JPH0967698A - Method for supplying nickel into nickel-base plating solution - Google Patents
Method for supplying nickel into nickel-base plating solutionInfo
- Publication number
- JPH0967698A JPH0967698A JP22089095A JP22089095A JPH0967698A JP H0967698 A JPH0967698 A JP H0967698A JP 22089095 A JP22089095 A JP 22089095A JP 22089095 A JP22089095 A JP 22089095A JP H0967698 A JPH0967698 A JP H0967698A
- Authority
- JP
- Japan
- Prior art keywords
- nickel
- plating solution
- metallic
- evaporator
- concentrated
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Electroplating And Plating Baths Therefor (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、不溶性陽極を用いる鋼
帯等の金属帯のニッケル系連続電気めっき設備におい
て、消費されるニッケルイオンをめっき液中に補給する
ニッケル系めっき液へのニッケルの供給方法に関する。FIELD OF THE INVENTION The present invention relates to a nickel-based continuous electroplating equipment for metal strips such as steel strips using an insoluble anode, which is used to supply nickel ions to the plating solution to replenish consumed nickel ions. Regarding supply method.
【0002】[0002]
【従来の技術】近年、自動車、家電製品等において耐食
性向上の要求が高まり、従来から使用されている亜鉛め
っき鋼板に加え、亜鉛−ニッケル合金めっき鋼板等の合
金めっき鋼板の需要が著しい増加を見せている。こうし
た需要増に対処するため、高能率生産の可能な高電流密
度による高速めっき法が採用されているが、高速めっき
法においては陽極交換を頻繁に行わねばならない可溶性
陽極方式よりも、陽極交換を必要としないイリジウム系
等の不溶性陽極を用い、消費される金属イオンをめっき
液中へ連続的に補給する方式の方が有利であることはい
うまでもない。2. Description of the Related Art In recent years, the demand for improved corrosion resistance in automobiles, home appliances and the like has increased, and in addition to the galvanized steel sheets that have been conventionally used, the demand for alloy-plated steel sheets such as zinc-nickel alloy-plated steel sheets has significantly increased. ing. In order to cope with such an increase in demand, a high-speed plating method with a high current density that enables high-efficiency production is adopted.However, in the high-speed plating method, the anode replacement is more necessary than the soluble anode method, which requires frequent anode replacement. Needless to say, the method of using an insoluble anode such as an iridium-based material which is not necessary and continuously supplying the consumed metal ions to the plating solution is advantageous.
【0003】めっき液としては通常、硫酸系の電解液が
使用される。また、めっき液中へのニッケル等の金属イ
オンの補給方法としては、金属ニッケル等を直接めっき
液に接触させて溶解させる方法と、酸化ニッケル、炭酸
ニッケル等の金属化合物の形で溶解させる方法とがあ
り、こうした金属イオンの補給は、ライン内のめっき液
循環槽とは別に設けられる金属ニッケル溶解槽などの金
属溶解槽において行われ、めっき液は循環ポンプにより
金属溶解槽とめっき液循環槽との間を循環する方式が採
用されている。As a plating solution, a sulfuric acid-based electrolytic solution is usually used. Further, as a method of replenishing metal ions such as nickel into the plating solution, a method of directly dissolving the metal nickel or the like in the plating solution and a method of dissolving it in the form of a metal compound such as nickel oxide or nickel carbonate Such metal ion replenishment is performed in a metal dissolving tank such as a metal nickel dissolving tank provided separately from the plating solution circulating tank in the line, and the plating solution is supplied to the metal dissolving tank and the plating solution circulating tank by a circulation pump. The method of circulating between is adopted.
【0004】炭酸ニッケル等の金属化合物は高価であ
り、コスト低減を妨げる一因ともなっている上、粉体で
あるため発塵等の環境問題もあり、さらにこれら金属化
合物に通常含有されるナトリウム、カルシウム、塩素、
珪素等の不純物により、次のような問題も発生してい
る。すなわち、ナトリウムは、めっき浴の電気伝導度を
向上させるため、過剰に存在すると「めっき焼け」等の
異常めっきの原因となる。Metal compounds such as nickel carbonate are expensive, which is one of the factors that hinder the cost reduction, and because they are powders, they cause environmental problems such as dust generation. Further, sodium which is usually contained in these metal compounds, Calcium, chlorine,
Impurities such as silicon also cause the following problems. That is, since sodium improves the electric conductivity of the plating bath, if it exists in excess, it causes abnormal plating such as "plating burn".
【0005】カルシウムは、めっき操業において消費さ
れないため、めっき浴中に蓄積され、飽和状態となると
石膏として析出して配管閉塞等のトラブルを引き起こ
す。塩素は、めっき浴中の濃度が高くなると、めっき密
着性を低下させる。珪素は、めっき浴中の濃度が高くな
ると、めっき浴中の鉄分と反応し、付着性の高い化合物
を生成して配管閉塞等のトラブルを引き起こす。Since calcium is not consumed in the plating operation, it accumulates in the plating bath and, when saturated, precipitates as gypsum, causing troubles such as pipe blockage. Chlorine reduces the plating adhesion when the concentration in the plating bath increases. When the concentration in the plating bath becomes high, silicon reacts with the iron content in the plating bath to form a highly adherent compound, which causes troubles such as pipe clogging.
【0006】このため、ニッケルイオンソースとして金
属化合物を使用するめっき処理設備では、これら不純物
を除去するための専用設備を設けるのが一般的である。
一方、粉状、粒状、あるいは塊状の金属ニッケルは、金
属化合物と比較してニッケル重量当たりの単価が50〜60
%と安価であり、またこれらを直接溶解させる方法はコ
ストや作業環境面では問題がないが、本発明の対象とす
るZn−Ni合金めっきなどに用いられるニッケル系め
っき液の酸濃度においては溶解速度が低く、大量に溶解
させるためには何らかの手段を必要とする。For this reason, in the plating treatment equipment using a metal compound as a nickel ion source, it is general to provide a dedicated equipment for removing these impurities.
