JPH0968493A - Atomic absorptiometer - Google Patents

Atomic absorptiometer

Info

Publication number
JPH0968493A
JPH0968493A JP7222997A JP22299795A JPH0968493A JP H0968493 A JPH0968493 A JP H0968493A JP 7222997 A JP7222997 A JP 7222997A JP 22299795 A JP22299795 A JP 22299795A JP H0968493 A JPH0968493 A JP H0968493A
Authority
JP
Japan
Prior art keywords
graphite tube
magnet
sample
tube
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7222997A
Other languages
Japanese (ja)
Inventor
Hayato Tobe
早人 戸辺
Hisashi Kimoto
尚志 木元
Kazuo Moriya
一夫 森谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP7222997A priority Critical patent/JPH0968493A/en
Publication of JPH0968493A publication Critical patent/JPH0968493A/en
Pending legal-status Critical Current

Links

Landscapes

  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

PROBLEM TO BE SOLVED: To prevent lowering of absorption sensitivity and production of contamination by shielding a magnet from radiation heat and conduction heat emitted from a graphite tube thereby blocking the corrosive gas produced through evaporation of acids from a sample contained in the graphite tube. SOLUTION: A gas control section 14 supplies a carrier gas 16 to the inside of a graphite tube 1 and a sheath gas 17 to the outside of graphite tube 1 and into a shield tube 4. When an electrode 3 is fed with a current, the graphite tube 1 is heated through the resistance and thereby a sample 5 is heated to produce atomic vapor. A light subjected to atomic absorption through the atomic vapor is passed through a spectrometer 8 and only the measuring light is detected by a detector 9. The detector 9 delivers a detection data to a signal processing section 11 where the absorbance of sample 5 is determined arithmetically and the results are delivered to an output unit 13.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、試料を原子化させその
原子を吸光分析することにより金属元素の分析を行う原
子吸光光度計に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an atomic absorption spectrophotometer for analyzing a metal element by atomizing a sample and subjecting the atom to absorption spectrometry.

【0002】[0002]

【従来の技術】上記原子吸光光度計では、黒鉛管に試料
を収容し、黒鉛管に電流を流して加熱することにより試
料が原子化されて原子蒸気となる。その原子蒸気に磁石
により磁界を加え、さらに光源からの光束を照射し、偏
光ゼーマン法によりその吸光度を測定している。このよ
うな原子吸光光度計の原子蒸気に磁界を加える磁石は黒
鉛管中心で磁束密度0.8T 以上が必要であり磁石の小
型化を図るため磁石の両極を近づけることにより必要磁
束密度を発生させていた。そこで、磁石を黒鉛管に可能
な限り近づける配置としていた。従来は、磁石の両極間
の距離を11mmぐらいとしていた。
2. Description of the Related Art In the above-mentioned atomic absorption spectrophotometer, a sample is housed in a graphite tube, and an electric current is passed through the graphite tube to heat the sample, whereby the sample is atomized into atomic vapor. A magnetic field is applied to the atomic vapor by a magnet, a light flux from a light source is irradiated, and the absorbance is measured by the polarized Zeeman method. A magnet that applies a magnetic field to the atomic vapor of an atomic absorption spectrophotometer needs a magnetic flux density of 0.8 T or more at the center of the graphite tube. To reduce the size of the magnet, both poles of the magnet are brought close to generate the required magnetic flux density. Was there. Therefore, the magnet is placed as close to the graphite tube as possible. Conventionally, the distance between the poles of the magnet has been set to about 11 mm.

