JPH0967670A - Ion beam sputtering device - Google Patents

Ion beam sputtering device

Info

Publication number
JPH0967670A
JPH0967670A JP24082195A JP24082195A JPH0967670A JP H0967670 A JPH0967670 A JP H0967670A JP 24082195 A JP24082195 A JP 24082195A JP 24082195 A JP24082195 A JP 24082195A JP H0967670 A JPH0967670 A JP H0967670A
Authority
JP
Japan
Prior art keywords
time
discharge
ion beam
film formation
ion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP24082195A
Other languages
Japanese (ja)
Inventor
Masahiko Okumura
正彦 奥村
Shuichi Nogawa
修一 野川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissin Electric Co Ltd
Original Assignee
Nissin Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissin Electric Co Ltd filed Critical Nissin Electric Co Ltd
Priority to JP24082195A priority Critical patent/JPH0967670A/en
Publication of JPH0967670A publication Critical patent/JPH0967670A/en
Pending legal-status Critical Current

Links

Landscapes

  • Physical Vapour Deposition (AREA)

Abstract

PROBLEM TO BE SOLVED: To make it possible to form films of a prescribed film thickness regardless of the presence or absence of the discharge of the drawing-out electrodes of an ion source by determining the time for prolonging film formation from the setting of the off time to the electrodes at every detection of the discharge and the number of detection times of the discharge and prolonging and correcting the running time of the ion source. SOLUTION: The generation of the discharge between the electrodes as the drawing-out electrodes 19 of an ion beam 5 consisting of the acceleration electrode 16, deceleration electrode 17 and grounding electrode 18 is detected by a discharge detection 23. The contact signal of the discharge detection is sent to an arithmetic processing section 24 provided at a control section 10 at every detection of abnormal current. The arithmetic processing section 24 determines the time for prolonging the film formation of the substrate from the setting of the off time of the temporary power feeding to the electrodes at every detection of the discharge and the number of the generation times of the release determined from the number of generation times of the contact signals of the discharge detection in accordance with the set film forming program and prolongs and corrects the running time of the ion source by the required time from the standard running time during the film formation via a film forming time setting section 25. As result, the film thickness of the film formation is made uniform and the yield of products is improved.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、イオンビームをタ
ーゲットに照射して基板に成膜するイオンビームスパッ
タリング装置に関する。
TECHNICAL FIELD The present invention relates to an ion beam sputtering apparatus for irradiating a target with an ion beam to form a film on a substrate.

【0002】[0002]

【従来の技術】従来、この種イオンビームスパッタリン
グ装置は一般に図5に示すように形成され、真空に排気
されたチャンバ1内にイオン源2,ターゲット3及び基
板4が設けられる。そして、イオン源2から引出された
イオンビーム5がターゲット3に照射され、このターゲ
ット3のスパッタ粒子6が基板4に推積して基板4の成
膜が行われる。
2. Description of the Related Art Conventionally, this type of ion beam sputtering apparatus is generally formed as shown in FIG. 5, and an ion source 2, a target 3 and a substrate 4 are provided in a chamber 1 which is evacuated to a vacuum. Then, the target 3 is irradiated with the ion beam 5 extracted from the ion source 2, and the sputtered particles 6 of the target 3 are deposited on the substrate 4 to form the film on the substrate 4.

【0003】このとき、基板4の膜厚はイオンビームエ
ネルギ,イオンビーム量(イオン電流量)及びイオンビ
ーム照射時間により決定される。
At this time, the film thickness of the substrate 4 is determined by the ion beam energy, the ion beam amount (ion current amount) and the ion beam irradiation time.

【0004】ところで、イオン源2は熱電子放出又はマ
イクロ波給電に基づくアーク放電によりプラズマを生成
し、正,負電位の加速電極,減速電極及びアース電位の
接地電極からなる引出し電極により前記プラズマからイ
オンビームを引出す。
By the way, the ion source 2 generates plasma by arc discharge based on thermionic emission or microwave feeding, and the plasma is generated from the plasma by an extraction electrode composed of an acceleration electrode and a deceleration electrode of positive and negative potentials and a ground electrode of earth potential. Extract the ion beam.

【0005】また、とくに生産機として用いられ、複数
の基板4の成膜を順次に行うときは、シーケンス制御等
により前記プラズマの生成に必要なアーク電源のオン,
オフをくり返し、イオンビーム5の照射を制御して各基
板4の膜厚が一定(均一)になるようにしている。
Further, particularly when it is used as a production machine and when the film formation of a plurality of substrates 4 is sequentially performed, the arc power supply necessary for generating the plasma is turned on and off by sequence control or the like.
The off state is repeated to control the irradiation of the ion beam 5 so that the film thickness of each substrate 4 becomes constant (uniform).

【0006】さらに、長時間の連続運転によりスパッタ
粒子等で引出し電極が汚染され、引出し電極の電極間で
放電が生じると、この放電の検出に基づき、例えば1秒
より短い所定のオフ時間、一時的に加速電極、減速電極
への給電をオフしてイオンビーム5の引出しを止め、イ
オン源2の電源を保護するようにしている。
Furthermore, when the extraction electrode is contaminated by sputtered particles or the like due to continuous operation for a long time, and discharge occurs between the electrodes of the extraction electrode, based on the detection of this discharge, for example, a predetermined off time shorter than 1 second The power supply to the acceleration electrode and the deceleration electrode is turned off to stop the extraction of the ion beam 5 to protect the power source of the ion source 2.

【0007】[0007]

【発明が解決しようとする課題】前記従来のイオンビー
ムスパッタリング装置の場合、とくに生産機として用い
られ、イオン源2が長時間連続運転されて引出し電極の
電極間で放電が発生すると、一時的にではあるが、イオ
ンビーム5の引出しが止まり、基板4へのイオンビーム
5の照射が中断する。
In the case of the above-mentioned conventional ion beam sputtering apparatus, which is used especially as a production machine, when the ion source 2 is continuously operated for a long time and a discharge is generated between the extraction electrodes, it is temporarily generated. However, the extraction of the ion beam 5 is stopped and the irradiation of the ion beam 5 onto the substrate 4 is interrupted.

【0008】一方、基板4のイオンビーム5の照射は、
予め設定された時間が経過すると、シーケンス制御等に
より自動的に終了する。そのため、前記放電の発生回数
に依存して基板4に対するイオンビーム5の照射時間が
減少し、基板4の膜厚が薄くなり、基板4に所定の膜厚
の成膜が行えない問題点があり、この結果、膜厚の均一
化が図れず、製品の歩留りがイオン源2の引出し電極の
放電発生回数に左右され、その向上が図れなくなる。
On the other hand, the irradiation of the ion beam 5 on the substrate 4 is
When a preset time elapses, the sequence control or the like automatically ends. Therefore, there is a problem that the irradiation time of the ion beam 5 on the substrate 4 is reduced depending on the number of times the discharge is generated, the film thickness of the substrate 4 becomes thin, and a film having a predetermined film thickness cannot be formed on the substrate 4. As a result, the film thickness cannot be made uniform, and the product yield depends on the number of discharge occurrences of the extraction electrode of the ion source 2 and cannot be improved.

【0009】本発明は、イオン源の引出し電極の放電の
有無によらず、所定膜厚の成膜が行えるようにすること
を目的とする。
An object of the present invention is to make it possible to form a film having a predetermined film thickness regardless of whether the extraction electrode of the ion source is discharged.

【0010】[0010]

【課題を解決するための手段】前記の目的を達成するた
めに、この出願の請求項1に係るイオンビームスパッタ
リング装置においては、イオンビームの引出し電極の放
電の放出毎のイオン源の電極への給電のオフ時間の設定
と前記放電の検出回数とにより基板の成膜の延長時間を
決定し、イオン源の運転時間を設定された成膜時間より
前記延長時間だけ延長補正する。
In order to achieve the above-mentioned object, in the ion beam sputtering apparatus according to claim 1 of the present application, the ion source electrode for the discharge of the discharge electrode of the ion beam is supplied to the electrode of the ion source. The extension time of the film formation on the substrate is determined by setting the power-off time and the number of times the discharge is detected, and the operating time of the ion source is extended and corrected by the extension time from the set film formation time.

【0011】したがって、長時間の連続運転によりイオ
ンビームの引出し電極の放電が成膜中に1回又は複数回
発生し、一時的なイオンビームの引出しの停止が発生し
ても、その停止時間だけイオン源の運転時間が長くなっ
て基板の成膜が延長して行われ、このとき、基板の膜厚
は前記の放電なく規定の成膜時間イオンビームが照射さ
れた場合と同一になる。
Therefore, even if discharge of the extraction electrode of the ion beam occurs once or a plurality of times during the film formation due to continuous operation for a long time and a temporary stop of the extraction of the ion beam occurs, only the stop time is generated. The operation time of the ion source is lengthened and the film formation of the substrate is extended. At this time, the film thickness of the substrate becomes the same as when the ion beam is irradiated for the prescribed film formation time without the above-mentioned discharge.

【0012】そのため、イオン源の引出し電極の放電の
有無によらず、基板に所定の膜厚の成膜が行える。ま
た、この出願の請求項2に係るイオンビームスパッタリ
ング装置においては、成膜中にイオンブームの量に相当
するイオン電流量を計測し、計測量の時間積分値が設定
された照射総量に達するまでイオン源の運転を継続す
る。
Therefore, a film having a predetermined film thickness can be formed on the substrate regardless of whether the extraction electrode of the ion source is discharged. Further, in the ion beam sputtering apparatus according to claim 2 of this application, the amount of ion current corresponding to the amount of the ion boom is measured during film formation, and the time integrated value of the measured amount reaches the set total irradiation amount. Continue operating the ion source.

【0013】したがって、イオンビームの引出し電極の
放電により成膜中に一時的にイオンビームの引出しが停
止すると、イオンビームの照射総量が設定量に達するま
でイオン源の運転が継続されることにより、実質的にイ
オンビームの引出しの停止時間だけ基板の成膜時間が延
長される。
Therefore, when the extraction of the ion beam is temporarily stopped during the film formation due to the discharge of the extraction electrode of the ion beam, the operation of the ion source is continued until the total irradiation amount of the ion beam reaches the set amount. Substantially, the film formation time of the substrate is extended by the stop time of the extraction of the ion beam.

【0014】そのため、この場合もイオン源の引出し電
極の放電の有無によらず、基板に所定の膜厚の成膜が行
える。
Therefore, also in this case, it is possible to form a film having a predetermined film thickness on the substrate regardless of whether or not the extraction electrode of the ion source is discharged.

【0015】[0015]

【発明の実施の形態】発明の実施の第1及び第2の形態
につき、図1ないし図4を参照して説明する。 (第1の形態)まず、第1の形態について、説明する。
この第1の形態のイオンビームスパッタリング装置が図
5の従来装置と異なる点は、図5のイオン源2の代わり
に図1の構成のイオン源7を設て形成された点である。
BEST MODE FOR CARRYING OUT THE INVENTION First and second embodiments of the present invention will be described with reference to FIGS. (First Mode) First, the first mode will be described.
The ion beam sputtering apparatus of the first embodiment is different from the conventional apparatus of FIG. 5 in that the ion source 7 having the configuration of FIG. 1 is provided instead of the ion source 2 of FIG.

【0016】そして、イオン源7は筐体部8,電源部9
及びシーケンサ等で形成された制御部10からなり、そ
れぞれ例えば図2に示すように形成されている。
The ion source 7 includes a housing portion 8 and a power source portion 9
And a control unit 10 formed by a sequencer or the like, each of which is formed as shown in FIG. 2, for example.

【0017】この図2において、11はアノードを形成
する筐体、12は筐体11の一側に形成されたガス導入
口、13は筐体11内に設けられたフィラメント、14
は筐体11外に導出されたフィラメント3の両端に接続
されたフィラメント電源、15は陽極が筐体11に接続
されたアーク電源であり、陰極がフィラメント電源14
の陰極に接続されている。
In FIG. 2, 11 is a casing forming the anode, 12 is a gas inlet formed on one side of the casing 11, 13 is a filament provided in the casing 11, 14
Is a filament power supply connected to both ends of the filament 3 led out of the housing 11, 15 is an arc power supply having an anode connected to the housing 11, and the cathode is a filament power supply 14
Connected to the cathode.

【0018】16,17,18は筐体11の他側開口に
フィラメント13側から順に設けられた加速電極,減速
電極,接地電極であり、イオンビーム5の引出し電極1
9を形成する。20はアーク電源15の陰極に直列に接
続された加速電源であり、その陽極はアーク電源15の
陰極に接続されるとともに高抵抗値の抵抗21を介して
加速電極16に接続され、陰極は接地されている。22
は陰極が減速電極17に接続された減速電源であり、そ
の陽極は接地されている。なお、接地電極18は直接接
地されている。
Reference numerals 16, 17, and 18 denote an acceleration electrode, a deceleration electrode, and a ground electrode, which are sequentially provided in the opening on the other side of the casing 11 from the filament 13 side, and the extraction electrode 1 for the ion beam 5 is provided.
9 is formed. Reference numeral 20 denotes an acceleration power supply connected in series to the cathode of the arc power supply 15, the anode of which is connected to the cathode of the arc power supply 15 and also to the acceleration electrode 16 via the resistor 21 having a high resistance value, and the cathode is grounded. Has been done. 22
Is a deceleration power supply whose cathode is connected to the deceleration electrode 17, and its anode is grounded. The ground electrode 18 is directly grounded.

【0019】23は引出し電極19の電極間の放電の発
生を監視して検出する放電検出器であり、例えば過電流
リレーからなり、加速電極16,減速電極17,接地電
極18の放電による異常電流(過電流)を検出する毎に
放電検出の接点信号を発生する。
Reference numeral 23 denotes a discharge detector for monitoring and detecting the occurrence of discharge between the extraction electrodes 19, which is composed of, for example, an overcurrent relay and has an abnormal current due to discharge of the acceleration electrode 16, the deceleration electrode 17, and the ground electrode 18. A contact signal for discharge detection is generated each time (overcurrent) is detected.

