JPH0964853A - Error processing system for parallel signal on the occurrence of fault in transmission line - Google Patents

Error processing system for parallel signal on the occurrence of fault in transmission line

Info

Publication number
JPH0964853A
JPH0964853A JP7214597A JP21459795A JPH0964853A JP H0964853 A JPH0964853 A JP H0964853A JP 7214597 A JP7214597 A JP 7214597A JP 21459795 A JP21459795 A JP 21459795A JP H0964853 A JPH0964853 A JP H0964853A
Authority
JP
Japan
Prior art keywords
transmission
transmission line
signal
selector
parallel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP7214597A
Other languages
Japanese (ja)
Inventor
Yuji Tochio
祐治 栃尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP7214597A priority Critical patent/JPH0964853A/en
Publication of JPH0964853A publication Critical patent/JPH0964853A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Maintenance And Management Of Digital Transmission (AREA)
  • Hardware Redundancy (AREA)
  • Detection And Prevention Of Errors In Transmission (AREA)

Abstract

PROBLEM TO BE SOLVED: To improve the reliability of a transmitter by generating a control signal when a fault is detected and using selectors operated selectively at a sending end and a receiving end of a faulty transmission line so as to reserve a parallel transmission line with an equal delay time to that of the faulty transmission line to output the signal. SOLUTION: An input signal to a succeeding transmission line CH(i+1) connecting to other side input terminal Ii is given to a transmission line CH(i+1) connecting to an output terminal by an L level of a selection signal S generated when a control section 2 detects normality of transmission line with its outputs of receiving end selectors 5-1 - 5-n. A 2 to 1 selector 5-i of a path changeover section 4 at a receiver side is operated by an L level of the signal S generated when a fault of a transmission line is detected, based on the outputs of the selectors 5-1 θ 5-n of the control section 2. Thus, a signal received from a transmission line CHi connecting to one side In of two input terminals and given to the transmission line Chi as an output signal normally is switched so that an output signal CH(i+1) from a succeeding transmission line CH(i+1) connecting to the other side Ii of the 2 input terminal is made to be an output signal of the transmission line CHi.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、コンピュータや伝
送処理装置内のボート間及び装置間などの一定ビット数
nの並列信号の伝送路の障害時の誤りに対する処理方式
に関する。近年、コンピュータ等の情報処理機器では、
其のプロセッサの高速化に伴い処理速度や処理容量が向
上しているため、並列信号を扱うことが多いが、其の並
列信号の伝送では、伝送路の障害時の対策に更に向上し
た技術が求められ、最近は、高速で大容量の伝送が可能
な光信号の並列伝送でも其の並列の光線路の障害時の誤
り処理方式が注目されている。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a processing method for an error when a failure occurs in a transmission path of a parallel signal having a fixed number of bits n, such as between boats in a computer or a transmission processing device or between devices. In recent years, in information processing equipment such as computers,
Since the processing speed and processing capacity have improved with the increase in the speed of the processor, parallel signals are often handled, but in the transmission of the parallel signals, there is a technique that is further improved as a countermeasure against a failure in the transmission path. Recently, even in parallel transmission of optical signals capable of high-speed and large-capacity transmission, an error processing method at the time of failure of the parallel optical lines has been attracting attention.

【0002】[0002]

【従来の技術】コンピュータや伝送処理装置の内部の並
列データの伝送は、従来は現用の伝送路のみで予備の伝
送路は具えない場合が殆どであり、並列伝送されるnビ
ットデータの中の最低1ビットの伝送路でも障害になる
と、nビット全体で纏まった意味を持つnビット信号が
誤りデータとなるという悪影響を受けるという問題があ
る。光信号の並列伝送でも、ビット毎の光線路の送信側
の発光素子や受信側の受光素子の劣化等が、n本の並列
の光線路で伝送されるnビットの並列データに上記の悪
影響を受けることが考えられる。そこで、従来の技術
(例えば公開公報のH04-346279) では、図12に示す様
な、入出力データが共にn個並列の電気信号であるnビ
ットの場合の入力データに対し、新たに余分のmビット
を付加して入力がnで出力が(n+m) の端子数 n x (n +
m)の電気信号マトリックススイッチ1Aを設け、また出力
のnビットデータには、入出力端子数が(n+m) x n の光
信号マトリックススイッチ3Aの冗長化手段を設ける。そ
して、この2つのマトリックススイッチ1A,3Aの間に入
力出力が共に並列 (n+m)の信号端子数の電気光変換回路
2Aを設けることにより、並列に(n+m) 本の光信号路のな
かの最大m本の光信号路の障害に対応することで、並列
nの電気信号のnビット信号の並列伝送の保証を行って
いた。
2. Description of the Related Art In the past, parallel data transmission inside a computer or a transmission processing device has been mostly a conventional transmission line and no spare transmission line. If there is a failure even in a transmission path of at least 1 bit, there is a problem that an n-bit signal having a meaning summarized in n-bits will be adversely affected as error data. Even in parallel transmission of optical signals, deterioration of the light emitting element on the transmitting side or the light receiving element on the receiving side of the optical line for each bit may adversely affect the n-bit parallel data transmitted by the n parallel optical lines. It is possible to receive it. Therefore, in the conventional technology (for example, H04-346279 in the publication), as shown in FIG. 12, a new redundant data is added to the input data in the case where the input / output data are both n parallel electric signals. Number of terminals with input n and output (n + m) with m bits added nx (n +
m) electric signal matrix switch 1A is provided, and the output n-bit data is provided with redundancy means for the optical signal matrix switch 3A having (n + m) xn input / output terminals. Then, an electro-optical conversion circuit having the number of signal terminals whose input and output are both parallel (n + m) between these two matrix switches 1A and 3A.
By providing 2A, it is possible to guarantee the parallel transmission of n-bit signals of parallel n electrical signals by coping with the failure of up to m optical signal paths among (n + m) optical signal paths in parallel. Was going on.