On the other hand, powdery, granular, or lumpy metallic nickel has a unit price per nickel weight of 50 to 60 compared to metallic compounds.
%, The method of directly dissolving these is not a problem in terms of cost and working environment, but is soluble in the acid concentration of the nickel-based plating solution used for the Zn—Ni alloy plating or the like which is the subject of the present invention. It is slow and requires some means to dissolve it in large quantities.
【0007】特開平1-234598 号公報によれば、溶解槽
内に不溶性の陰極ならびに不溶性のバスケット状陽極を
設け、バスケット状陽極内に金属ニッケル粒を充填して
めっき液を通液しながら電解して金属ニッケル粒をめっ
き液中に溶解させることが記載されている。しかし、こ
の方法は、金属ニッケル粒表面が酸化して不働態化する
問題があるばかりでなく、バスケット状陽極の耐久性
や、バスケット状陽極内への金属ニッケル粒の連続的供
給ができない等の問題点があり、現実的方法とはいえな
い。According to Japanese Patent Laid-Open No. 1-234598, an insoluble cathode and an insoluble basket-shaped anode are provided in a melting tank, metal nickel particles are filled in the basket-shaped anode, and a plating solution is passed through to perform electrolysis. Then, the metal nickel particles are dissolved in the plating solution. However, this method not only has a problem that the surface of the metallic nickel particles is oxidized and passivated, but also the durability of the basket-shaped anode and the inability to continuously supply the metallic nickel particles into the basket-shaped anode, etc. There are problems and it is not a realistic method.
【0008】また、特開平4-13900号公報によれば、不
働態化を防止するため陽極に使用する金属ニッケルに硫
黄を含有させるとともに、溶解を促進するため金属ニッ
ケルの形状を粒状、板状あるいは粉状とし、チタン等の
耐食性金属のバスケットに充填し、めっき液を通液しな
がら電解して金属ニッケルをめっき液中に溶解させるこ
とが記載されている。Further, according to Japanese Patent Laid-Open No. 4-13900, the metallic nickel used for the anode contains sulfur in order to prevent passivation, and the metallic nickel has a granular or plate-like shape to promote dissolution. Alternatively, it is described that the powder is made into a powder, filled in a basket of a corrosion-resistant metal such as titanium, and electrolyzed while passing the plating solution to dissolve metallic nickel in the plating solution.
【0009】この方法によれば、前記特開平1-234598
号公報記載の方法における問題点の大半は一応解消され
ているものの、こうした電解法は、電解電流を大きくで
きないため、実施しようとすれば電解槽が 100基以上必
要となり、設備コスト、メンテナンスコスト等を考慮す
ればやはり現実的方法ではない。また、特開平5-25700
号公報によれば、消費されるニッケルイオンと亜鉛イオ
ンの組成に合わせ、かつ粒径を1mm以下としたニッケル
−亜鉛合金を溶解槽において溶解させることが記載され
ている。According to this method, the above-mentioned Japanese Patent Laid-Open No. 1-234598 is used.
Although most of the problems in the method described in the publication have been solved for the time being, such an electrolysis method cannot increase the electrolysis current, so if it is attempted to implement it, 100 or more electrolyzers are required, and equipment cost, maintenance cost, etc. After all, it is not a realistic method. In addition, JP-A-5-25700
According to the publication, it is described that a nickel-zinc alloy having a particle size of 1 mm or less is melted in a melting tank according to the composition of nickel ions and zinc ions to be consumed.
【0010】ニッケル−亜鉛合金を酸性浴中で溶解させ
ると、先ず亜鉛が優先的に溶解し、残留ニッケルが微細
化して表面積が飛躍的に増加することによりニッケルの
溶解も促進され、溶解速度がきわめて高く、かつニッケ
ル−亜鉛系合金めっきにおいて消費されるニッケルイオ
ンと亜鉛イオンが同時に補給される。しかし、ニッケル
−亜鉛合金を製造する際の製造条件が極めて厳しく、大
量生産が出来ず、結果としてニッケル−亜鉛系合金の単
価が極めて高いものとなって現実性に乏しい。When a nickel-zinc alloy is dissolved in an acidic bath, zinc is first preferentially dissolved, the residual nickel is finely divided, and the surface area is remarkably increased, whereby the dissolution of nickel is promoted and the dissolution rate is increased. Nickel ions and zinc ions, which are extremely high and consumed in nickel-zinc alloy plating, are supplied at the same time. However, the production conditions for producing a nickel-zinc alloy are extremely strict, mass production cannot be performed, and as a result, the unit price of the nickel-zinc alloy is extremely high, which is unrealistic.
【0011】[0011]
【発明が解決しようとする課題】本発明の目的は、前記
従来技術の問題点を解決し、金属ニッケルを金属ニッケ
ル溶解槽を使用して溶解する際の溶解速度を大きくし、
ニッケル系連続電気めっきの生産性向上、さらには金属
ニッケル溶解槽およびその付帯設備の小型化が可能な、
ニッケル系めっき液中へのニッケルの供給方法の提供を
目的とする。SUMMARY OF THE INVENTION The object of the present invention is to solve the above-mentioned problems of the prior art and to increase the dissolution rate when metal nickel is melted using a metal nickel melting tank.
It is possible to improve the productivity of nickel-based continuous electroplating and further downsize the metal nickel melting tank and its ancillary equipment.
It is intended to provide a method for supplying nickel into a nickel-based plating solution.
【0012】[0012]
【課題を解決するための手段】第1の発明は、硫酸含有
ニッケル系めっき液を濃縮し、該濃縮液に金属ニッケル
を供給、溶解し、得られたニッケル含有濃縮液を水を用
いて希釈することを特徴とするニッケル系めっき液中へ
のニッケルの供給方法である。第1の発明における濃縮
方法としては、加熱および/または減圧による蒸発法を
用いることができる。A first aspect of the present invention is to concentrate a sulfuric acid-containing nickel-based plating solution, supply and dissolve metallic nickel into the concentrated solution, and dilute the obtained nickel-containing concentrated solution with water. And a method of supplying nickel into a nickel-based plating solution. As the concentration method in the first invention, an evaporation method by heating and / or reduced pressure can be used.