【0003】[0003]

【発明が解決しようとする課題】上記のような磁石の配
置では黒鉛管と磁石との間の距離が2mm以下、さらに、
間には空気のみだけのため、磁石は黒鉛管の輻射熱およ
び伝導熱により高温に熱せられるとともに黒鉛管に収容
された試料に含まれる酸などの影響により磁石が容易に
腐蝕した。従って、使用時間が経過するに伴い高温と腐
蝕により磁石の形状が変化して磁気回路に悪影響を与え
るとともに、腐蝕した際の錆が黒鉛管に入り込む。その
結果、磁束密度が低下して最適なゼーマン効果が得られ
ず吸収感度が低下する。さらに、錆に含まれる成分によ
りコンタミネーションが発生し測定精度を悪化させる。
In the arrangement of magnets as described above, the distance between the graphite tube and the magnet is 2 mm or less, and further,
Since only air was provided between the magnets, the magnets were heated to a high temperature by the radiant heat and the conductive heat of the graphite tube, and the magnets were easily corroded by the influence of the acid contained in the sample contained in the graphite tube. Therefore, as the use time elapses, the shape of the magnet changes due to high temperature and corrosion, which adversely affects the magnetic circuit, and rust at the time of corrosion enters the graphite tube. As a result, the magnetic flux density is reduced and the optimum Zeeman effect is not obtained, and the absorption sensitivity is reduced. Furthermore, the components contained in rust cause contamination, which deteriorates the measurement accuracy.

【0004】本発明の目的は、磁石に対して黒鉛管の輻
射熱と伝導熱、および試料に含まれる酸などの影響を最
小限に抑え、吸収感度低下を防ぐとともに測定精度を向
上することができる原子吸光光度計を提供することにあ
る。
The object of the present invention is to minimize the effects of radiant heat and conductive heat of a graphite tube on a magnet, and acids contained in a sample, to prevent a decrease in absorption sensitivity and improve measurement accuracy. It is to provide an atomic absorption photometer.

【0005】[0005]

【課題を解決するための手段】上記目的を達成するた
め、本発明は黒鉛管に収容された試料を黒鉛管に電流を
流して加熱、および磁石により試料の原子に磁界を加
え、偏光ゼーマン法により試料原子の吸光分析を行う原
子吸光光度計で、黒鉛管と磁石との間に黒鉛管を遮蔽す
る手段を有したことを特徴とする。
In order to achieve the above-mentioned object, the present invention provides a polarized Zeeman method in which a sample contained in a graphite tube is heated by applying an electric current to the graphite tube and a magnetic field is applied to the sample atoms by a magnet. An atomic absorption spectrophotometer for performing absorption analysis of sample atoms according to, characterized by having means for shielding the graphite tube between the graphite tube and the magnet.

【0006】[0006]

【作用】上記のように黒鉛管と磁石との間で黒鉛管を遮
蔽する。これにより、加熱された黒鉛管より発せられる
輻射熱および伝導熱を遮り磁石の温度上昇を抑えられ
る。さらに、黒鉛管に収容された試料に含まれる酸など
が気化した腐蝕性ガスを遮断して磁石の腐蝕を防ぐ。従
って、長時間の使用でも高温と腐蝕による磁石の形状変
化がないので磁気回路に影響がなく安定した磁束密度の
もとで最適なゼーマン効果が得られるため吸収感度の低
下がない。さらに、磁石に錆が発生しないのでコンタミ
ネーションが発生することもなく測定精度が向上する。
[Function] As described above, the graphite tube is shielded between the graphite tube and the magnet. Thereby, the radiant heat and the conductive heat emitted from the heated graphite tube are blocked and the temperature rise of the magnet can be suppressed. Furthermore, the corrosive gas vaporized by the acid contained in the sample contained in the graphite tube is blocked to prevent the magnet from corroding. Therefore, even if the magnet is used for a long period of time, the shape of the magnet does not change due to high temperature and corrosion, the magnetic circuit is not affected, and the optimum Zeeman effect is obtained under a stable magnetic flux density, so that the absorption sensitivity does not decrease. Furthermore, since rust does not occur on the magnet, contamination does not occur and the measurement accuracy is improved.

【0007】[0007]

【実施例】本発明による原子吸光光度計の一実施例につ
いて、図1から図3を参照しながら説明する。図1は本
実施例による原子吸光光度計の全体構成を示す概略図で
ある。図2は、図1の黒鉛管と遮蔽筒の側面図である。
図3は、図1の遮蔽の手段を変更した実施例の側面図で
ある。
EXAMPLE An example of an atomic absorption photometer according to the present invention will be described with reference to FIGS. FIG. 1 is a schematic diagram showing the overall configuration of the atomic absorption photometer according to this embodiment. FIG. 2 is a side view of the graphite tube and the shield tube of FIG.
FIG. 3 is a side view of an embodiment in which the shielding means of FIG. 1 is modified.