【0003】[0003]

【発明が解決しようとする課題】ところが、上記の従来
の技術は、nビット信号の並列伝送に対する冗長化手段
としての n x (n + m)の電気信号のマトリックススイッ
チ1Aと、(n+m) x n の光信号のマトリックススイッチ3A
と、それらの制御回路4Aが複雑である事や、光信号マト
リックススイッチ自身の特性にバラツキが有る事や、全
体の回路規模が大きくなる事などの問題が生じていた。
更に上記マトリックススイッチを用いた従来の冗長化手
段では、若し n x (n+m)の出力(n+m) と(n+m) x n の入
力(n+m)の信号経路が変更された場合は、其のスイッチ
により選択した信号経路によっては例えば入力データの
第1ビットが出力データの第1ビットにならない様な場
合は選択の前と後の経路長が変化するので、n並列で伝
送されるnビットデータの或るビットに位相外れを起こ
し、出力データが正常状態でない所謂スキュー(skew)と
呼ばれる状態となる事があるので、nビット信号を並列
伝送する距離を一定長以下に制限しなければならないと
いう問題があった。本発明の目的は、並列にnチャネル
のnビットデータを並列伝送している時に、使用されて
いるn個の並列の伝送路の幾つかが障害となっても、出
力のn並列のデータとして、スキューと呼ばれるビット
間の位相外れの誤り状態ではない正しい位相のnビット
データを得る事を、其のn並列の伝送路が光伝送路であ
っても従来の如く光信号マトリックススイッチを用いる
ことが無く、また其の制御が複雑な電気信号マトリック
ススイッチも使用せずに、電気信号のみの簡単な回路構
成により、実現できる並列信号の伝送路の障害時の処理
方式を提供することにある。
However, in the above-mentioned conventional technique, the matrix switch 1A of (n + m) electric signals of (nx (n + m)) and (n + m) are provided as redundancy means for parallel transmission of n-bit signals. xn optical signal matrix switch 3A
However, there are problems that the control circuits 4A are complicated, that the characteristics of the optical signal matrix switch itself are not uniform, and that the overall circuit scale is large.
Furthermore, in the conventional redundancy means using the above matrix switch, the signal path of the output (n + m) of nx (n + m) and the input (n + m) of (n + m) xn is changed. In this case, depending on the signal path selected by the switch, for example, when the first bit of the input data does not become the first bit of the output data, the path length before and after the selection changes, so n parallel transmission is performed. The output data may be out of phase in a certain bit of the n-bit data to be output, and the output data may be in a so-called skew state. Therefore, the parallel transmission distance of the n-bit signal is limited to a certain length or less. There was a problem that I had to do. An object of the present invention is to output n-parallel data as an output even when some of the n parallel transmission paths used are disturbed during parallel transmission of n-bit n-bit data in parallel. , To obtain n-bit data of the correct phase, which is not the error state of out-of-phase between bits, which is called skew, by using the optical signal matrix switch as before even if the n parallel transmission lines are optical transmission lines. Another object of the present invention is to provide a processing method at the time of a failure of a parallel signal transmission path that can be realized by a simple circuit configuration of only electric signals without using an electric signal matrix switch whose control is complicated.

【0004】[0004]