【0020】24は制御部10に設けられた演算処理部
であり、設定された成膜プログラムに基づき、引出し電
極19の放電検出の監視及び各電源14,15,20,
22の出力制御等の成膜のシーケンス制御を行う。25
は演算処理部24に接続された成膜時間設定部であり、
電源部9の成膜タイマ26に成膜時間を変更自在に設定
し、成膜タイマ26を介してアーク電源15をオン,オ
フする。
Reference numeral 24 denotes an arithmetic processing unit provided in the control unit 10, which monitors discharge detection of the extraction electrode 19 and each power source 14, 15, 20, based on the set film forming program.
Sequence control of film formation such as output control of 22 is performed. 25
Is a film formation time setting unit connected to the arithmetic processing unit 24,
The film formation time is set freely in the film formation timer 26 of the power supply unit 9, and the arc power supply 15 is turned on and off via the film formation timer 26.

【0021】なお、各電源14,15,20,22はい
わゆる出力可変形の電源からなり、オフによりその出力
が0Vになる。
Each power source 14, 15, 20, 22 is a so-called variable output power source, and its output becomes 0V when it is turned off.

【0022】また、例えば図5の基板4がホルダ(図示
せず)に複数枚装着され、自動制御に基づくホルダの回
転により各基板4が順次に成膜位置(同図の位置)に移
動して成膜される場合、基板4毎のイオンビーム照射時
間,すなわちイオン源7の各1回の標準運転時間Ta及
び運転終了からつぎの運転開始までの停止時間Tbが成
膜タイマ26に設定される。
Further, for example, a plurality of substrates 4 shown in FIG. 5 are mounted on a holder (not shown), and each substrate 4 is sequentially moved to a film forming position (position shown in the same figure) by rotation of the holder based on automatic control. When the film is formed by the film formation, the ion beam irradiation time for each substrate 4, that is, the standard operation time Ta of the ion source 7 once and the stop time Tb from the end of the operation to the start of the next operation are set in the film formation timer 26. It

【0023】そして、装置の運転が開始されると、制御
部10により各電源14,15,20,22がオンして
それぞれ規定電圧の出力を発生し、このとき、フィラメ
ント13はフィラメント電源14からの給電により熱電
子を放出し、アーク電源15のアーク電圧の印加によ
り、フィラメント13から放出された熱電子が加速さ
れ、この熱電子がガス導入口12から筐体11内に導入
されたイオン化ガスに衝突してプラズマ27を生成す
る。
When the operation of the apparatus is started, the power supplies 14, 15, 20, 22 are turned on by the control unit 10 to generate the outputs of the respective regulated voltages. At this time, the filament 13 is supplied from the filament power supply 14. The thermoelectrons emitted from the filament 13 are accelerated by the application of the arc voltage of the arc power supply 15, and the thermoelectrons are introduced into the housing 11 from the gas introduction port 12 To generate plasma 27.

【0024】さらに、加速電極16に加速電源20の加
速電圧が印加され、減速電極17に減速電源17の減速
電圧が印加され、引出し電極19の作用によりプラズマ
27からイオンビーム5が引出される。このイオンビー
ム15の大きさ(量)は例えばフィラメント電源14の
電流(フィラメント電流)により調整される。
Further, the acceleration voltage of the acceleration power supply 20 is applied to the acceleration electrode 16, the deceleration voltage of the deceleration power supply 17 is applied to the deceleration electrode 17, and the ion beam 5 is extracted from the plasma 27 by the action of the extraction electrode 19. The size (amount) of the ion beam 15 is adjusted by the current (filament current) of the filament power supply 14, for example.

【0025】一方、成膜タイマ26は運転時間を計時
し、放電等による運転時間の補正がなければ、設定され
た標準運転時間Taが経過して基板4の成膜が終了する
毎に、アーク電源15をオフしてその出力を0Vにし、
イオン源7の運転を停止する。
On the other hand, the film formation timer 26 measures the operation time, and unless the operation time is corrected by discharge or the like, the arc is generated every time the set standard operation time Ta elapses and the film formation on the substrate 4 is completed. Turn off the power supply 15 and set its output to 0V,
The operation of the ion source 7 is stopped.

【0026】そして、この状態で停止時間Tbが経過
し、つぎの基板4の成膜開始になると、成膜タイマ26
がアーク電源15をオンしてイオン源7を再び運転す
る。以降、同様の動作のくり返しにより、放電等がない
正常時は、アーク電源15のオン,オフに基づき、イオ
ンビーム5すなわちイオン電流が図3に示すようにT
a,Tbの一定周期でオン,オフ変化する。
In this state, when the stop time Tb elapses and the next film formation on the substrate 4 is started, the film formation timer 26
Turns on the arc power supply 15 to operate the ion source 7 again. After that, by repeating the same operation, when there is no discharge or the like in a normal state, the ion beam 5, that is, the ion current is changed to T as shown in FIG.
It turns on and off in a constant cycle of a and Tb.

【0027】つぎに、長時間運転等に伴う電極汚染等に
より、成膜中に引出し電極9の電極間で放電が発生する
と、放電検出器23が直ちに放電検出の接点信号を発生
し、この接点信号の入力により演算処理部24は一時的
に加速電源20,減速電源22をオフしてイオンビーム
5の引出しを止め、電源部9を放電から保護する。
Next, when discharge occurs between the electrodes of the extraction electrode 9 during film formation due to electrode contamination or the like due to long-term operation, the discharge detector 23 immediately generates a contact signal for discharge detection, and this contact Upon the input of the signal, the arithmetic processing unit 24 temporarily turns off the acceleration power supply 20 and the deceleration power supply 22 to stop the extraction of the ion beam 5 and protect the power supply unit 9 from discharge.

【0028】そして、放電の発生から例えば1秒以下の
電極への給電のオフ時間が経過すると、放電が発生して
いないことを条件に、演算処理部24が加速電源20,
減速電源22をオンし、このオンによりイオンビーム5
が再び引出され、基板4の成膜が再開される。
Then, when the off time of power supply to the electrodes, for example, 1 second or less has elapsed from the occurrence of the discharge, the arithmetic processing unit 24 causes the acceleration power supply 20, if the discharge is not generated.
The deceleration power supply 22 is turned on, and when this is turned on, the ion beam 5
Are extracted again, and the film formation on the substrate 4 is restarted.

【0029】このとき、成膜タイマ26の運転時間が標
準運転時間Taのままであれば、放電によるイオンビー
ム5のオフ時間を考慮することなく、成膜開始から標準
運転時間Taが経過したときに、アーク電源15がオフ
してイオン源7の運転が止まり、基板4の成膜時間が正
常な場合より前記オフ時間短くなり、基板4の膜厚が所
定の膜厚より薄くなる。
At this time, if the operation time of the film formation timer 26 remains the standard operation time Ta, when the standard operation time Ta elapses from the film formation start without considering the off time of the ion beam 5 due to the discharge. Further, the arc power supply 15 is turned off, the operation of the ion source 7 is stopped, the off time is shorter than when the film formation time of the substrate 4 is normal, and the film thickness of the substrate 4 becomes smaller than a predetermined film thickness.

【0030】そして、この膜厚の変動を防止するため、
放電の発生を検出したときに、フィラメント電源14の
出力を大きくしてイオンビーム5の電流量(ビーム電流
量)を増大し、実質的に成膜速度を上げて正常な場合と
同じ膜厚にすることが考えられる。
In order to prevent this variation in film thickness,
When the occurrence of discharge is detected, the output of the filament power supply 14 is increased to increase the current amount of the ion beam 5 (beam current amount), and the film formation speed is substantially increased to obtain the same film thickness as in the normal case. It is possible to do it.

【0031】また、フィラメント電源14の出力を可変
する代わりに、加速電源20の電圧(加速電圧)を大き
くし、ビームエネルギを増大して成膜速度を上げること
も考えられる。
Instead of varying the output of the filament power supply 14, it is possible to increase the voltage of the acceleration power supply 20 (acceleration voltage) to increase the beam energy and increase the film formation speed.

【0032】しかし、フィラメント電源14又は加速電
源20の出力を放電の発生の検知により可変して膜厚を
制御しようとすると、そのための複雑な制御回路等が必
要になる。
However, if the output of the filament power source 14 or the acceleration power source 20 is varied by detecting the occurrence of discharge to control the film thickness, a complicated control circuit or the like is required for that purpose.

【0033】そこで、この第1の形態の装置において
は、放電の検出毎の前記一時的な電極への給電のオフ時
間の設定と、放電検出の接点信号の発生回数から求まる
放電の発生回数とにより、基板4の成膜の延長時間Tδ
(=オフ時間×放電の発生回数)を決定し、イオン源7
の運転時間を成膜中に標準運転時間Taから延長時間T
δだけ延長補正する。
Therefore, in the device according to the first embodiment, the temporary OFF time of the power supply to the electrodes is set every time the discharge is detected, and the number of times the discharge is generated is determined from the number of times the contact signal for the discharge detection is generated. Therefore, the extension time Tδ of the film formation on the substrate 4 is
(= Off time × number of discharge occurrences) is determined, and the ion source 7
The operating time from the standard operating time Ta to the extension time T during film formation
Correct the extension by δ.

【0034】すなわち、図4に示すように例えば成膜中
のtx に引出し電極9の電極間の放電が発生し、tx
らオフ時間Txだけ加速電極16,減速電極17への給
電が停止してイオンビーム5の引出しが止まると、tx
の放電検出の接点信号により演算制御部24は成膜時間
設定部25に成膜時間の延長を指令し、この指令の発生
毎に成膜時間設定部25は成膜タイマ26の運転時間を
現在の設定時間より前記オフ時間Tx延長した時間に延
長補正する。
That is, as shown in FIG. 4, for example, discharge occurs between electrodes of the extraction electrode 9 at t x during film formation, and power supply to the acceleration electrode 16 and the deceleration electrode 17 is stopped from t x for the off time Tx. Then, when the extraction of the ion beam 5 stops, t x
The discharge control contact signal causes the arithmetic control unit 24 to instruct the film formation time setting unit 25 to extend the film formation time, and the film formation time setting unit 25 sets the operation time of the film formation timer 26 at the present time each time the command is issued. The extension time is corrected to a time obtained by extending the off time Tx from the set time.

【0035】この補正により、図4の場合は放電の発生
回数が1回であるため、その基板4の成膜時間が標準運
転時間TaからTa’(=Ta+Tx)に長くなり、こ
のとき、実質的な成膜時間が標準運転時間Taになり、
放電がないときと同じ条件で基板4の成膜が行われ、そ
の膜厚が所定の膜厚になる。
Due to this correction, in the case of FIG. 4, the number of discharge occurrences is one, so that the film formation time of the substrate 4 is increased from the standard operating time Ta to Ta '(= Ta + Tx), and at this time, substantially. Film formation time becomes standard operating time Ta,
The substrate 4 is formed under the same conditions as when there is no discharge, and the film thickness becomes a predetermined film thickness.

【0036】なお、成膜タイマ26の運転時間は各1枚
の基板4の成膜開始毎に標準運転時間Taにリセットさ
れる。そのため、基板4の成膜毎のアーク電源15がオ
ンするイオン源7の運転時間を、引出し電極9の電極間
の放電の発生回数に応じてオフ時間Txずつ延長補正す
る簡単な手法により、前記放電の発生の有無によらず各
基板4に設定された膜厚の均一な成膜を行うことができ
る。
The operation time of the film formation timer 26 is reset to the standard operation time Ta every time the film formation of one substrate 4 is started. Therefore, the operating time of the ion source 7 in which the arc power supply 15 is turned on for each film formation of the substrate 4 is extended by the off time Tx according to the number of discharges between the extraction electrodes 9 and is corrected by a simple method. It is possible to form a film having a uniform film thickness set on each substrate 4 regardless of the occurrence of discharge.

【0037】(第2の形態)つぎに、第2の形態につい
て説明する。この形態の装置においては、成膜中にイオ
ンビーム5の量に相当するイオン電流量を計測し、計測
量の時間積分値が設定された照射総量に達するまでイオ
ン源7の運転を継続する。
(Second Mode) Next, the second mode will be described. In the apparatus of this embodiment, the amount of ion current corresponding to the amount of the ion beam 5 is measured during film formation, and the operation of the ion source 7 is continued until the time integrated value of the measured amount reaches the set total irradiation amount.

【0038】すなわち、イオン電流量を加速電源20を
通流する電流量とし、図2に示すように加速電源20の
陰極側に電流計28を設け、この電流計28の計測信号
に基づき、演算処理部24によりイオン電流量をモニタ
する。
That is, the amount of ion current is set as the amount of current flowing through the accelerating power source 20, an ammeter 28 is provided on the cathode side of the accelerating power source 20 as shown in FIG. 2, and calculation is performed based on the measurement signal of the ammeter 28. The processing unit 24 monitors the amount of ion current.

【0039】一方、図2の成膜時間設定部25,成膜タ
イマ26は省かれ、演算処理部24にタイマ機能が付加
され、演算処理部24により各1枚の基板4の成膜開始
時にアーク電源15がオンされる。
On the other hand, the film formation time setting unit 25 and the film formation timer 26 shown in FIG. 2 are omitted, and a timer function is added to the arithmetic processing unit 24 so that the arithmetic processing unit 24 starts the film formation of each one substrate 4. The arc power supply 15 is turned on.

【0040】そして、演算処理部24は放電検出の接点
信号の有無等によらず、成膜中に電流計28の計測信号
を積分加算してイオンビーム5の照射量の時間積分値を
間接的に求め、この時間積分値が予め設定された正常時
の標準運転時間Taのイオンビーム5の照射総量に等し
くなると、アーク電源15をオフする。
Then, the arithmetic processing unit 24 indirectly adds the time integrated value of the irradiation amount of the ion beam 5 by integrating and adding the measurement signals of the ammeter 28 during the film formation regardless of the presence or absence of a contact signal for discharge detection. Then, when the time integral value becomes equal to the preset total irradiation amount of the ion beam 5 during the normal operation time Ta in the normal state, the arc power supply 15 is turned off.