【0008】図1に示すように、この原子吸光光度計で
は、電極3に黒鉛管1が取り付けられており、電極3は
電源7に接続されている。黒鉛管1内部の中央には測定
対象である試料5が注入され、収容される。黒鉛管1と
磁石2の間に配置する遮蔽筒4は黒鉛管1を覆う。さら
に、磁石2は遮蔽筒4の外側から試料5に磁界を加え
る。ガス制御部14はArガス15を加熱時に黒鉛管1
の酸化防止のためキャリアガス16,シースガス17と
して流す。キャリアガス16は黒鉛管1内側に流す。シ
ースガス17は黒鉛管1外側と遮蔽筒4内部に流す。電
極3に電源7より電流が供給されると、黒鉛管1は抵抗
発熱し、試料5は加熱される。そして、試料5は原子化
されて原子蒸気となる。原子蒸気に磁石2により磁界を
加える。黒鉛管1内部の原子蒸気には光源6からの光束
が照射され、黒鉛管1内部を通過した光では磁石2の磁
界が加えられるとゼーマン効果によって磁場に平行な偏
光成分の光と磁場に垂直な偏光成分の光とに分けられ、
平行な偏光成分の光では試料5特有の波長が原子吸収さ
れるとともに分子や粒子などのバックグラウンド成分に
より吸収され、垂直な偏光成分の光では試料5特有の波
長がわずかに原子吸収されるとともに分子や粒子などの
バックグラウンド成分により吸収される。原子吸収が行
われた各々の光は分光器8に取り込まれて分光され、各
々の測定光のみが検知器9に送られて検知される。検知
器9からは検知データが信号処理部11に送られ、演算
処理等により試料5の吸光度が計算され、その結果が出
力装置13に出力される。
As shown in FIG. 1, in this atomic absorption spectrophotometer, a graphite tube 1 is attached to an electrode 3, and the electrode 3 is connected to a power source 7. A sample 5 to be measured is injected and housed in the center of the inside of the graphite tube 1. A shielding tube 4 arranged between the graphite tube 1 and the magnet 2 covers the graphite tube 1. Further, the magnet 2 applies a magnetic field to the sample 5 from the outside of the shield cylinder 4. The gas control unit 14 heats the Ar gas 15 when heating the graphite tube 1.
The carrier gas 16 and the sheath gas 17 are supplied to prevent the oxidation of the. The carrier gas 16 flows inside the graphite tube 1. The sheath gas 17 flows into the outside of the graphite tube 1 and the inside of the shielding cylinder 4. When a current is supplied to the electrode 3 from the power source 7, the graphite tube 1 generates resistance heat and the sample 5 is heated. Then, the sample 5 is atomized into atomic vapor. A magnetic field is applied to the atomic vapor by the magnet 2. The atomic vapor inside the graphite tube 1 is irradiated with a light beam from the light source 6, and when the light passing through the inside of the graphite tube 1 is applied with the magnetic field of the magnet 2, it is perpendicular to the polarized light and the magnetic field due to the Zeeman effect. It is divided into light with various polarization components,
In the light of parallel polarization component, the wavelength peculiar to the sample 5 is atomically absorbed and is also absorbed by the background component such as molecules and particles, and in the light of vertical polarization component, the wavelength peculiar to the sample 5 is slightly atomically absorbed. It is absorbed by background components such as molecules and particles. Each light that has been subjected to atomic absorption is taken into the spectroscope 8 and dispersed therein, and only each measuring light is sent to the detector 9 and detected. The detection data is sent from the detector 9 to the signal processing unit 11, the absorbance of the sample 5 is calculated by calculation processing, and the result is output to the output device 13.

【0009】電源7からの電流値およびガス制御部14
からのガス流量は制御部12によって制御される。ま
た、信号処理部11および制御部12は中央処理部10
にまとめられている。
A current value from the power source 7 and the gas control unit 14
The gas flow rate from the is controlled by the controller 12. In addition, the signal processing unit 11 and the control unit 12 are the central processing unit 10.
It is summarized in.