【0013】第2の発明は、硫酸含有ニッケル系めっき
液をエバポレータを用いて濃縮し、該濃縮液および金属
ニッケルを金属ニッケル溶解槽に供給し金属ニッケルを
溶解し、得られたニッケル含有濃縮液を水を用いて希釈
することを特徴とするニッケル系めっき液中へのニッケ
ルの供給方法である。第3の発明は、硫酸含有ニッケル
系めっき液をエバポレータを用いて濃縮し、該濃縮液お
よび金属ニッケルを金属ニッケル溶解槽に供給し金属ニ
ッケルを溶解すると共に、エバポレータからの蒸気を復
水器を用いて凝縮し、前記溶解槽で得られたニッケル含
有濃縮液を前記復水器で得られた凝縮水を用いて希釈す
ることを特徴とするニッケル系めっき液中へのニッケル
の供給方法である。A second aspect of the invention is to concentrate a sulfuric acid-containing nickel-based plating solution using an evaporator, supply the concentrated solution and metallic nickel to a metallic nickel dissolving tank to dissolve metallic nickel, and obtain the resulting nickel-containing concentrated solution. Is a method for supplying nickel into a nickel-based plating solution, which comprises diluting the nickel with water. A third aspect of the present invention concentrates a sulfuric acid-containing nickel-based plating solution using an evaporator, supplies the concentrated solution and metallic nickel to a metallic nickel dissolving tank to dissolve metallic nickel, and at the same time, vapor from the evaporator is fed to a condenser. A method for supplying nickel into a nickel-based plating solution, which comprises condensing using a nickel-containing concentrate obtained in the dissolution tank and diluting the nickel-containing concentrate obtained using the condensed water obtained in the condenser. .
【0014】前記第1の発明、第2の発明および第3の
発明においては、金属ニッケル溶解槽内の前記濃縮液の
温度を75〜100 ℃とすることが好ましく、また金属ニッ
ケル溶解槽に供給する金属ニッケルの最大粒径は、0.3m
m 以下であることが好ましい。本発明において最大粒径
が0.3mm 以下とは、篩の目開きが0.3mm のJIS 標準篩で
篩い分けした時に、その90wt%以上が0.3mm 以下の篩下
となることを意味する。In the first invention, the second invention and the third invention, it is preferable that the temperature of the concentrated liquid in the metal nickel dissolving tank is 75 to 100 ° C. The maximum particle size of nickel metal is 0.3m
It is preferably m or less. In the present invention, the maximum particle size of 0.3 mm or less means that, when sieved with a JIS standard sieve having a sieve opening of 0.3 mm, 90 wt% or more thereof is under 0.3 mm or less.
【0015】また、前記第2の発明および第3の発明に
おいては、エバポレータからの蒸気とエバポレータ流入
前のめっき液とを熱交換せしめることが好ましい。さら
に、本発明は、硫酸含有ニッケル系めっき液として、Z
n−Ni合金電気めっき、Zn−Ni−Cr合金電気め
っきなどのZn−Ni系合金電気めっきのめっき液中へ
のニッケルの供給方法として好ましく用いられる。In the second and third aspects of the invention, it is preferable that the vapor from the evaporator be heat-exchanged with the plating solution before flowing into the evaporator. Furthermore, the present invention provides a sulfuric acid-containing nickel-based plating solution containing Z
It is preferably used as a method of supplying nickel to a plating solution for Zn-Ni alloy electroplating such as n-Ni alloy electroplating and Zn-Ni-Cr alloy electroplating.
【0016】[0016]
【作用】以下、本発明をさらに詳細に説明する。本発明
は、Zn−Ni合金電気めっき、Zn−Ni−Cr合金
電気めっきなどのZn−Ni系合金電気めっきなどの硫
酸含有ニッケル系めっき液中へのニッケルの供給方法と
して好ましく用いられ、より好ましくは、前記Zn−N
i系合金電気めっきめっき液中への、さらに好ましくは
Zn−Ni合金電気めっき液中へのニッケルの供給方法
として好ましく用いられる。Hereinafter, the present invention will be described in more detail. The present invention is preferably used as a method for supplying nickel to a sulfuric acid-containing nickel-based plating solution such as Zn-Ni alloy electroplating and Zn-Ni alloy electroplating such as Zn-Ni-Cr alloy electroplating, and more preferably Is the Zn-N
It is preferably used as a method of supplying nickel into the i-based alloy electroplating solution, more preferably into the Zn-Ni alloy electroplating solution.
【0017】現在、工業的に使用されているニッケル系
めっき液(めっき浴)は、pH 1.5〜2、液温55〜65℃
程度の硫酸液(硫酸浴)である。このような条件のめっ
き液に対しては、金属ニッケルや酸化ニッケル等のニッ
ケルイオンソースはほとんど溶解しないことが知られて
いる。ところで、金属ニッケルを例にとると、溶解反応
は下記式(1) のとおりである。The nickel-based plating solution (plating bath) currently used industrially has a pH of 1.5 to 2 and a solution temperature of 55 to 65 ° C.
Sulfuric acid solution (sulfuric acid bath). It is known that nickel ion sources such as metallic nickel and nickel oxide are hardly dissolved in a plating solution under such conditions. By the way, taking metallic nickel as an example, the dissolution reaction is as shown in the following formula (1).
【0018】 Ni + 2H+ → Ni2+ + H2↑ ・・・(1) また、この反応の反応速度(溶解速度)rは、下記式
(2) で示される。 r = k・CNi a ・CH+ b ・・・(2) ただし、k=A・exp(−E/RT)、CNi :金属ニッケ
ル濃度、CH+ :水素イオン濃度、T:めっき液温度、
a,b:定数 そこで、金属ニッケル濃度、水素イオン濃度、めっき液
温度のそれぞれを大きくすることによって、式(2) のr
の値、すなわち溶解速度を向上させることが期待できる
と考えた。Ni + 2H + → Ni 2+ + H 2 ↑ (1) Further, the reaction rate (dissolution rate) r of this reaction is
It is indicated by (2). r = k · C Ni a · C H + b (2) where k = A · exp (−E / RT), C Ni : metallic nickel concentration, C H + : hydrogen ion concentration, T: plating solution temperature ,
a, b: constants Therefore, by increasing the metal nickel concentration, the hydrogen ion concentration, and the plating solution temperature, respectively, r in the equation (2)
It was thought that it could be expected to improve the value of, that is, the dissolution rate.