【課題を解決するための手段】この目的達成のための本
発明の基本構成は、図1の原理図に示す如く、複数nの
信号系列を同じ複数n の並列の伝送路で伝送する場合
に、複数n の正規の伝送路 CH1〜CHn の他に其の送端が
前記正規の伝送路の第n番 CHn の入力信号に直結され
た1本の予備の伝送路 CH(n+1) と、該複数n の伝送路
の送端と受端とに相対向して障害時には正常時の伝送路
CHi を次の伝送路 CH(i+1) に順に切り替える 2対1 セ
レクタ 3-1〜3-(n-1),5-1〜5-n と、前記正規の伝送路
の第1番 CH1 及び予備の伝送路 CH(n+1) の両方に各セ
レクタを含み他の伝送路と全遅延時間を等しくする為の
ディレイライン L1,L2 とを設け、前記受端の各セレク
タ 5-1〜5-n の出力を監視していて、正規の複数n の伝
送路 CH1〜CHn の中の任意の1つ 例えばCH2 に障害が
起きた事を検出した時は、制御信号を発生し其の障害が
起きた伝送路 CH2 の送端と受端のセレクタ 3-2,5-2
以降の全セレクタ 3-2〜3-(n-1), 5-2〜5-n に前記の選
択動作をさせ、前記障害が起きた時も常に等しい遅延時
間を持つn並列の伝送路を確保しスキューの無い状態で
出力するように構成する。
The basic configuration of the present invention for achieving this object is to transmit a plurality of n signal sequences through the same plurality n of parallel transmission paths as shown in the principle diagram of FIG. , A plurality of n regular transmission channels CH1 to CHn, and a spare transmission channel CH (n + 1) whose transmission end is directly connected to the nth CHn input signal of the regular transmission channel. , A transmission line in a normal state when a failure occurs by facing the transmission end and the reception end of the plurality of n transmission lines
2-to-1 selectors 3-1 to 3- (n-1), 5-1 to 5-n that switch CHi to the next transmission channel CH (i + 1) in order, and the first CH1 of the regular transmission channel And the backup transmission line CH (n + 1) include both selectors and delay lines L1 and L2 for equalizing the total delay time with other transmission lines. When the output of 5-n is monitored and it is detected that any one of the regular multiple n channels CH1 to CHn has failed, for example CH2, a control signal is generated and the failure is generated. 3-2,5-2 Selector on the sending end and receiving end of transmission path CH2
All the subsequent selectors 3-2 to 3- (n-1) and 5-2 to 5-n are caused to perform the selection operation described above, and n parallel transmission lines having the same delay time are always provided even when the failure occurs. It is configured to secure and output without skew.

【0005】本発明では、1本の予備の伝送路CH(n+1)
が、複数n の正規伝送路CH1〜CHnに並列に設けられ、其
の予備の伝送路CH(n+1) の送端が前記正規の伝送路の最
後である第n番CHn の伝送路の入力信号に直結される。
また、該複数n の各伝送路の送端に設けられた 2対1 セ
レクタ3-1〜3-(n-1) と受端に設けられた 2対1 セレク
タ5-1〜5-n とが相対向する。そして正規の伝送路の第
1番CH1 及び予備の伝送路CH(n+1) のそれぞれに設けた
各ディレイラインL1,L2 は、該 2対1 セレクタの1個分
の遅延時間に相当して、各セレクタを含む他の伝送路CH
2 〜CHn と全遅延時間を等しくしている。従って、受端
の各セレクタ5-1〜5-n の出力を監視していて、正規の
複数n の伝送路CH1〜CHn の中の任意の1つの例えば CH
2の伝送路に障害が起きた事を検出すると、其の障害が
起きた伝送路CH2 の送端と受端のセレクタ 3-2,5-2 以
降の全セレクタ 3-2〜3-(n-1), 5-2〜5-n に選択動作を
させる制御信号を発生する。即ち i=2,3─(n-1) とする
と、正常時の伝送路CHiを次の伝送路CH(i+1) に順に切
り替えて、障害が起きた伝送路CH2 を除く(n-1)本の正
規の伝送路CH1,CH3 〜CHn と1本の予備の伝送路CH(n+
1) とにより、並列にnビットのデータを伝送し出力す
るが、各伝送路CH1 〜CH(n+1)の全遅延時間が、前記の
如く互に全く等しいので、伝送路の切り替えの前と後の
nビット信号の伝送路の遅延時間は等しく、結果として
出力のnビットデータには所謂スキュー状態が起きず、
正しい位相のnビットデータが得られて目的は達成され
る。
In the present invention, one spare transmission line CH (n + 1)
Are provided in parallel with a plurality n of normal transmission paths CH1 to CHn, and the transmission end of the spare transmission path CH (n + 1) is the end of the normal transmission path of the nth CHn transmission path. Directly connected to the input signal.
In addition, the two-to-one selectors 3-1 to 3- (n-1) provided at the sending end of each of the plurality n of transmission lines and the two-to-one selectors 5-1 to 5-n provided at the receiving end. Face each other. The delay lines L1 and L2 provided on each of the first transmission channel CH1 and the backup transmission channel CH (n + 1) correspond to the delay time of one of the 2: 1 selectors. , Other transmission channel CH including each selector
2 to CHn are equal to the total delay time. Therefore, the outputs of the selectors 5-1 to 5-n at the receiving end are monitored and any one of, for example, CHs CH1 to CHn of the normal plural n transmission lines CH1 to CHn is monitored.
When it detects that a failure has occurred in the transmission line of No. 2, the selectors of the transmission line CH2 in which the failure has occurred and the selectors 3-2,5-2 and all selectors 3-2 to 3- (n -1), Generate a control signal that causes 5-2 to 5-n to perform the selection operation. That is, if i = 2,3─ (n-1), the normal transmission path CHi is switched to the next transmission path CH (i + 1) in order, and the failed transmission path CH2 is excluded (n-1 ) Regular transmission channels CH1, CH3 to CHn and one spare transmission channel CH (n +
According to 1), n-bit data is transmitted and output in parallel. However, since the total delay time of each transmission line CH1 to CH (n + 1) is exactly equal to each other as described above, before switching the transmission line. The delay time of the transmission path of the subsequent n-bit signal is equal, and as a result, a so-called skew state does not occur in the output n-bit data,
The purpose is achieved by obtaining n-bit data of the correct phase.