【0010】図3は遮蔽の手段を変更し、黒鉛管1と磁
石2の間に配置する遮蔽板18により黒鉛管1と磁石2
を遮蔽する。本実施例では図1,図3のどちらの手段を
用いてもよいが、以下では図1の手段のものを用いるこ
ととして説明する。
In FIG. 3, the shielding means is changed, and a graphite plate 1 and a magnet 2 are provided by a shielding plate 18 arranged between the graphite tube 1 and the magnet 2.
Shield. In this embodiment, either of the means shown in FIGS. 1 and 3 may be used, but in the following description, the means shown in FIG. 1 is used.

【0011】偏光ゼーマン原子吸光光度計では、常に安
定して原子蒸気に磁束密度0.8T以上の磁界を加える
磁石2にたいして高温および腐蝕性ガスから守ることが
重要であり、そうでないと高感度で高精度の分析ができ
ない。本実施例では、黒鉛管1と磁石2との間に遮蔽筒
4を設け黒鉛管1を覆うことにより、遮蔽筒4は黒鉛管
1より発せられる輻射熱を磁石2に当たるのを防ぐと同
時に伝導熱を減衰させ磁石2の温度上昇を抑えられる。
また黒鉛管1に収容された試料5に含まれる酸などが気
化した腐蝕性ガスを遮断できる。
In the polarized Zeeman atomic absorption spectrophotometer, it is important to protect the magnet 2 which constantly applies a magnetic field having a magnetic flux density of 0.8 T or more to the atomic vapor from high temperature and corrosive gas. Otherwise, it is highly sensitive. High precision analysis is not possible. In this embodiment, the shielding tube 4 is provided between the graphite tube 1 and the magnet 2 to cover the graphite tube 1, so that the shielding tube 4 prevents the radiant heat emitted from the graphite tube 1 from hitting the magnet 2 and at the same time conducts heat. To suppress the temperature rise of the magnet 2.
In addition, the corrosive gas vaporized by the acid or the like contained in the sample 5 contained in the graphite tube 1 can be blocked.

【0012】本実施例では、黒鉛管1を遮蔽する手段と
して遮蔽筒4を用いたが、異なる形状でも黒鉛管1を覆
うことができれば良い。また、遮蔽する部品は複数の部
品で構成されても良い。
In this embodiment, the shielding tube 4 is used as a means for shielding the graphite tube 1, but the graphite tube 1 may be covered with different shapes as long as it can be covered. Further, the component to be shielded may be composed of a plurality of components.

【0013】本実施例によれば磁石2にたいして高温お
よび腐蝕性ガスから守ることができる。従って、長時間
の使用でも高温と腐蝕による磁石2の形状変化がないの
で磁気回路に影響がなく、安定した磁束密度のもとで最
適なゼーマン効果が得られるため吸収感度の低下がな
い。さらに、磁石2に錆が発生しないのでコンタミネー
ションが発生することもなく測定精度が向上する。さら
に本実施例では、遮蔽筒4を配置するために磁石2の両
極管の距離を15mmに広げる必要があり、磁石2に希土
類磁石を採用しているため高温に非常に弱いが、本実施
例によれば磁石2の温度上昇は50℃以内に抑えること
ができるため、希土類系の磁石もコストを上げずに容易
に使用できるようになる。さらに遮蔽筒4は黒鉛管1を
狭い隙間で覆うので、Arガス15の充填効率が上がり
シースガス17の流量3L/min を1/2にすることが
可能となり、Arガス15消費量を減らすことができ
る。
According to this embodiment, the magnet 2 can be protected from high temperature and corrosive gas. Therefore, even if the magnet 2 is used for a long time, the shape of the magnet 2 does not change due to high temperature and corrosion, so that the magnetic circuit is not affected, and the optimum Zeeman effect is obtained under a stable magnetic flux density, so that the absorption sensitivity does not decrease. Further, since rust does not occur on the magnet 2, contamination does not occur and the measurement accuracy is improved. Further, in the present embodiment, it is necessary to widen the distance between the bipolar tubes of the magnet 2 to 15 mm in order to dispose the shield cylinder 4, and since the magnet 2 is a rare earth magnet, it is very weak against high temperatures. According to this, since the temperature rise of the magnet 2 can be suppressed within 50 ° C., the rare earth magnet can be easily used without increasing the cost. Furthermore, since the shielding tube 4 covers the graphite tube 1 with a narrow gap, the filling efficiency of the Ar gas 15 is increased, and the flow rate 3 L / min of the sheath gas 17 can be halved, and the consumption of the Ar gas 15 can be reduced. it can.