【0019】本発明者らは、めっき液に硫酸を添加し、
水素イオン濃度を高めたものについて、金属ニッケルの
溶解性を調査した結果、金属ニッケルの溶解量は、金属
ニッケルと水素イオンとの接触確率に大きく依存すると
の知見を得た。そこで、めっき液を1m3の金属ニッケル
溶解槽に入れ、金属ニッケルを溶解させる溶解実験を行
った。金属ニッケルは、最大粒径が 0.3mm以下の粒状ま
たは粉状であり、溶解槽としては攪拌装置を有する溶解
槽を使用し、攪拌翼回転速度を400rpm とした。The present inventors have added sulfuric acid to the plating solution,
As a result of investigating the solubility of metallic nickel in the case of increasing the hydrogen ion concentration, it was found that the amount of metallic nickel dissolved largely depends on the contact probability between metallic nickel and hydrogen ions. Therefore, the plating solution was placed in a 1 m 3 metal nickel dissolution tank to carry out a dissolution experiment in which the metal nickel was dissolved. The metallic nickel is granular or powdery with a maximum particle size of 0.3 mm or less, and a melting tank having a stirring device was used as the melting tank, and the stirring blade rotation speed was 400 rpm.
【0020】まず、第1の実験として金属ニッケルの供
給量を10kg/m3−溶解槽・h (以下単位をkg/m3・h と
記す)、めっき液硫酸濃度は1%、pHは1.5 と一定と
し、めっき液温度を50〜100 ℃の範囲で変化させた。実
験結果を図5に示す。図5から、めっき液温度を上昇さ
せると金属ニッケルの溶解量も増加し、特に75℃以上の
温度領域において溶解量の増加が顕著であることがわか
る。しかし、めっき液温度を 100℃としても、実機設備
として必要な溶解能力である4〜6kg/m3−溶解槽・h
には到達していない。First, as a first experiment, the supply amount of metallic nickel was 10 kg / m 3 -melting tank · h (the unit is hereinafter referred to as kg / m 3 · h), the sulfuric acid concentration of the plating solution was 1%, and the pH was 1.5. And the plating solution temperature was changed in the range of 50 to 100 ° C. The experimental results are shown in FIG. From FIG. 5, it can be seen that as the temperature of the plating solution is increased, the dissolution amount of metallic nickel also increases, and particularly in the temperature range of 75 ° C. or higher, the dissolution amount increases remarkably. However, even if the plating solution temperature is 100 ° C, the melting capacity required for actual equipment is 4 to 6 kg / m 3 − melting tank · h
Has not reached.
【0021】次に、めっき液温度を60℃、75℃、90℃
と、それぞれ一定値とし、硫酸を添加することにより、
金属ニッケル溶解槽内のめっき液の硫酸濃度を1〜15%
の範囲で変化させて溶解実験を行った。実験結果を図6
に示す。図6から、めっき液温度の如何によらず、めっ
き液中の硫酸濃度が大きくなるに従って金属ニッケルの
溶解量も増加しており、めっき液温度90℃の場合に最も
大きい溶解量が得られた。Next, the plating solution temperature is set to 60 ° C, 75 ° C, 90 ° C.
And, with each constant value, by adding sulfuric acid,
Sulfuric acid concentration of the plating solution in the metal nickel dissolution tank is 1 to 15%
The dissolution experiment was performed by changing the range. Figure 6 shows the experimental results.
Shown in From FIG. 6, the dissolution amount of metallic nickel increased as the sulfuric acid concentration in the plating solution increased regardless of the plating solution temperature, and the maximum dissolution amount was obtained when the plating solution temperature was 90 ° C. .
【0022】以上の実験結果から、下記の知見が得られ
た。 1)めっき液を昇温すると溶解量が増加する。特に、75
〜100 ℃の範囲において増加が顕著である。 2)硫酸を添加してめっき液中の硫酸濃度を大きくする
と溶解量は増加する。特に、めっき液中の硫酸濃度10%
程度において、その効果が顕著である。The following findings were obtained from the above experimental results. 1) When the temperature of the plating solution is raised, the amount of dissolution increases. In particular, 75
The increase is remarkable in the range of up to 100 ° C. 2) When sulfuric acid is added to increase the concentration of sulfuric acid in the plating solution, the amount of dissolution increases. Especially, the concentration of sulfuric acid in the plating solution is 10%
The effect is remarkable in the degree.
【0023】しかし、めっき液中への過剰な硫酸の混入
は、めっき浴におけるめっき時の電流効率の低下を招く
ので操業上好ましくない。このため、ニッケル溶解後に
電気透析法等により過剰な硫酸を除去する必要があり、
設備費ならびにランニングコストが上昇するという問題
がある。そこで、本発明者らは、図1に示す装置を用い
て、めっき液を濃縮し、得られた濃縮めっき液を用いて
金属ニッケルの溶解実験を行った。However, excessive mixing of sulfuric acid into the plating solution causes a decrease in current efficiency during plating in the plating bath, which is not preferable in operation. Therefore, it is necessary to remove excess sulfuric acid by electrodialysis or the like after dissolution of nickel,
There is a problem that equipment costs and running costs increase. Therefore, the present inventors concentrated the plating solution using the apparatus shown in FIG. 1 and conducted a dissolution test of metallic nickel using the concentrated plating solution obtained.
【0024】図1において、1は金属ニッケル溶解槽、
2は間接加熱方式のエバポレータ(蒸発濃縮器)、3は
復水器、4は攪拌機、5a、5bは間接加熱方式のヒー
タ、6はホッパ、フィーダなどから構成される金属ニッ
ケル供給装置、7a、7bはポンプ、8はめっき液循環
タンク、9は電気めっきめっき浴(以下めっき浴と記
す)、10はエバポレータ2と金属ニッケル溶解槽1の間
の送液配管、12は鋼帯、13はバックアップロール、14は
コンダクタロール、15は鋼帯の進行方向を示す。In FIG. 1, 1 is a metal nickel melting tank,
2 is an indirect heating type evaporator (evaporative concentrator), 3 is a condenser, 4 is a stirrer, 5a and 5b are indirect heating type heaters, 6 is a metallic nickel supply device including a hopper, a feeder, and the like, 7a, 7b is a pump, 8 is a plating solution circulation tank, 9 is an electroplating plating bath (hereinafter referred to as a plating bath), 10 is a liquid supply pipe between the evaporator 2 and the metal nickel dissolving tank 1, 12 is a steel strip, and 13 is a backup. Rolls, 14 are conductor rolls, and 15 is the traveling direction of the steel strip.
【0025】なお、金属ニッケル溶解槽1、送液配管10
などの配管は、グラスウール保温材などの保温材で保温
されている。めっき浴9からポンプ7bにより間歇的ま
たは連続的に抜き出されためっき液は、めっき液循環タ
ンク8に送液される。めっき液循環タンク8内のめっき
液は、ポンプ7aによりエバポレータ2に送液され、エ
バポレータ2において濃縮され、硫酸濃度が大となった
濃縮めっき液は金属ニッケル溶解槽1に送液される。The metal nickel dissolving tank 1 and the liquid supply pipe 10
The pipes are kept warm with heat insulating materials such as glass wool heat insulating materials. The plating solution which is intermittently or continuously withdrawn from the plating bath 9 by the pump 7 b is sent to the plating solution circulation tank 8. The plating solution in the plating solution circulation tank 8 is sent to the evaporator 2 by the pump 7a, concentrated in the evaporator 2, and the concentrated plating solution having a large sulfuric acid concentration is sent to the metal nickel dissolving tank 1.
【0026】金属ニッケル溶解槽1においては、粉状ま
たは粒状の金属ニッケルが供給され、加温かつ攪拌状態
の濃縮めっき液中で金属ニッケルが溶解する。一方、エ
バポレータ2において蒸発した蒸気は、復水器3におい
て凝縮し、その凝縮水は、金属ニッケル溶解槽1出側の
ニッケル含有濃縮めっき液に還流され、適正硫酸濃度と
なっためっき液は、めっき液循環タンク8に送液され
る。In the metallic nickel dissolving tank 1, powdery or granular metallic nickel is supplied, and the metallic nickel is dissolved in a concentrated plating solution which is heated and stirred. On the other hand, the vapor evaporated in the evaporator 2 is condensed in the condenser 3, and the condensed water is recirculated to the nickel-containing concentrated plating solution on the outlet side of the metal nickel dissolving tank 1 so that the plating solution having an appropriate sulfuric acid concentration is The solution is sent to the plating solution circulation tank 8.
【0027】めっき液循環タンク8内のめっき液は間歇
的または連続的にめっき浴9に送液され、ニッケル系電
気めっきが行われる。図2に、後記の実施例で得られ
た、エバポレータ2におけるめっき液の濃縮率と金属ニ
ッケル溶解量との関係を示す。なお、濃縮率の定義は
〔(エバポレータ2で蒸発する水の重量/エバポレータ
2に送液されるめっき液の重量)×100 %〕である。The plating solution in the plating solution circulation tank 8 is intermittently or continuously sent to the plating bath 9 to perform nickel-based electroplating. FIG. 2 shows the relationship between the concentration rate of the plating solution in the evaporator 2 and the dissolved amount of metallic nickel, which was obtained in the examples described below. The concentration rate is defined as [(weight of water evaporated in evaporator 2 / weight of plating solution sent to evaporator 2) x 100%].
【0028】この結果から、エバポレータ2におけるめ
っき液の濃縮率を50%とすることにより、ニッケル溶解
量を6 kg/m3・h から10 kg/m3・h と1.7 倍向上可能で
あることが分かった。本第1の発明においては、濃縮に
より金属ニッケル溶解槽内の硫酸濃度を高め、金属ニッ
ケル溶解後のニッケル含有濃縮めっき液を水を用いて希
釈するため、金属ニッケルの溶解速度を高めることが可
能であり、金属ニッケル溶解槽およびポンプなど付帯設
備の大幅なコンパクト化が達成可能となると共に、硫酸
添加の場合の電気透析等の操作が不要となり、設備的に
簡易となる効果も有する。From these results, it is possible to improve the amount of nickel dissolved from 6 kg / m 3 · h to 10 kg / m 3 · h by 1.7 times by setting the concentration rate of the plating solution in the evaporator 2 to 50%. I understood. In the first aspect of the present invention, the concentration of sulfuric acid in the metal nickel dissolving tank is increased by concentration and the nickel-containing concentrated plating solution after the metal nickel is dissolved is diluted with water, so that the dissolution rate of metal nickel can be increased. Therefore, it is possible to achieve a significant reduction in the size of auxiliary equipment such as a metal nickel dissolving tank and a pump, and to eliminate the need for operations such as electrodialysis in the case of adding sulfuric acid.
【0029】さらに、本第2の発明においては、濃縮操
作をめっき液の加熱蒸発により行うため、金属ニッケル
溶解槽に供給される濃縮めっき液の温度が高く、少なく
ともエバポレータ2と金属ニッケル溶解槽1の間の配管
10を繊維質保温材、粉末質保温材、発泡質保温材などの
保温材(:断熱材)を用いて保温することにより、金属
ニッケル溶解槽1内の濃縮めっき液の温度を容易に75〜
100 ℃の範囲に維持することが可能となる。Further, in the second aspect of the invention, since the concentration operation is performed by heating and evaporating the plating solution, the temperature of the concentrated plating solution supplied to the metal nickel dissolving tank is high, and at least the evaporator 2 and the metal nickel dissolving tank 1 are provided. Plumbing between
The temperature of the concentrated plating solution in the metal nickel dissolving tank 1 can be easily adjusted to 75 ~ by keeping the temperature of 10 using heat insulating material (: heat insulating material) such as fibrous heat insulating material, powdery heat insulating material, foamy heat insulating material.
It is possible to maintain the temperature within the range of 100 ° C.
【0030】この結果、後記の実施例、および図5、図
6に示されるように、さらに金属ニッケル溶解速度を高
め、かつ、Zn−Ni系合金電気めっきの好適めっき浴
温度55〜65℃を確保することが容易となり、エバポレー
タ2での投入熱量を有効利用することが可能となる。次
に、図4に本発明に係わる他のニッケル系めっき液中へ
のニッケル供給装置の概略図を示す。As a result, as shown in Examples described later and FIGS. 5 and 6, the dissolution rate of metallic nickel was further increased, and the preferable plating bath temperature of Zn--Ni alloy electroplating was 55 to 65 ° C. It becomes easy to secure the amount of heat input, and the amount of heat input to the evaporator 2 can be effectively used. Next, FIG. 4 shows a schematic diagram of another nickel supplying apparatus for the other nickel-based plating solution according to the present invention.
【0031】図4において、符号1〜10、13、14は図1
と同一部材を示し、11は間接熱交換器、15は鋼帯12の進
行方向を示す。図4の装置は、図1の装置と同様である
が、めっき液循環タンク8から抜き出されためっき液は
エバポレータ2において蒸発した蒸気と間接熱交換器11
において熱交換し、昇温された後エバポレータ2に送液
される。In FIG. 4, reference numerals 1 to 10, 13, and 14 denote those in FIG.
11 shows the same member, 11 indicates an indirect heat exchanger, and 15 indicates the traveling direction of the steel strip 12. The apparatus of FIG. 4 is similar to the apparatus of FIG. 1, but the plating solution extracted from the plating solution circulation tank 8 is vaporized in the evaporator 2 and the indirect heat exchanger 11
In the above, the heat is exchanged, the temperature is raised, and then the liquid is sent to the evaporator 2.
【0032】したがって、図4の装置を用いることによ
り、金属ニッケル溶解速度を高め、かつエバポレータ2
での投入熱量を最大限に有効利用することが可能とな
る。なお、本発明は、濃縮めっき液および金属ニッケル
の金属ニッケル溶解槽への供給を連続的に行う連続処理
に好適に用いられるが、濃縮めっき液を予め金属ニッケ
ル溶解槽に仕込み、その後金属ニッケルを供給するバッ
チ処理にも適用可能であり、該濃縮めっき液および金属
ニッケルの金属ニッケル溶解槽への供給方式に制限され
るものではない。Therefore, by using the apparatus of FIG. 4, the dissolution rate of metallic nickel is increased and the evaporator 2 is used.
It is possible to make the most effective use of the heat input at. The present invention is preferably used for continuous treatment in which concentrated plating solution and metallic nickel are continuously supplied to the metallic nickel dissolving tank, but the concentrated plating solution is charged into the metallic nickel dissolving tank in advance, and then metallic nickel is added. It can also be applied to a batch process for supplying, and is not limited to the method of supplying the concentrated plating solution and metallic nickel to the metallic nickel dissolving tank.
【0033】[0033]
【実施例】以下に本発明を実施例に基づいて具体的に説
明する。なお、本実施例における金属ニッケルの溶解量
は、金属ニッケル溶解槽内のめっき液をサンプリング
し、ろ過後のめっき液のニッケルイオン濃度を原子吸光
法により測定し求めた。EXAMPLES The present invention will be specifically described below based on examples. The amount of metallic nickel dissolved in this example was determined by sampling the plating solution in the metallic nickel dissolving tank and measuring the nickel ion concentration of the filtered plating solution by atomic absorption spectrometry.
【0034】(実施例1)図1に示す装置を用いて、め
っき液への金属ニッケル溶解実験を行った。すなわち、
Zn−Ni合金電気めっきのめっき液に、ニッケルイオ
ンを補給するため、平均粒径5μm のNi粉を金属ニッ
ケル溶解槽1内の前記めっき液に供給した。Example 1 An experiment for dissolving metallic nickel in a plating solution was conducted using the apparatus shown in FIG. That is,
In order to supply nickel ions to the plating solution for Zn-Ni alloy electroplating, Ni powder having an average particle size of 5 μm was supplied to the plating solution in the metal nickel dissolving tank 1.
【0035】金属ニッケル溶解槽1内のめっき液温度は
90℃、金属ニッケルの金属ニッケル溶解槽1内への供給
量を 30kg/m3・h とし、攪拌機4の攪拌翼の回転速度は
400rpmとした。なお、エバポレータ2の入口めっき液の
pHは、1.5 であった。図2に、エバポレータ2への投
入熱量の変更によりめっき液の濃縮率を変更した時の実
験結果を示す。なお、濃縮率は、エバポレータ等の能力
から、0〜50%の範囲で変更した。The temperature of the plating solution in the metal nickel dissolving tank 1 is
The temperature of the stirring blade of the stirrer 4 is 90 ° C, the supply rate of metallic nickel into the metallic nickel melting tank 1 is 30 kg / m 3 · h
It was set to 400 rpm. The pH of the plating solution at the inlet of the evaporator 2 was 1.5. FIG. 2 shows the experimental results when the concentration rate of the plating solution was changed by changing the amount of heat input to the evaporator 2. The concentration rate was changed within the range of 0 to 50% depending on the capacity of the evaporator and the like.
【0036】(実施例2)実施例1と同様にしてめっき
液への金属ニッケル溶解実験を行った。本実施例におい
ては、エバポレータ2の入口めっき液のpHは、1.5 、
金属ニッケル溶解槽1内のめっき液温度は90℃、金属ニ
ッケルの金属ニッケル溶解槽1内への供給量を10〜 70k
g/m3・h とし、濃縮率を50%とした。この場合の金属ニ
ッケル溶解槽1へ供給される濃縮めっき液のpHは、1.