【0006】[0006]

【発明の実施の形態】図1の本発明の原理図はそのま
ま、本発明の請求項1に対応する実施例の構成を示し、
其の基本的な動作は既に詳細に説明した。図2は、図13
の従来例の光並列伝送方式に対して図1の本発明の考え
方を取り入れた実施例の構成図であり、図2の中の網掛
けを施した2カ所の部分が、光並列伝送路の送端の 2対
1 セレクタ3-1〜3-(n-1) とディレイラインL1,L2 から
なる送信側の経路切替部と、受端の 2対1 セレクタ5-1
〜5-n からなる受信側の経路切替部とに該当する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS While keeping the principle diagram of the present invention in FIG. 1, the structure of an embodiment corresponding to claim 1 of the present invention is shown.
Its basic operation has already been described in detail. 2 is shown in FIG.
FIG. 2 is a configuration diagram of an embodiment in which the concept of the present invention in FIG. 1 is incorporated into the conventional optical parallel transmission system of FIG. 1, and two shaded portions in FIG. 2 pairs of sending end
1 Selector 3-1 to 3- (n-1) and delay line L1 and L2 on the transmission side, and the receiver 2 to 1 selector 5-1
Corresponds to the path switching unit on the receiving side consisting of ~ 5-n.

【0007】図1の本発明の請求項1に対応する実施例
の構成は、nビットの並列信号を1ビット毎に個別に伝
送する並列にn本の正規の伝送路CH1 〜CHn と、1本の
予備の伝送路CH(n+1) とから成る。図1の中、1は送信
側の経路切替部であり、伝送路CH1 〜CHn の送端の 2対
1 セレクタ3-1〜3-(n-1) とディレイラインL1,L2 から
成る。4は受信側の経路切替部であって、伝送路CH1 〜
CH(n+1) の受端の 2対1 セレクタ5-1 〜5-n から成る。
2は切り換え信号発生部(制御部)であり、送信側の経
路切替部1 の 2対1 セレクタ3-1〜3-(n-1) および受信
側の経路切替部4の 2対1 セレクタ5-1〜5-n の選択動作
を制御する切り換え信号を発生する制御部である。図3
は送信側の経路切替部1 の 2対1 セレクタ3-i(但しi
=1,2─,n-1) の構成と其の真理値表とを示す。図3の送
信側の 2対1 セレクタ3-iは、前記制御部2 が受端セレ
クタ5-1〜5-n の出力で或る伝送路の障害を検出した時
に発生した選択信号SのH により、2入力端子の一方 I
H に接続された通常時には伝送路CHi への入力信号を切
り換えて、1出力端子Oに接続された次の伝送路CH(i+
1) に接続する。そして前記の制御部2 が受端セレクタ5
-1〜5-n の出力で該当の伝送路の正常を検出した時に発
生する選択信号SのL により、他方の入力端子I L に接
続された次の伝送路CH(i+1) への入力信号そのままを、
出力端子Oに接続された次の伝送路CH(i+1)に接続す
る。受信側の経路切替部4 の 2対1 セレクタ5-i(但し
i=1,2─,n) も、同様の構成であるが、前記の制御部2
が受端セレクタ5-1 〜5-n の出力で或る伝送路の障害を
検出した時に発生した選択信号Sの状態L により、通常
時には2入力端子の一方 IH に接続された伝送路CHi か
ら入力し伝送路CHi の出力信号となるものを、2入力端
子の他方 IL に接続された次の伝送路CH(i+1) からの出
力信号CH(i+1) が、其の伝送路CHi の出力信号となる様
に切り替え動作をする。
The configuration of the embodiment corresponding to claim 1 of the present invention shown in FIG. 1 has n regular transmission lines CH1 to CHn in parallel for transmitting an n-bit parallel signal individually for each bit. It consists of a backup channel CH (n + 1) of a book. In FIG. 1, reference numeral 1 is a path switching unit on the transmission side, which is a pair of transmission terminals CH1 to CHn.
1 Consists of selectors 3-1 to 3- (n-1) and delay lines L1 and L2. Reference numeral 4 denotes a path switching unit on the receiving side, which is used for transmission channels CH1 ...
It consists of 2-to-1 selectors 5-1 to 5-n at the receiving end of CH (n + 1).
Reference numeral 2 denotes a switching signal generating unit (control unit), which is a 2-to-1 selector 3-1 to 3- (n-1) of the transmission-side path switching unit 1 and a 2-to-1 selector 5 of the reception-side path switching unit 4. The control unit generates a switching signal for controlling the selection operation of -1 to 5-n. FIG.
Is a 2-to-1 selector 3-i (where i
= 1,2─, n-1) and the truth table. The 2-to-1 selector 3-i on the transmission side in FIG. 3 has an H level of the selection signal S generated when the control unit 2 detects a failure of a certain transmission line from the outputs of the receiving end selectors 5-1 to 5-n. One of the two input terminals
Normally, the input signal to the transmission line CHi connected to H is switched and the next transmission line CH (i +) connected to one output terminal O is switched.
1) Connect to. Then, the control unit 2 is the receiving end selector 5
-1 to 5-n output to the next transmission line CH (i + 1) connected to the other input terminal I L by L of the selection signal S generated when the normality of the transmission line is detected. Input signal as it is,
It is connected to the next transmission line CH (i + 1) connected to the output terminal O. The 2-to-1 selector 5-i (where i = 1,2─, n) of the path switching unit 4 on the receiving side has the same configuration, but the control unit 2 described above is used.
Is normally connected to one of the two input terminals I H due to the state L of the selection signal S that occurs when a fault in a certain transmission line is detected by the outputs of the receiving end selectors 5-1 to 5-n. From the next transmission line CH (i + 1) connected to the other input terminal I L of the two input terminals, and the output signal CH (i + 1) The switching operation is performed so that it becomes the output signal of the channel CHi.