【0014】[0014]

【発明の効果】本発明によれば、黒鉛管と磁石との間に
黒鉛管を遮蔽する手段を有するので、磁石に対しての加
熱された黒鉛管より発せられる輻射熱および伝導熱を遮
り、さらに、黒鉛管に収容された試料に含まれる酸など
が気化した腐蝕性ガスを遮断できる。従って、長時間の
使用でも高温と腐蝕による磁石の磁気回路に影響がなく
安定した磁束密度のもとで測定ができるため吸収感度の
低下がない。さらに、磁石の錆によるコンタミネーショ
ンが発生しないので測定精度が向上する。
According to the present invention, since there is a means for shielding the graphite tube between the graphite tube and the magnet, the radiant heat and the conductive heat emitted from the heated graphite tube to the magnet are shielded, and The corrosive gas vaporized by the acid contained in the sample contained in the graphite tube can be blocked. Therefore, even if it is used for a long time, the magnetic circuit of the magnet is not affected by high temperature and corrosion, and the measurement can be performed under a stable magnetic flux density, so that the absorption sensitivity does not decrease. Further, since the contamination due to the rust of the magnet does not occur, the measurement accuracy is improved.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例のブロック図。FIG. 1 is a block diagram of an embodiment of the present invention.

【図2】図1の黒鉛管と遮蔽筒の側面図。FIG. 2 is a side view of the graphite tube and the shielding tube of FIG.

【図3】図1の遮蔽の手段を変更した実施例の側面図。FIG. 3 is a side view of an embodiment in which the shielding means of FIG. 1 is changed.

【符号の説明】[Explanation of symbols]

1…黒鉛管、2…磁石、3…電極、4…遮蔽筒、5…試
料、6…光源、7…電源、8…分光器、9…検知器、1
0…中央処理部、11…信号処理部、12…制御部、1
3…出力装置、14…ガス制御部、15…Arガス、1
6…キャリアガス、17…シースガス、18…遮蔽板。
1 ... Graphite tube, 2 ... Magnet, 3 ... Electrode, 4 ... Shielding cylinder, 5 ... Sample, 6 ... Light source, 7 ... Power supply, 8 ... Spectrometer, 9 ... Detector, 1
0 ... Central processing unit, 11 ... Signal processing unit, 12 ... Control unit, 1
3 ... Output device, 14 ... Gas control unit, 15 ... Ar gas, 1
6 ... Carrier gas, 17 ... Sheath gas, 18 ... Shielding plate.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】黒鉛管に収容された試料を前記黒鉛管に電
流を流して加熱、および磁石により前記試料の原子に磁
界を加え、偏光ゼーマン法により試料原子の吸光分析を
行う原子吸光光度計において、前記黒鉛管と前記磁石と
の間に前記黒鉛管を遮蔽する手段を有したことを特徴と
する原子吸光光度計。
1. An atomic absorption spectrophotometer for heating a sample contained in a graphite tube by applying an electric current to the graphite tube and applying a magnetic field to the atoms of the sample by a magnet to perform an absorption analysis of the sample atoms by a polarized Zeeman method. The atomic absorption spectrophotometer according to claim 1, further comprising means for shielding the graphite tube between the graphite tube and the magnet.
JP7222997A 1995-08-31 1995-08-31 Atomic absorptiometer Pending JPH0968493A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7222997A JPH0968493A (en) 1995-08-31 1995-08-31 Atomic absorptiometer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7222997A JPH0968493A (en) 1995-08-31 1995-08-31 Atomic absorptiometer