【0041】そして、自動制御で運転される場合は、ア
ーク電源15をオフしてから例えば第1の形態の停止時
間Tbが経過すると、再びアーク電源15がオンされて
つぎの基板4の成膜に移る。
Then, in the case of automatic control operation, when the arc power supply 15 is turned off, for example, when the stop time Tb of the first embodiment has elapsed, the arc power supply 15 is turned on again to form the next film on the substrate 4. Move on to.

【0042】したがって、この場合は引出し電極9の放
電の有無によらず、常に、一定のイオンビーム5の照射
総量で基板4の成膜が行われ、この結果、第1の形態の
場合と同様、各基板4に設定された膜厚の均一な成膜が
行える。なお、イオン電流のモニタ等を図2の場合と異
なる手法で行ってもよいのは勿論である。
Therefore, in this case, the film formation on the substrate 4 is always performed with a constant total irradiation amount of the ion beam 5 regardless of whether the extraction electrode 9 is discharged or not, and as a result, the same as in the case of the first embodiment. The uniform film thickness set on each substrate 4 can be achieved. Needless to say, the ion current may be monitored by a method different from that shown in FIG.

【0043】[0043]

【発明の効果】本発明は、以下に記載する効果を奏す
る。まず、請求項1に係るイオンビームスパッタリング
装置においては、長時間の連続運転によりイオンビーム
5の引出し電極19の放電が成膜中に1回又は複数回発
生し、一時的なイオンビーム5の引出しの停止が発生し
ても、その停止時間(オフ時間)だけイオン源7の運転
時間が長くなって基板4の成膜が延長して行われ、この
とき、基板4の膜厚は放電なく規定の成膜時間イオンビ
ームが照射された場合と同一になり、イオン源7の引出
し電極19の放電の有無によらず、基板4に所定の膜厚
の成膜を行うことができ、生産機の場合、成膜の膜厚を
均一化して製品の歩留りを向上することができる。
The present invention has the following effects. First, in the ion beam sputtering apparatus according to claim 1, discharge of the extraction electrode 19 of the ion beam 5 occurs once or a plurality of times during film formation by continuous operation for a long time, and temporary extraction of the ion beam 5 is performed. Even if the stop occurs, the operating time of the ion source 7 is extended by the stop time (off time) and the film formation of the substrate 4 is extended. At this time, the film thickness of the substrate 4 is regulated without discharge. The film forming time is the same as when the ion beam is irradiated, and it is possible to form a film having a predetermined film thickness on the substrate 4 regardless of whether the extraction electrode 19 of the ion source 7 is discharged. In this case, it is possible to make the film thickness of the formed film uniform and improve the product yield.

【0044】また、請求項2に係るイオンビームスパッ
タリング装置にいおては、イオンビーム5の引出し電極
19の放電により成膜中に一時的にイオンビーム5の引
出しが停止しても、イオンビーム5の照射総量が設定量
に達するまでイオン源7の運転が継続され、この場合
も、引出し電極19の放電の有無によらず、所定の膜厚
の成膜を行うことができ、請求項1の係る装置の場合と
同様の効果が得られる。
Further, in the ion beam sputtering apparatus according to the second aspect, even if the extraction of the ion beam 5 is temporarily stopped during film formation due to the discharge of the extraction electrode 19 of the ion beam 5, The operation of the ion source 7 is continued until the total irradiation amount of No. 5 reaches the set amount, and in this case also, the film formation of a predetermined film thickness can be performed regardless of the discharge of the extraction electrode 19. The same effect as in the case of such a device can be obtained.

【図面の簡単な説明】[Brief description of drawings]

【図1】発明の実施の形態の要部のブロック構成図であ
る。
FIG. 1 is a block configuration diagram of a main part of an embodiment of the invention.

【図2】図1の各部の詳細な結線図である。FIG. 2 is a detailed connection diagram of each part of FIG.

【図3】放電のないときの成膜説明用の波形図である。FIG. 3 is a waveform diagram for explaining film formation when there is no discharge.

【図4】放電が発生したときの成膜説明用の波形図であ
る。
FIG. 4 is a waveform diagram for explaining film formation when discharge is generated.

【図5】一般的なイオンビームスパッタリング装置の概
略構成の説明図である。
FIG. 5 is an explanatory diagram of a schematic configuration of a general ion beam sputtering apparatus.

【符号の説明】[Explanation of symbols]

3 ターゲット 4 基板 5 イオンビーム 7 イオン源 19 引出電極 3 Target 4 Substrate 5 Ion Beam 7 Ion Source 19 Extraction Electrode

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 イオン源から引出されたイオンビームを
ターゲットに照射して基板に成膜し、かつ、前記イオン
源に設けられた前記イオンビームの引出し電極の放電の
検出により、成膜中に一時的に前記イオン源の電極への
給電をオフして前記イオンビームの引出しを止めるイオ
ンビームスパッタリング装置において、 前記放電の検出毎の前記電極への給電のオフ時間の設定
と前記放電の検出回数とにより前記成膜の延長時間を決
定し、前記イオン源の運転時間を設定された成膜時間よ
り前記延長時間だけ延長補正することを特徴とするイオ
ンビームスパッタリング装置。
1. A film is formed on a substrate by irradiating a target with an ion beam extracted from an ion source, and detecting the discharge of an extraction electrode of the ion beam provided in the ion source during film formation. In an ion beam sputtering apparatus for temporarily turning off the power supply to the electrode of the ion source to stop the extraction of the ion beam, setting the off time of the power supply to the electrode for each detection of the discharge and the number of times the discharge is detected. The ion beam sputtering apparatus is characterized in that the extension time of the film formation is determined by and the operation time of the ion source is extended and corrected by the extension time from the set film formation time.
【請求項2】 イオン源から引出されたイオンビームを
ターゲットに照射して基板に成膜し、かつ、前記イオン
源に設けられた前記イオンビームの引出し電極の放電の
検出により、成膜中に一時的に前記イオン源の電極給電
をオフして前記イオンビームの引出しを止めるイオンビ
ームスパッタリング装置において、 成膜中に前記イオンビームの量に相当するイオン電流量
を計測し、計測量の時間積分値が設定された照射総量に
達するまで前記イオン源の運転を継続することを特徴と
するイオンビームスパッタリング装置。
2. The film is formed during film formation by irradiating a target with an ion beam extracted from an ion source to form a film on a substrate, and detecting discharge of an extraction electrode of the ion beam provided in the ion source. In an ion beam sputtering apparatus that temporarily turns off the electrode power supply of the ion source to stop the extraction of the ion beam, measures the amount of ion current corresponding to the amount of the ion beam during film formation, and integrates the measured amount over time. The ion beam sputtering apparatus, wherein the operation of the ion source is continued until the value reaches a set total irradiation amount.
JP24082195A 1995-08-25 1995-08-25 Ion beam sputtering device Pending JPH0967670A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24082195A JPH0967670A (en) 1995-08-25 1995-08-25 Ion beam sputtering device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24082195A JPH0967670A (en) 1995-08-25 1995-08-25 Ion beam sputtering device

Publications (1)

Publication Number Publication Date
JPH0967670A true JPH0967670A (en) 1997-03-11

Family

ID=17065205

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24082195A Pending JPH0967670A (en) 1995-08-25 1995-08-25 Ion beam sputtering device

Country Status (1)

Country Link
JP (1) JPH0967670A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003522296A (en) * 1999-09-17 2003-07-22 ノルディコ リミテッド Ion beam vacuum sputtering apparatus and method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003522296A (en) * 1999-09-17 2003-07-22 ノルディコ リミテッド Ion beam vacuum sputtering apparatus and method

Similar Documents

Publication Publication Date Title
JP4231944B2 (en) Flash over suppression device for cathode sputtering system
JP4694833B2 (en) System and method for controlling a sputter deposition process
JP2700987B2 (en) Method and apparatus for measuring the number of particles of incident ions
KR20090005396A (en) Method and system for conditioning a vapor deposition target
JP2758999B2 (en) Vacuum arc deposition equipment
JPH0967670A (en) Ion beam sputtering device
US6080292A (en) Monitoring apparatus for plasma process
KR100200009B1 (en) Method of fabricating ito transparent conducting films
GB2343991A (en) Method of monitoring Faraday cup operation in ion implantation apparatus for use in manufacturing semiconductors
JPH11152564A (en) Presputtering method and device
JP3403383B2 (en) Ion source control method and ion source control device
JP2836072B2 (en) Sputtering equipment
JPH11229138A (en) Sputtering device
JP2705407B2 (en) Charged particle number accumulator
JP2625942B2 (en) Control method of ion processing device
JPH1088338A (en) Arc counting device
JP2765014B2 (en) Ion source device
JPH0211781A (en) Dry etching device
JPH08236056A (en) Ion source device
JPH0818372A (en) Frequency adjustment device for piezoelectric element, and piezoelectric frequency adjusting method
JPH05128997A (en) Ion implantor
JP2684475B2 (en) Atomic beam injector
JPS61231172A (en) Method and apparatus for sputtering
JP3017766B2 (en) Gas treatment equipment
JP2765013B2 (en) Ion source device

Legal Events

Date Code Title Description
A977 Report on retrieval

Effective date: 20050127

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050222

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20050628