【0008】切り換え信号発生部(制御部)2 は、複数
n の正規の伝送路CH1 〜CHn の伝送状況を、その受信側
の 2対1 セレクタ5-i(但しi=1,2─,n) の出力で常時
監視していて、其の送信側の 2対1 セレクタ3-i(但し
i=1,2─,n-1)と受信側の 2対1 セレクタ5-i(但しi=
1,2─,n) の動作を制御する選択信号L/H を発生する
が、初め伝送路CH1 〜CHn でnビット信号が正しく伝送
されている場合は、送信側の 2対1 のセレクタ3-1 〜3-
(n-1) の全ての端子Sに状態L の選択信号L を送出し、
受信側の 2対1 セレクタ5-1 〜5-n の全ての端子Sには
状態H の選択信号H を送出する。次に伝送路CH1 〜CHn
の何れか一つの例えば伝送路CHi が線路の切断等で伝送
不能となった事を、受端の 2対1 セレクタ5-iの出力で
検出した場合は、切り換え信号発生部(制御部)2 が、
其の状況を読み取り、其の受端のセレクタ5-iに対向す
る送端の 2対1 セレクタ3-i以降の全セレクタ3-i〜3-
(n-1)の端子Sに状態H の選択信号H を送る。送端のセ
レクタ3-i〜3-(n-1) では、其の2入力端子の一方 IH
が選択されるので、図4に示す様に、入力端子IH に入
力する伝送路CHi への伝送信号CHi は、出力端子Oに接
続された次の伝送路CH(i+1) に順に接続され、伝送路CH
i が切断等で伝送不能となっても、(n-1) 本の正規の伝
送路CH1 〜CH(i-1),CH(i+1) 〜CHn と1本の予備の伝送
路CH(n+1) の合計nの伝送路で、n ビット信号の並列伝
送が支障無く可能となる。図1の中の4(点線枠で囲ん
だ部分)は、受信側の経路切り換え部であり、図3の送
信側の 2対1 セレクタ3-iと同じ機能を有する 2対1 セ
レクタ5-i(但しi=1,2─,n) で構成される。その受信
側のセレクタ5-iは、その2入力端子の一方 IH が伝送
路CHi の出力に接続され、他方の入力端子 IL が次の伝
送路CH(i+1) の出力に接続されている。初め、複数n の
正規の伝送路CH1 〜CHn でnビット信号が正しく並列伝
送されている場合は、切り換え信号発生部(制御部)2
は、セレクタ5-i(但しi=1,2─,n) の全ての端子S
に、状態H の選択信号H を送出する。次に複数nの正規
の伝送路CH1 〜CHn の何れか一つの例えば伝送路CHi が
線路切断等で伝送不能となった事を、受端の 2対1 セレ
クタ5-iの出力で検出した場合は、切り換え信号発生部
(制御部)2 が、其の状況を読み取り、其の受端のセレ
クタ5-i以降の全セレクタ5-i〜5-nの端子Sに状態L の
選択信号L を送る。受端の各セレクタ5-i〜5-n では、
其の2入力端子の一方 IL が選択されるので、図5に示
す様に、入力端子 IL に入力する伝送路CH(i+1) からの
出力信号CH(i+1)は、出力端子Oに接続されて前の伝送
路CHiの出力信号となり、予備の伝送路CH(n+1) からの
出力信号CH(n+1)は、出力端子Oに接続されて前の伝送
路CHn の出力信号となる。即ち、伝送路CHi が切断等で
伝送不能となっても、正規の伝送路CH1 〜CH(i-1),CH(i
+1) 〜CHn と予備の伝送路CH(n+1) の合計nの伝送路
で、n ビット信号の並列伝送が可能となり、n ビットの
出力信号CH1 〜CHn が支障無く得られることになる。ま
た、図1の中の複数n の正規の伝送路CH1 〜CHn の中の
受端のみに1個のセレクタ5-1 を持つ第1番CH1 の伝送
路には、該セレクタの1個分の遅延時間を与えるディレ
イラインL1が設けられており、同じく受端のみに1個の
セレクタ5-n を持つ1 本の予備の伝送路CH(n+1) には、
同じく該セレクタの1個分の遅延時間を与えるディレイ
ラインL2が設けられてあって、他の伝送路の各送端と受
端とに1個づつ合計2個のセレクタを持つ各伝送路CH2
〜CHn と全遅延時間が等しくなる様にしている。従っ
て、或る伝送路の障害時に別の伝送路に切り替えられて
も、各セレクタの遅延を含めた伝送路の遅延時間が、複
数n の正規の伝送路CH1 〜CHn と一本の予備の伝送路CH
(n+1) とで互に全く等しいので、入力のnビット信号が
並列nの伝送路の出力側で所謂スキューの状態になるこ
とは無い。図6は、上記の複数n の正規の伝送路CH1 〜
CHn の中の受端Bのみに1個のセレクタ5-1 を持つ第1
伝送路CH1 には、該セレクタの1個分のディレイライン
L1が設けられており、同じく受端Bのみに1個のセレク
タ5-n を持つ1本の予備の伝送路CH(n+1) には、該セレ
クタの1個分のディレイラインL2が設けられてあって、
他の伝送路の各送端Aと受端Bとに1個づつ合計2個の
セレクタを持つ各伝送路CH2 〜CHn と全遅延時間が等し
くなる様にしている事を示している。
A plurality of switching signal generators (control units) 2 are provided.
The transmission status of the normal transmission channels CH1 to CHn of n is constantly monitored by the output of the 2-to-1 selector 5-i (where i = 1,2─, n) on the receiving side, and Two-to-one selector 3-i (where i = 1,2─, n-1) and receiver-side two-to-one selector 5-i (where i =
Select signal L / H that controls the operation of (1,2─, n), but if the n-bit signal is correctly transmitted on the transmission lines CH1 to CHn at the beginning, a 2: 1 selector 3 on the transmission side -13-
Send the selection signal L of state L to all terminals S of (n-1),
The selection signal H of the state H is sent to all the terminals S of the 2-to-1 selectors 5-1 to 5-n on the receiving side. Next, transmission lines CH1 to CHn
If it is detected by the output of the 2-to-1 selector 5-i at the receiving end that one of the transmission lines CHi has become untransmittable due to line breakage, etc., the switching signal generator (control unit) 2 But,
The situation is read, and all selectors 3-i to 3- from the 2-to-1 selector 3-i on the sending end that faces the selector 5-i on the receiving end.
The selection signal H of the state H is sent to the terminal S of (n-1). In the selector 3-i to 3- (n-1) at the sending end, one of the two input terminals I H
As shown in FIG. 4, the transmission signal CHi to the transmission line CHi input to the input terminal I H is sequentially connected to the next transmission line CH (i + 1) connected to the output terminal O, as shown in FIG. Transmission channel CH
Even if i cannot be transmitted due to disconnection or the like, (n-1) regular transmission channels CH1 to CH (i-1), CH (i + 1) to CHn and one backup transmission channel CH ( The parallel transmission of n-bit signals is possible without any trouble on the n total of (n + 1) transmission paths. Reference numeral 4 in FIG. 1 (a portion surrounded by a dotted line frame) is a path switching unit on the receiving side, which is a 2-to-1 selector 5-i having the same function as the 2-to-1 selector 3-i on the transmitting side in FIG. (However, i = 1,2─, n). The selector 5-i on the receiving side has one of its two input terminals I H connected to the output of the transmission line CH i and the other input terminal I L connected to the output of the next transmission line CH (i + 1). ing. First, when n-bit signals are correctly transmitted in parallel on a plurality of n regular transmission paths CH1 to CHn, the switching signal generation unit (control unit) 2
Is all terminals S of selector 5-i (where i = 1,2─, n)
Then, the selection signal H of the state H is sent to. Next, when it is detected by the output of the 2-to-1 selector 5-i at the receiving end that any one of the plural n normal transmission lines CH1 to CHn, for example, the transmission line CHi, cannot be transmitted due to line disconnection, etc. The switching signal generator (control unit) 2 reads the situation and sends the selection signal L of the state L to the terminals S of all selectors 5-i to 5-n after the selector 5-i at the receiving end. send. In each selector 5-i to 5-n of the receiving end,
Since one of the two input terminals I L is selected, the output signal CH (i + 1) from the transmission line CH (i + 1) input to the input terminal I L is output as shown in FIG. The output signal CH (n + 1) from the spare transmission line CH (n + 1) connected to the terminal O becomes the output signal of the previous transmission line CHi. Output signal. That is, even if the transmission path CHi becomes incapable of transmission due to disconnection or the like, the regular transmission paths CH1 to CH (i-1), CH (i
+1) to CHn and the spare transmission path CH (n + 1) for a total of n transmission paths, enabling parallel transmission of n-bit signals and obtaining n-bit output signals CH1 to CHn without any trouble. . In addition, in the transmission line of the first CH1 having one selector 5-1 only at the receiving end among the plural n normal transmission lines CH1 to CHn in FIG. A delay line L1 that gives a delay time is provided, and one spare transmission line CH (n + 1) that also has one selector 5-n only at the receiving end,
Similarly, a delay line L2 for giving a delay time for one selector is provided, and each transmission path CH2 has two selectors, one for each of the transmission end and the reception end of the other transmission path.
~ CHn and the total delay time are equal. Therefore, even if the transmission path is switched to another transmission path when a failure occurs in one transmission path, the delay time of the transmission path including the delay of each selector is equal to a plurality of n regular transmission paths CH1 to CHn and one spare transmission path. Road CH
Since (n + 1) is completely equal to each other, the input n-bit signal does not become a so-called skew state on the output side of the parallel n transmission lines. FIG. 6 shows that the above-mentioned plural n regular transmission paths CH1 ...
The first with only one selector 5-1 in the receiving end B in CHn
The transmission line CH1 has a delay line for one selector.
L1 is provided, and similarly, one spare transmission line CH (n + 1) having one selector 5-n only at the receiving end B is provided with a delay line L2 for one selector. I was told,
This shows that the total delay time is made equal to each transmission line CH2 to CHn having two selectors, one for each of the transmission end A and the reception end B of the other transmission lines.