Publications (1)

Publication Number Publication Date
JPH0968493A true JPH0968493A (en) 1997-03-11

Family

ID=16791204

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7222997A Pending JPH0968493A (en) 1995-08-31 1995-08-31 Atomic absorptiometer

Country Status (1)

Country Link
JP (1) JPH0968493A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6545757B1 (en) * 1999-08-24 2003-04-08 Analytik Jena Ag Atomizing device for dissolved and solid samples

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6545757B1 (en) * 1999-08-24 2003-04-08 Analytik Jena Ag Atomizing device for dissolved and solid samples

Similar Documents

Publication Publication Date Title
Isnard et al. Investigations for determination of Gd and Sm isotopic compositions in spent nuclear fuels samples by MC ICPMS
Liu et al. Dielectric barrier discharge-plasma induced vaporization and its application to the determination of mercury by atomic fluorescence spectrometry
Liu et al. Study of spark discharge assisted to enhancement of laser-induced breakdown spectroscopic detection for metal materials
Frentiu et al. Low power capacitively coupled plasma microtorch for simultaneous multielemental determination by atomic emission using microspectrometers
Wang et al. Comparison of the plasma temperature and electron number density of the pulsed electrolyte cathode atmospheric pressure discharge and the direct current solution cathode glow discharge
Kitagawa et al. Application of the Faraday effect to the trace determination of cadmium by atomic spectroscopy with an electrothermal atomiser
CN114152603A (en) Method for improving sensitivity of surface-enhanced LIBS (ligand-induced breakdown spectroscopy) in detection of heavy metal elements in water
JPH0968493A (en) Atomic absorptiometer
US4202628A (en) Flameless atomizer
Slikboer et al. Towards plasma jet controlled charging of a dielectric target at grounded, biased, and floating potential
Miyahara et al. Development and fundamental investigation of He plasma ionization detector (HPID) for gas chromatography using DC glow discharge
Shakhatov et al. Emission spectroscopy of a dipolar plasma source in hydrogen under low pressures
JPH0672841B2 (en) Atomic absorption spectrophotometer
Su et al. Studies on the complete laser vaporisation of powdered solid samples into an inductively coupled plasma for atomic emission spectrometry
Van der Woude et al. Precision (0.1° C) Vacuum Cryostat and Furnace for Mössbauer Experiments
Lerner Some observations with a plasma jet solution analyzer
Matosek et al. Spectrometric analysis of non-metals introduced from a graphite furnace into a microwave-induced plasma
GB1189680A (en) Monitoring of Vapor Density by Emission Spectroscopy.
JP2823584B2 (en) Electromagnet for atomic absorption spectrometer
Murray et al. Design and characterization of an atomic beam source with narrow angular divergence for alkali-earth targets
Aida et al. Development of an ionization method using hydrogenated plasma for mass analysis of surface adhesive compounds
Teubner et al. On the coherence of the excitation of the 32P state in sodium by 100 eV electrons
Vukanović et al. A new type of dc arc as spectrochemical light source
TW201331973A (en) Ion beam measurement device, ion beam measurement method and ion injection device
Yasuda et al. Measurement of longitudinal atom density distributions in a graphite tube furnace using coherent forward scattering

Legal Events

Date Code Title Description
A977 Report on retrieval

Effective date: 20040217

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Effective date: 20040224

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Effective date: 20040421

Free format text: JAPANESE INTERMEDIATE CODE: A523

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040706

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040826

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Effective date: 20041221

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20041227

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 4

Free format text: PAYMENT UNTIL: 20090107

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 4

Free format text: PAYMENT UNTIL: 20090107

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100107

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 5

Free format text: PAYMENT UNTIL: 20100107

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 6

Free format text: PAYMENT UNTIL: 20110107

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 7

Free format text: PAYMENT UNTIL: 20120107

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120107

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 8

Free format text: PAYMENT UNTIL: 20130107

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 8

Free format text: PAYMENT UNTIL: 20130107

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140107

Year of fee payment: 9

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 9

Free format text: PAYMENT UNTIL: 20140107

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees