的によく用いられている。
As a method for recovering a polymer from a polymer latex obtained by emulsion polymerization, an electrolyte such as an acid or a salt is added to a latex in a stable state, or vice versa. A method of obtaining a powdery resin by performing an operation to solidify the polymer, followed by dehydration and drying is commonly used.

【0003】この凝固工程に要求される重要なことは、
凝固以降の工程における凝固物の滞積、閉塞などのトラ
ブルを防ぎ、安定した工業生産を行えるような粉体特性
の優れた重合体粒子を生成させることである。
The important thing required for this solidification process is
It is intended to prevent polymer particles from accumulating and clogging in the steps after solidification, and to produce polymer particles having excellent powder characteristics which enable stable industrial production.

【0004】粉体特性の優れた重合体粒子を得る方法と
して、例えば緩凝析により重合体ラテックスを球状粒子
として取り出す方法(特公平3−51728号公報、特
開昭5−320221号公報)や、分散媒に不溶で、か
つ重合体の貧溶媒である有機液体を加えて撹拌すること
により重合体粒子を得る方法(特開昭62−14972
6号公報、特開昭62−115032号公報)などがあ
る。
As a method for obtaining polymer particles having excellent powder characteristics, for example, a method of taking out polymer latex as spherical particles by slow coagulation (Japanese Patent Publication No. 3-51728, Japanese Patent Application Laid-Open No. 5-320221), and A method of obtaining polymer particles by adding an organic liquid which is insoluble in the dispersion medium and which is a poor solvent for the polymer, and stirring the mixture (JP-A-62-14972).
6 and JP-A-62-115032).

【0005】これらの新技術により、粒度分布が狭く粉
体特性が向上した重合体粒子が得られるようになった
が、前者の方法で得られるゴム含有率が低く最低造膜温
度が高い重合体とゴム分有率が高く最低造膜温度が低い
重合体の凝集粒子を比較すると、ゴム含有率が低く最低
造膜温度が高い重合体の凝集粒子は嵩比重が低く湿粉水
分率が高くなるという欠点があり、一方、後者の方法で
は、前者と逆にゴム含有率が高く最低造膜温度が低い重
合体を用いると、有機液体が重合体のゴム部に浸透し、
大量の有機液体を用いないと粉体特性の優れた重合体粒
子が得られないという欠点がある。このため前述した技
術では、重合体ラテックスの種類によっては充分な凝析
効果が得られず、その方法の使用が制限されているのが
現状である。
These new techniques have made it possible to obtain polymer particles having a narrow particle size distribution and improved powder characteristics. However, the polymer obtained by the former method has a low rubber content and a high minimum film-forming temperature. Comparing the agglomerated particles of a polymer with a high rubber content and a low minimum film forming temperature, the agglomerated particles of a polymer with a low rubber content and a high minimum film forming temperature have a low bulk specific gravity and a high moisture content of wet powder. On the other hand, in the latter method, in contrast to the former method, when a polymer having a high rubber content and a low minimum film forming temperature is used, the organic liquid penetrates into the rubber portion of the polymer,
There is a disadvantage that polymer particles having excellent powder characteristics cannot be obtained unless a large amount of organic liquid is used. For this reason, in the above-mentioned technique, depending on the type of polymer latex, a sufficient coagulation effect cannot be obtained, and the use of this method is currently limited.

【0006】また、従来の凝固技術として、撹拌翼を備
えた1基または2基以上の凝固槽中で高分子ラテックス
と凝固剤またはその水溶液を混合し、重合体粒子の凝集
を進行させて重合体粒子を回収する方法が用いられてい
るが(特開昭60−26006号公報)、この方法で
は、凝固槽中で凝集と破壊が同時に進行し、凝集速度、
すなわち粒子径のコントロールが極めて難しいという欠
点がある。一方、この方法に対して滞在時間をコントロ
ールするために二重管のみからなる装置を用いる方法も
提案されているが(特開昭58−174401号公
報)、粒径の揃った凝集体が得られにくいという欠点が
ある。
Further, as a conventional coagulation technique, polymer latex and a coagulant or an aqueous solution thereof are mixed in one or more coagulation tanks equipped with stirring blades to accelerate the aggregation of polymer particles and thereby Although a method of collecting coalesced particles is used (Japanese Patent Laid-Open No. 60-26006), in this method, coagulation and destruction proceed at the same time in the coagulation tank, and the coagulation rate,
That is, there is a drawback that it is extremely difficult to control the particle size. On the other hand, in contrast to this method, a method of using an apparatus consisting of a double tube to control the residence time has also been proposed (Japanese Patent Laid-Open No. 58-174401), but an aggregate having a uniform particle size is obtained. There is a drawback that it is hard to be caught.

【0007】[0007]

【課題を解決するための手段】本発明者らは、上述した
如き状況に鑑み鋭意検討を進めた結果、重合体ラテック
スの凝集初期にはブラウン凝集と乱流凝集が支配的であ
り、凝集中期以降には剪断による破壊が支配的になるこ
とが究明され、そこで凝集の初期と中期以降を分離し、
独立にコントロールすることにより、乳化重合で得られ
る全ての種類の重合体ラテックスを同じ様な粒度分布を
有する重合体粒子に凝集させ得ることを見い出し、本発
明を完成した。
Means for Solving the Problems As a result of intensive studies in view of the above situation, the present inventors have found that Brownian agglomeration and turbulent agglomeration are predominant in the initial stage of agglomeration of the polymer latex, and the agglomeration in the middle stage. After that, it was clarified that shear fracture became dominant, and there, the early and middle stages of aggregation were separated,
It has been found that, by controlling independently, all kinds of polymer latexes obtained by emulsion polymerization can be aggregated into polymer particles having the same particle size distribution, and the present invention has been completed.

【0008】すなわち、本発明は、ピストン流れを生じ
させる凝析装置内の流路で、乳化重合で得られた重合体
ラテックスと凝固剤水溶液とを接触させた後、レイノル
ズ数1000以下の層流状態で該凝析装置内の流路を流
して凝析スラリーを形成させ、次いでその凝析スラリー
を撹拌槽内で該凝析装置内の凝析温度よりも高い温度で
撹拌することを特徴とする重合体の回収方法にある。
That is, according to the present invention, after a polymer latex obtained by emulsion polymerization and an aqueous solution of a coagulant are brought into contact with each other in a flow path in a coagulation device for producing a piston flow, a laminar flow having a Reynolds number of 1000 or less is obtained. In this state, a flow path in the coagulation device is flowed to form a coagulation slurry, and the coagulation slurry is then stirred in a stirring tank at a temperature higher than the coagulation temperature in the coagulation device. There is a method for recovering the polymer.

【0009】[0009]

【発明の実施の形態】以下、詳細に説明する。本発明の
特徴は、ピストン流れを生じさせる凝析装置内で、剪断
の影響を少なくするために、該凝析装置内を層流に保っ
て重合体ラテックスと凝固剤を接触させることにより、
重合体ラテックスを凝析させ、次いでその得られた凝析
スラリーを撹拌槽で剪断による破壊と固化、そして撹拌
による粒径のコントロールを行い、粒度分布の狭い重合
体粒子を得るようにしたことである。この方法を用いる
ことにより乳化重合で得られるすべての重合体ラテック
スから粒度分布の狭い重合体粒子を連続して得ることが
できる。
DETAILED DESCRIPTION OF THE INVENTION A detailed description will be given below. A feature of the present invention is that in a coagulation device that causes a piston flow, in order to reduce the influence of shear, by keeping the polymer latex and the coagulant in contact with each other while keeping the laminar flow in the coagulation device,
The polymer latex is coagulated, and then the obtained coagulated slurry is broken and solidified by shearing in a stirring tank, and the particle size is controlled by stirring to obtain polymer particles having a narrow particle size distribution. is there. By using this method, polymer particles having a narrow particle size distribution can be continuously obtained from all polymer latexes obtained by emulsion polymerization.