【0009】本発明の請求項1の実施例の図1の構成
は、伝送路の送端と受端とに 2対1 セレクタを各1段だ
け設けて、n本の正規の伝送路に対して1本の予備の伝
送路を具えた構成であったが、伝送路の送端と受端とに
同じ構成の 2対1 セレクタを各m段だけ設けて、n本の
正規の伝送路に対してm本の予備の伝送路を具えた構成
を考えることも可能である。図7は、このn本の正規の
伝送路に対しm本の予備の伝送路を具えた本発明の請求
項2に対応する構成図である。
According to the configuration of FIG. 1 of the embodiment of claim 1 of the present invention, only one 2: 1 selector is provided at each of the transmission end and the reception end of the transmission line, and n regular transmission lines are provided. It has a single spare transmission line. However, a 2-to-1 selector with the same configuration is provided at the sending end and the receiving end of the transmission line for each m stages to make n regular transmission lines. On the other hand, it is possible to consider a configuration including m spare transmission lines. FIG. 7 is a constitutional view corresponding to claim 2 of the present invention in which m spare transmission lines are provided for the n regular transmission lines.

【0010】図7の中、1 ′は送信側の経路切り換え部
であり、2 ′は切り換え信号発生部(制御部)、4 ′は
受信側の経路切り換え部である。図7の1 ′は、図1の
1と同じ機能を有する 2対1 セレクタで構成され、1段
目は 2対1 セレクタ3-(1,1)〜3-(1,n-1) で構成され、
2段目は 2対1 セレクタ3-(2,2) 〜3-(2,n) で構成さ
れ、以下の第m段目は 2対1 セレクタ3-(m,m) 〜3-(m,m
+n-1) で構成される。一般に送信側の 2対1 セレクタ3-
(k,i) (但し i= 1,2,─,m+n-1) は、その2入力端子の
一方 IH が入力信号CHi に接続され、他方の入力端子 I
L が次の入力信号CH(i+1)に接続されている。 2′の切
り換え信号発生部(制御部)は、複数nの入力信号CH1
〜CHn の伝送路CH1 〜CH(n+m) での伝送状況を其の受端
の 2対1 セレクタ5-(m,m) 〜5-(m,m+n) が選択した複数
nの出力信号で監視する機能を持ち、初め、複数nの入力
信号CH1 〜CHn が伝送路CH1 〜CHn で正しく伝送されて
いる場合は、送端の 2対1 セレクタ3-(k,i) の全ての端
子Sに、状態L の選択信号L を送出する。伝送路CH1 〜
CHn の中の任意の伝送路CHi が切断等で伝送不能となっ
た場合は、 2′の切り換え信号発生部(制御部)が、其
の状況を読み取り、相対向する送端セレクタ3-(1,i) 以
降の全セレクタ3-(1,i) 〜3-(1,n-1) の端子Sに状態H
の選択信号H を送出する。この時の各セレクタの切り換
え動作は、上述の図3のセレクタ3-i と同じである。続
いて、伝送路CHj (但し j= i,i+1,─,n+1) も伝送不能
となった時には、 2′の切り換え信号発生部(制御部)
で、伝送路CHj が伝送不能である事を読み取り、且つ i
≦ jであることを判断して、送信側のセレクタ3-(2,j)
〜3-(2,n) の全ての端子Sに状態H の選択信号H を送出
する。これにより、送信側の経路切り換え部1 より先の
伝送路では伝送路i と伝送路j とを避けて、予備の伝送
路を含めた残りのn本の伝送路によりnビット信号の並
列伝送を可能とする。続いて、伝送路CHh (但し h= 1,
2 ─,i-1) も伝送不能となった時は、 2′の切り換え信
号発生部(制御部)で、伝送路CHh が伝送不能である事
を読み取り、且つ h≦ iであることを判断し、送信側の
セレクタ3-(1,h) 〜3-(1,i-1) の全ての端子Sに状態H