09であった。Example 2 An experiment for dissolving metallic nickel in a plating solution was carried out in the same manner as in Example 1. In this embodiment, the pH of the plating solution at the inlet of the evaporator 2 is 1.5,
The temperature of the plating solution in the metal nickel dissolving tank 1 is 90 ° C, and the supply amount of metal nickel into the metal nickel dissolving tank 1 is 10 to 70k.
g / m 3 · h and the concentration rate was 50%. In this case, the pH of the concentrated plating solution supplied to the metal nickel dissolving tank 1 is 1.
It was 09.
【0037】また、比較として濃縮処理を行わない場合
についても検討した。図3に実験結果を示す。本実験結
果より、例えば金属ニッケル供給量 30kg/m3・h の場
合、濃縮を行わない場合の溶解量は、6.0kg/m3・h に対
し、濃縮した場合の溶解量は、10.0 kg/m3・h となり、
1.67倍の溶解量の増加が達成された。As a comparison, the case where no concentration treatment was performed was also examined. Experimental results are shown in FIG. From the results of this experiment, for example, when the supply amount of metallic nickel is 30 kg / m 3 h, the dissolution amount without concentration is 6.0 kg / m 3 h, whereas the dissolution amount with concentration is 10.0 kg / m 3 h. m 3 · h,
A 1.67-fold increase in dissolution was achieved.
【0038】以上の結果から、必要溶解量が90kg/hで、
金属ニッケル供給量 30kg/m3・h の場合の溶解槽の必要
容積は、濃縮を行わない場合90/6.0=15m3、濃縮率が50
%の濃縮を行った場合90/10.0 =9m3となり、本発明の
方法を用いることにより、金属ニッケル溶解槽の大幅な
コンパクト化が達成可能であることが分かる。From the above results, the required dissolution amount is 90 kg / h,
When the supply amount of metallic nickel is 30 kg / m 3 · h, the required volume of the dissolution tank is 90 / 6.0 = 15 m 3 without concentration and the concentration rate is 50
When concentrated to 90%, it becomes 90 / 10.0 = 9 m 3 , and it can be seen that the use of the method of the present invention makes it possible to make the metal nickel dissolution tank significantly compact.
【0039】[0039]
【発明の効果】本発明によれば、金属ニッケルを直接か
つ迅速にめっき液中に溶解せしめることができるので、
高価な炭酸ニッケル等の薬品を使用する場合に比べて、
めっき処理におけるコストが大幅に削減されるばかりで
なく、炭酸ニッケル中に含有される各種マンガン、ナト
リウム、カルシウム、塩素、珪素等の不純物による種々
の設備トラブルが解消され、また、従来これら不純物を
除去するために設置していた専用の除去設備が不要とな
り、設備の大幅な簡易化が達成可能となった。According to the present invention, metallic nickel can be directly and quickly dissolved in the plating solution.
Compared to the case of using expensive chemicals such as nickel carbonate,
Not only the cost of plating process is greatly reduced, but various equipment troubles caused by various impurities such as manganese, sodium, calcium, chlorine, and silicon contained in nickel carbonate are solved, and the conventional impurities are removed. This eliminates the need for the dedicated removal equipment that was installed to achieve this, and has made it possible to achieve a significant simplification of the equipment.
【0040】さらに、前記のとおり金属ニッケルの溶解
速度が、従来法に比べて大幅に大きくなるため、金属ニ
ッケル溶解槽の大幅なコンパクト化が達成可能となっ
た。また、本発明により、エバポレータへの投入熱量を
最大限に有効利用することが可能となり、金属ニッケル
溶解槽中のめっき液量の低減に伴い、攪拌装置の所要動
力等の必要エネルギーが大幅に削減可能となり、省エネ
ルギーに寄与できる効果も有し、本発明の工業的意義は
極めて大である。Further, as described above, the dissolution rate of metallic nickel is significantly higher than that of the conventional method, so that the metallic nickel dissolving tank can be greatly downsized. Further, according to the present invention, it becomes possible to effectively use the heat input to the evaporator to the maximum extent, and the required energy such as the required power of the agitator is significantly reduced with the reduction of the plating solution amount in the metal nickel dissolving tank. It also becomes possible to contribute to energy saving, and the industrial significance of the present invention is extremely great.
【図1】本発明に係わるニッケル系めっき液中へのニッ
ケル供給装置の概略説明図である。FIG. 1 is a schematic explanatory diagram of a nickel supply device for a nickel-based plating solution according to the present invention.
【図2】めっき液の濃縮率とニッケル溶解量との関係を
示すグラフである。FIG. 2 is a graph showing the relationship between the concentration of the plating solution and the amount of nickel dissolved.
【図3】金属ニッケル供給量とニッケル溶解量との関係
を示すグラフである。FIG. 3 is a graph showing the relationship between the amount of metal nickel supplied and the amount of nickel dissolved.
【図4】本発明に係わるニッケル系めっき液中へのニッ
ケル供給装置の概略説明図である。FIG. 4 is a schematic explanatory view of a nickel supplying device for a nickel plating solution according to the present invention.
【図5】金属ニッケル溶解槽のめっき液の温度とニッケ
ル溶解量との関係を示すグラフである。FIG. 5 is a graph showing the relationship between the temperature of the plating solution in the metal nickel dissolving tank and the amount of nickel dissolved.
【図6】金属ニッケル溶解槽のめっき液中の硫酸濃度と
ニッケル溶解量との関係を示すグラフである。FIG. 6 is a graph showing the relationship between the concentration of sulfuric acid and the amount of nickel dissolved in the plating solution in the metal nickel dissolution tank.
1 金属ニッケル溶解槽 2 エバポレータ 3 復水器 4 攪拌機 5a、5b ヒータ 6 金属ニッケル供給装置 7a、7b ポンプ 8 めっき液循環タンク 9 電気めっきめっき浴 11 間接熱交換器 12 鋼帯 13 バックアップロール 14 コンダクタロール 1 Metal Nickel Dissolution Tank 2 Evaporator 3 Condenser 4 Stirrer 5a, 5b Heater 6 Metal Nickel Supply Device 7a, 7b Pump 8 Plating Solution Circulation Tank 9 Electroplating Plating Bath 11 Indirect Heat Exchanger 12 Steel Strip 13 Backup Roll 14 Conductor Roll
Claims (5)
該濃縮液に金属ニッケルを供給、溶解し、得られたニッ
ケル含有濃縮液を水を用いて希釈することを特徴とする
ニッケル系めっき液中へのニッケルの供給方法。1. A sulfuric acid-containing nickel-based plating solution is concentrated,
A method for supplying nickel to a nickel-based plating solution, which comprises supplying metallic nickel to the concentrate, dissolving the nickel, and diluting the obtained nickel-containing concentrate with water.
ータを用いて濃縮し、該濃縮液および金属ニッケルを金
属ニッケル溶解槽に供給し金属ニッケルを溶解し、得ら
れたニッケル含有濃縮液を水を用いて希釈することを特
徴とするニッケル系めっき液中へのニッケルの供給方
法。2. A sulfuric acid-containing nickel-based plating solution is concentrated using an evaporator, the concentrated solution and metallic nickel are supplied to a metallic nickel dissolving tank to dissolve metallic nickel, and the resulting concentrated nickel-containing solution is used with water. A method for supplying nickel into a nickel-based plating solution, which comprises diluting with nickel.
ータを用いて濃縮し、該濃縮液および金属ニッケルを金
属ニッケル溶解槽に供給し金属ニッケルを溶解すると共
に、エバポレータからの蒸気を復水器を用いて凝縮し、
前記溶解槽で得られたニッケル含有濃縮液を前記復水器
で得られた凝縮水を用いて希釈することを特徴とするニ
ッケル系めっき液中へのニッケルの供給方法。3. A sulfuric acid-containing nickel-based plating solution is concentrated using an evaporator, the concentrated solution and metallic nickel are supplied to a metallic nickel dissolving tank to dissolve metallic nickel, and vapor from the evaporator is condensed using a condenser. And condensed,
A method for supplying nickel to a nickel-based plating solution, which comprises diluting the nickel-containing concentrated solution obtained in the dissolution tank with the condensed water obtained in the condenser.
度を75〜100 ℃とする請求項1〜3いずれかに記載のニ
ッケル系めっき液中へのニッケルの供給方法。4. The method for supplying nickel into a nickel-based plating solution according to claim 1, wherein the temperature of the concentrated solution in the metal nickel dissolving tank is 75 to 100 ° C.
流入前のめっき液とを熱交換せしめる請求項2〜4いず
れかに記載のニッケル系めっき液中へのニッケルの供給
方法。5. The method for supplying nickel to a nickel-based plating solution according to claim 2, wherein the vapor from the evaporator and the plating solution before flowing into the evaporator are heat-exchanged.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP22089095A JPH0967698A (en) | 1995-08-29 | 1995-08-29 | Method for supplying nickel into nickel-base plating solution |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP22089095A JPH0967698A (en) | 1995-08-29 | 1995-08-29 | Method for supplying nickel into nickel-base plating solution |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH0967698A true JPH0967698A (en) | 1997-03-11 |
Family
ID=16758144
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP22089095A Pending JPH0967698A (en) | 1995-08-29 | 1995-08-29 | Method for supplying nickel into nickel-base plating solution |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0967698A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2007021023A1 (en) * | 2005-08-18 | 2007-02-22 | Ebara Corporation | Electroless plating apparatus and plating liquid |
-
1995
- 1995-08-29 JP JP22089095A patent/JPH0967698A/en active Pending
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2007021023A1 (en) * | 2005-08-18 | 2007-02-22 | Ebara Corporation | Electroless plating apparatus and plating liquid |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
AU724854B2 (en) | A process and device for regenerating tinning solutions | |
WO2011071151A1 (en) | Method for producing indium metal, molten salt electrolytic cell, and method for purifying low melting point metal | |
CN110373548A (en) | A kind of useless circuit board wet process detin technique | |
Jiao et al. | The inhibition effect of SeO2 on hydrogen evolution reaction in MnSO4–(NH4) 2SO4 solution | |
CN106757179A (en) | A kind of cupric electrolysis tail washings purifies the process of decopper(ing) removal of impurities | |
CN102002729A (en) | Copper-containing waste etching solution treatment method and etching solution regeneration method | |
JPH0967698A (en) | Method for supplying nickel into nickel-base plating solution | |
US3431187A (en) | Gold recovery | |
US4164456A (en) | Electrolytic process | |
CN110129568A (en) | A kind of lead-acid accumulator resource recycling method | |
CN115652374A (en) | Pulse rotational flow reinforced metal electrolysis device | |
JP3176794B2 (en) | Method and apparatus for supplying nickel raw material into nickel-based plating solution | |
JP2848777B2 (en) | Method of supplying nickel raw material into nickel plating solution | |
WO2021233300A1 (en) | Apparatus and method for preparing high-purity iron using consumable anode electrolytic deposition | |
JPH11200099A (en) | Plating method and plating apparatus using insoluble anode | |
CN106637160A (en) | Regeneration method of chemical plating NiWP solution | |
CN109137034B (en) | Configuration and method for recovering anodic oxidation liquid by reforming existing oxidation tank | |
US5810946A (en) | Method for the production of galvanizing fluxes and flux feedstocks | |
Prasad | Zinc powder preparation from zinc dross | |
JP3017067B2 (en) | Method and equipment for supplying nickel ions to plating solution | |
JP2000511594A (en) | Method for pickling alloy products in the absence of nitric acid, method for recovering waste liquid from pickling, and apparatus therefor | |
WO2024078627A1 (en) | Electrolytic copper dissolution-integrated insoluble anode copper plating process optimization method and apparatus | |
JP2905426B2 (en) | Method and apparatus for dissolving metallic nickel in nickel-based zinc plating solution | |
Qin et al. | Deep Electrochemical Purification of High Arsenic-Bearing Copper Refined Electrolyte | |
JPH0892794A (en) | Supplying of nickel material into nickel-base plating solution |