【0010】本発明において用いられる重合体ラテック
スについては特に限定されず、乳化重合で得られたもの
が使用できる。その例としては、ポリブタジエン、ブタ
ジエンースチレン共重合体、ブタジエン−アクリロニト
リル共重合体、アクリロニトリル−ブタジエン−スチレ
ン共重合体(ABS樹脂)、メチルメタクリレート−ブ
タジエン−スチレン共重合体(MBS樹脂)、アクリル
酸エステル−アクリロニトリル−スチレン共重合体(A
AS樹脂)、メチルメタクリレート−ブチルアクリレー
ト・スチレン−メチルメタクリレートの多段重合体等の
ラテックスが挙げられるが、これらに限定されない。
The polymer latex used in the present invention is not particularly limited, and those obtained by emulsion polymerization can be used. Examples thereof include polybutadiene, butadiene-styrene copolymer, butadiene-acrylonitrile copolymer, acrylonitrile-butadiene-styrene copolymer (ABS resin), methyl methacrylate-butadiene-styrene copolymer (MBS resin), acrylic acid. Ester-acrylonitrile-styrene copolymer (A
AS resin), latex such as multi-stage polymer of methyl methacrylate-butyl acrylate / styrene-methyl methacrylate, but not limited thereto.

【0011】また、本発明において用いられる凝固剤は
特に限定されず、公知のものを使用できる。凝固剤の例
としては、塩酸、硫酸、硝酸等の無機酸、ギ酸、酢酸等
の有機酸、塩化カルシウム、硫酸マグネシウム、硫酸ア
ルミニウム等の無機塩、酢酸カルシウム、酢酸アルミニ
ウム等の有機酸塩等があげられる。
The coagulant used in the present invention is not particularly limited, and known ones can be used. Examples of the coagulant include inorganic acids such as hydrochloric acid, sulfuric acid and nitric acid, organic acids such as formic acid and acetic acid, inorganic salts such as calcium chloride, magnesium sulfate and aluminum sulfate, and organic acid salts such as calcium acetate and aluminum acetate. can give.

【0012】本発明の重合体の回収方法は、上記の重合
体ラテックスと凝固剤水溶液を用いて実施され、まず、
凝析装置において重合体ラテックスと凝固剤水溶液を接
触させる。使用される凝析装置としては、ピストン流れ
を生じさせるものであり、例えば重合体ラテックス供給
管と凝固剤水溶液供給管の2重管からなる管状凝析装
置、凝固剤水溶液流中に浸漬した多数の細管ノズルから
重合体ラテックスを吐出させるノズル凝析装置等を挙げ
ることができる。
The method for recovering the polymer of the present invention is carried out by using the above-mentioned polymer latex and the coagulant aqueous solution.
The polymer latex is brought into contact with the coagulant aqueous solution in the coagulation device. The coagulation device used is one that causes a piston flow, for example, a tubular coagulation device consisting of a double tube of a polymer latex supply pipe and a coagulant aqueous solution supply pipe, and a large number immersed in a coagulant aqueous solution flow. Nozzle coagulation device for discharging the polymer latex from the thin tube nozzle.

【0013】凝析装置で重合体ラテックスを凝析するに
あたっては、凝析装置内流路でのレイノルズ数が100
0以下の層流となる状態で重合体ラテックスと凝固剤水
溶液を接触させることが重要である。レイノルズ数が1
000を超える状態で重合体ラテックスと凝固剤水溶液
を接触させると凝析装置内で乱流凝集が起こり、狭い粒
度分布を有する重合体粒子の回収が困難となる。
When the polymer latex is coagulated by the coagulation device, the Reynolds number in the flow path inside the coagulation device is 100.
It is important that the polymer latex and the aqueous coagulant solution are brought into contact with each other in a laminar flow of 0 or less. Reynolds number is 1
If the polymer latex and the aqueous solution of the coagulant are brought into contact with each other in a state of exceeding 000, turbulent flow aggregation occurs in the coagulation device, and it becomes difficult to recover the polymer particles having a narrow particle size distribution.

【0014】なお、本発明というレイノルズ数とは、下
記式 Re=D<v>ρ/μ (式中、Reはレイノルズ数、Dは円管の直径、<v>
は断面平均流速、ρは流体の密度、μは流体の粘度を示
す。)で求められる値をいい、本発明においてはレイノ
ルズ数1000以下を層流状態とした。
The Reynolds number of the present invention is defined by the following formula: Re = D <v> ρ / μ (where Re is the Reynolds number, D is the diameter of the circular tube, and <v>
Is the average velocity of the cross section, ρ is the density of the fluid, and μ is the viscosity of the fluid. In the present invention, a Reynolds number of 1000 or less was used as a laminar flow state.

【0015】凝析装置に供給される重合体ラテックスと
凝固剤水溶液の供給速度については、重合体ラテックス
の種類や濃度に依存するため一概に定めることがてきな
いが、重合体ラテックスが凝析装置内の重合体ラテック
ス供給口から出る速度(重合体ラテックス流量)と凝固
剤水溶液が凝析装置内を流れる速度(凝固剤水溶液流
量)、重合体ラテックスと凝固剤水溶液が混合された後
の凝析スラリーが凝析装置内を流れる速度(凝析スラリ
ー流量)をそれぞれ等しくすることが好ましい。
The supply rate of the polymer latex and the aqueous solution of the coagulant supplied to the coagulation device cannot be unconditionally determined because it depends on the type and concentration of the polymer latex, but the polymer latex is the coagulation device. Inside the polymer latex supply port (flow rate of the polymer latex), flow rate of the aqueous coagulant solution in the coagulation device (flow rate of the coagulant aqueous solution), and coagulation after the polymer latex and the coagulant aqueous solution are mixed. The velocities of the slurries flowing in the coagulation device (coagulated slurry flow rates) are preferably equal to each other.

【0016】凝析装置での凝析温度は、重合体ラテック
スの種類および濃度により一概には決められないが、1
0〜90℃であり、また凝析時間は2秒〜10分であ
る。
The coagulation temperature in the coagulation device cannot be generally determined depending on the type and concentration of the polymer latex, but
It is 0 to 90 ° C., and the coagulation time is 2 seconds to 10 minutes.

【0017】このようにして凝析装置を出た凝析スラリ
ーは、撹拌槽に送られる。使用される撹拌槽は特に限定
されるものではないが、槽内にタービン、プロペラ、ア
ンカー等の撹拌手段を有する2基以上の連続型混合槽が
よく使用されるが、これ以外に2室以上に分画され、各
室に撹拌装置を備えた筒状容器等でもよい。または1基
の凝集槽を用い、第1工程終了後第2段以降の工程を行
うバッチ式の混合槽でもよい。
The coagulated slurry thus exiting the coagulator is sent to a stirring tank. The stirring tank used is not particularly limited, but two or more continuous type mixing tanks having stirring means such as a turbine, a propeller, and an anchor in the tank are often used, but in addition to this, there are two or more chambers. It may be a cylindrical container or the like that is fractionated into each chamber and is equipped with a stirring device in each chamber. Alternatively, a batch type mixing tank may be used in which one coagulation tank is used and the second and subsequent steps are performed after the completion of the first step.

【0018】撹拌槽においては、凝析装置で得られた凝
析スラリーを撹拌機で撹拌し、撹拌によって生じる剪断
力による破壊と粒径のコントロールを行い、狭い粒度分
布を有する重合体粒子を形成させる。
In the stirring tank, the coagulated slurry obtained by the coagulation apparatus is stirred by a stirrer, and the shearing force generated by stirring is used to break and control the particle size to form polymer particles having a narrow particle size distribution. Let

【0019】この場合、撹拌槽における温度は、凝析装
置での凝析温度よりも高くして行う必要がある。撹拌槽
の温度が凝析装置の凝析温度より低い場合は、本発明が
目的とする狭い粒度分布を有する重合体粒子の回収が困
難となる。
In this case, the temperature in the stirring tank must be higher than the coagulation temperature in the coagulation device. When the temperature of the stirring tank is lower than the coagulation temperature of the coagulation device, it becomes difficult to recover polymer particles having a narrow particle size distribution, which is the object of the present invention.

【0020】以上の操作により、乳化重合で得られる重
合体ラテックスの種類にかかわらず、乾燥粒子の90%
以上が粒径0.1〜1.0mmの範囲にはいる重合体粒
子を得ることができる。
By the above operation, 90% of the dry particles can be obtained regardless of the type of polymer latex obtained by emulsion polymerization.
Polymer particles having the above particle size in the range of 0.1 to 1.0 mm can be obtained.

【0021】[0021]

【実施例】以下、実施例により本発明を具体的に説明す
るが、本発明はこれらの例に限定されるものではない。
なお、実施例中の%は重量%を示す。
EXAMPLES The present invention will now be described in detail with reference to examples, but the present invention is not limited to these examples.
In addition,% in an Example shows weight%.

【0022】[実施例1]内径3cmφ、長さ50cm
の円管中に25℃の凝固剤水溶液(硫酸濃度0.004
%)を1.0cm/秒の流速で流した。一方、この凝固
剤水溶液と並流して25℃の重合体ラテックス(ブタジ
エンとスチレンの共重合体にメチルメタクリレートとス
チレンの混合物をグラフト重合させたブタジエン57
%、スチレン30%およびメチルメタクリレート13%
を含有する重合体ラテックス。固形分濃度27.4
%。)を孔径0.5mmφのノズルより、ラテックス流
出速度1.0cm/秒の速度で凝固剤水溶液中に流出さ
せた(円管内のレイノズル数=1.28)。
[Example 1] Inner diameter 3 cmφ, length 50 cm
A 25 ° C coagulant aqueous solution (sulfuric acid concentration 0.004
%) At a flow rate of 1.0 cm / sec. On the other hand, a polymer latex (copolymer of butadiene and styrene obtained by graft-polymerizing a mixture of methyl methacrylate and styrene with a copolymer of butadiene and styrene at a temperature of 25 ° C. in parallel with this coagulant aqueous solution was used.
%, Styrene 30% and methyl methacrylate 13%
A polymer latex containing. Solid content concentration 27.4
%. ) Was discharged from the nozzle having a pore diameter of 0.5 mmφ into the coagulant aqueous solution at a latex outflow rate of 1.0 cm / sec (the number of Rey nozzles in a circular tube = 1.28).

【0023】次いで、その得られた凝析スラリーを、翼
径7cm×6枚のタービン翼を備えた第1連続撹拌槽
(5リットル)に移送し、操作温度75℃、回転数20
0rpmで撹拌して凝集させた。次いで、第1連続撹拌
槽で凝集を進行させた重合体スラリーを、第1連続撹拌
槽に備え付けたものと同型のタービン翼を備えてなる第
2連続撹拌槽に供給し、操作温度85℃、撹拌回転数2
00rpmで凝集を完結させた。
Then, the obtained coagulated slurry was transferred to a first continuous stirring tank (5 liters) equipped with a turbine blade having a blade diameter of 7 cm × 6 sheets (5 liters), operating temperature 75 ° C., rotation speed 20.
Agitation was performed by stirring at 0 rpm. Then, the polymer slurry, which has been allowed to aggregate in the first continuous stirring tank, is supplied to a second continuous stirring tank equipped with the same type of turbine blade as that installed in the first continuous stirring tank, and an operating temperature of 85 ° C. Stirring speed 2
Aggregation was completed at 00 rpm.

【0024】第2連続撹拌槽を出たスラリーは水洗した
後、遠心分離機で脱水して湿粉(水分率25.7%)と
し、その湿粉を乾燥機で乾燥させて粉状の重合体を得
た。この重合体についての粒度分布の測定結果を表1に
示す。
The slurry that has left the second continuous stirring tank is washed with water and then dehydrated by a centrifuge to obtain wet powder (moisture content: 25.7%). Got united. Table 1 shows the measurement results of the particle size distribution of this polymer.

【0025】なお、実施例における粒度分布の測定は、
日本工業規格(JIS 第408号)によって規定され
ている標準試験篩を用いて行った。試料は乾燥重合体を
2g使用し、篩別時間は10分であった。
The measurement of the particle size distribution in the examples is as follows.
The test was performed using a standard test sieve defined by Japanese Industrial Standards (JIS No. 408). As the sample, 2 g of the dried polymer was used, and the sieving time was 10 minutes.

【0026】[0026]

【表1】 [Table 1]

【0027】[実施例2]内径3cmφ、長さ50cm
の円管中に25℃の凝固剤水溶液(硫酸マグネシウム、
濃度0.064%)を1.0cm/秒の流速で流した。
一方、この凝固剤水溶液と並流して25℃の重合体ラテ
ックス(メチルメタクリレートにブチルメタクリレート
とスチレンを共重合させ、さらにその上にメチルメタク
リレートをグラフト重合させた、ブチルアクリレート3
0%、スチレン25%およびメチルメタクリレート45
%を含有する重合体ラテックス。固形分濃度12%。)
を孔径0.5mmφのノズルより、ラテックス流出速度
1.0cm/秒で凝固剤水溶液中に流出させた(円管内
のレイノズル数=1.30)。
[Example 2] Inner diameter 3 cmφ, length 50 cm
A 25 ° C coagulant solution (magnesium sulfate,
(Concentration 0.064%) at a flow rate of 1.0 cm / sec.
On the other hand, the polymer latex at 25 ° C. was co-flowed with this aqueous solution of coagulant (butyl methacrylate and styrene were copolymerized with methyl methacrylate, and then methyl methacrylate was graft-polymerized thereon, butyl acrylate 3
0%, styrene 25% and methyl methacrylate 45
% Polymer latex. Solid content concentration 12%. )
Was discharged from the nozzle having a hole diameter of 0.5 mmφ into the aqueous coagulant solution at a latex outflow rate of 1.0 cm / sec (the number of Rey nozzles in the circular tube = 1.30).

【0028】次いで、その得られた凝析スラリーを、翼
径7cm×6枚のタービン翼を備えた第1連続撹拌槽
(5リットル)に移送し、操作温度85℃、回転数20
0rpmで撹拌して凝集させた。次いで、第1連続撹拌
槽で凝集を進行させた重合体スラリーを、第1連続撹拌
槽に備え付けたものと同型のタービン翼を備えてなる第
2連続撹拌槽に供給し、操作温度90℃、撹拌回転数2
00rpmで凝集を完結させた。
Then, the obtained coagulated slurry was transferred to a first continuous stirring tank (5 liters) equipped with a turbine blade having a blade diameter of 7 cm × 6 sheets (5 liters), an operating temperature of 85 ° C., and a rotation speed of 20.
Agitation was performed by stirring at 0 rpm. Next, the polymer slurry, which has been allowed to undergo aggregation in the first continuous stirring tank, is supplied to a second continuous stirring tank equipped with the same type of turbine blade as that installed in the first continuous stirring tank, and the operating temperature is 90 ° C. Stirring speed 2
Aggregation was completed at 00 rpm.

【0029】第2連続撹拌槽を出たスラリーは水洗した
後、遠心分離機で脱水して湿粉(水分率34.6%)と
し、その湿粉を乾燥機で乾燥させて粉状の重合体を得
た。この重合体についての粒度分布の測定結果を表2に
示す。
The slurry that has left the second continuous stirring tank is washed with water, dehydrated by a centrifuge to obtain wet powder (water content 34.6%), and the wet powder is dried by a dryer to obtain a powdery weight. Got united. Table 2 shows the measurement results of the particle size distribution of this polymer.

【0030】[0030]

【表2】 [Table 2]

【0031】[0031]

【発明の効果】本発明によれば、種々の重合体ラテック
スから狭い粒度分布を有する重合体粒子を効率よく回収
することができる。
According to the present invention, polymer particles having a narrow particle size distribution can be efficiently recovered from various polymer latexes.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 ピストン流れを生じさせる凝析装置内の
流路で、乳化重合で得られた重合体ラテックスと凝固剤
水溶液とを接触させた後、レイノルズ数1000以下の
層流状態で該凝析装置内の流路を流して凝析スラリーを
形成させ、次いでその凝析スラリーを撹拌槽内で該凝析
装置内の凝析温度よりも高い温度で撹拌することを特徴
とする重合体の回収方法。
1. A polymer latex obtained by emulsion polymerization is brought into contact with an aqueous solution of a coagulant in a flow path in a coagulation device that causes a piston flow, and then the coagulation is performed in a laminar flow state with a Reynolds number of 1000 or less. A polymer characterized in that a coagulation slurry is formed by flowing through a flow path in the coagulation device and then the coagulation slurry is stirred in a stirring tank at a temperature higher than the coagulation temperature in the coagulation device. Recovery method.
JP25006295A 1995-09-05 1995-09-05 Recovery of polymer Pending JPH0971609A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25006295A JPH0971609A (en) 1995-09-05 1995-09-05 Recovery of polymer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25006295A JPH0971609A (en) 1995-09-05 1995-09-05 Recovery of polymer

Publications (1)

Publication Number Publication Date
JPH0971609A true JPH0971609A (en) 1997-03-18

Family

ID=17202241

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25006295A Pending JPH0971609A (en) 1995-09-05 1995-09-05 Recovery of polymer

Country Status (1)

Country Link
JP (1) JPH0971609A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001016196A1 (en) * 1999-08-31 2001-03-08 Mitsubishi Rayon Co., Ltd. Process for producing polymer particles

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001016196A1 (en) * 1999-08-31 2001-03-08 Mitsubishi Rayon Co., Ltd. Process for producing polymer particles
US6699964B1 (en) 1999-08-31 2004-03-02 Mitsubishi Rayon Co., Ltd. Process for producing polymer particle

Similar Documents

Publication Publication Date Title
US4265939A (en) Particulate rubber process
US4429114A (en) Method for treating emulsified latex
JP2003137906A (en) Method for concentrating polymer latex
US4446309A (en) Method and apparatus for continuously coagulating a rubbery polymer latex
JP2890387B2 (en) Method for producing granular polymer
AU625002B2 (en) Production process of particulate polymer
US4113796A (en) Process for working up dispersions of elastic-thermoplastic or thermoplastic plastics
US5064938A (en) Continuous production process of particulate polymer and control method of the particle size of said polymer
JPH0971609A (en) Recovery of polymer
JPS63264636A (en) Process and apparatus for producing coagulated particle from polymer latex
US6699964B1 (en) Process for producing polymer particle
JP3505870B2 (en) Spherical polymer particles
JP3987755B2 (en) Polymer recovery method
JPS63135404A (en) Continuous coagulation of polymer latex
JP4676216B2 (en) Polymer recovery method from polymer latex
JP3813011B2 (en) Method and apparatus for collecting polymer solids
JP2000239315A (en) Production of polymer
JPH09286815A (en) Method for recovering polymer from latex
JPH07233214A (en) Recovery of polymer
US3498935A (en) Method of producing porous strands from a coagulated rubber latex
JP3023973B2 (en) Method and apparatus for coagulating an aqueous polymer dispersion
JPH08333418A (en) Method for recovering polymer
JPH0151483B2 (en)
JP4673085B2 (en) Polymer recovery method and polymer recovery apparatus from polymer latex
JPS6025451B2 (en) Rapid aggregation method for aqueous latex