の選択信号H を送出し、セレクタ3-(2,i) 〜3-(2,n) の
全ての端子Sに状態H の選択信号H を送出する。これに
より、送信側の経路切り換え部1 より後の伝送路では伝
送路h と伝送路i とを避け、予備の伝送路を含めた残り
のn本の伝送路によりnビット信号の並列伝送を可能と
する。一般に、既にn本の伝送路i1, i2─i N (但しN=
1,2─m-1, i1<i2<─<iN ) が伝送不能の状態で、更に
iN+1 が伝送不能である事を、 2′の切り換え信号発生
部(制御部)が読み取った時は、 iN+1 >iN であれば、
送信側のセレクタ3-(N+1,iN+1)〜3-(N+1,n+N) の全ての
端子Sに、状態H の選択信号H を送出し、 iN+1 <iN
あれば、2 ′の切り換え信号発生部(制御部)が、 iK
<iN+1 <i k+1 となる Kを求め、N+1 を K+1に、K+1 〜N
を K+2〜N+1 に読み換えた上で、K+1段〜N+1 段のセレ
クタの中、セレクタ3-(x,y) (但し x= K+1,─N+1 、y=
i x,─,x+n-1) の全ての端子Sに、状態H の選択信号H
を送出する。図8に上記の一般の場合の送信側の 2対1
セレクタ3-(k,i) (但し i= 1,2,─,m+n-1) の切り換え
処理の手順を示す。図7中の 4′は受信側の経路切り換
え部であり、図3のセレクタ3-i と同じ機能を有する 2
対1 セレクタ5-i で構成され、1段目(図に示した様
に、出力側から順に1段目,2段目─m段目と呼ぶ)
は、5-(1,1) 〜5-(1,n) で構成され、2段目は 2対1 セ
レクタ5-(2,2) 〜5-(2,n+1) で構成され、以下第m段目
は 2対1 セレクタ5-(m,m) 〜5-(m,m+n) で構成される。
2対1 セレクタ5-(k,i) (但し i= 1,2 ─,m+n) は、2
入力端子の一方の端子 IH が伝送路CHi の出力に接続さ
れ、他方の入力端子 IL が次の伝送路CH(i+1) の出力に
接続されている。初め、n個の信号CH1 〜CHnを伝送路C
H1 〜CHn が正しく伝送している場合には、2 ′の切り
換え信号発生部(制御部)は、受信側4 ′の全てのセレ
クタの端子Sに、状態H の選択信号H を送る。伝送路CH
1 〜CHn の中の任意の伝送路CHi が切断等で伝送不能と
なった時は、2 ′の切り換え信号発生部(制御部)が其
の状況を読み取り、受信側4 ′のセレクタ5-(1,i) 〜5-
(1,n) の全ての端子Sに、状態L の選択信号L を送る。
既に送信側1 ′で、信号CH1 〜CHn が伝送路CH(i+1) 〜
CH(n+1) で伝送されているので、受信側の経路切り換え
部4 ′では、伝送路CH(i+1) 〜CH(n+1) を通って来た伝
送信号が、伝送路CH1 〜CHn の出力信号に切り換えられ
て、n本の並列信号を出力する。この時の受信側4 ′の
経路切り換え動作は前述と同じである。続いて伝送路CH
j (但し j=i+1, ─,n+1)も伝送不能となった時には、2
′の切り換え信号発生部(制御部)が、其の伝送路CHj
が伝送不能である状況を読み取り、且つ i+1≦j であ
る事を判断し、送信側1 ′のセレクタ3-(2,j) 〜3-(2,n
+1) の全ての端子Sに、状態L の選択信号Lを送る。既
に受信側の経路切り換え部5 ′より前に、伝送路CHi と
伝送路CHj を避けて、n本の並列伝送路に入力され伝送
されるので、出力信号としてn本の並列信号CH1 〜CHn
が出力される。一般に、既にn本の伝送路i1, i2─i N
(但しN= 1,2─m-1, i1<i2<─<iN ) が伝送不能の状態
で、更に iN+1 が伝送不能である事を、 2′の切り換え
信号発生部(制御部)が読み取った時は、 iN+1 >iN
あれば、受信側のセレクタ5-(N+1,iN+1)〜5-(N+1,n+N+
1) の全ての端子Sに、状態L の選択信号L を送出し、
iN+1 <iN であれば、2 ′の切り換え信号発生部(制御
部)が、 iK <iN+1 <ik+1 となる Kを求め、N+1 を K+1
に、K+1 〜N を K+2〜N+1 に読み換えた上で、 K+1段〜
N+1 段のセレクタの中、セレクタ5-(x,y) (但し x= K+
1,─N+1 、y= ix,─,x+n) の全ての端子Sに、状態L の
選択信号L を送出する。また、図7には、図1と同様
に、ディレイラインL1,L2 を設ける事により、全ての伝
送路の遅延時間が各セレクタの遅延を含めて互に等しく
なるので、或る伝送路の障害時の信号経路の変更により
n個の並列データが所謂スキューの状態になる事を抑え
ることが出来る。伝送路の送信側と受信側とにディレイ
ラインL1,L2 として設定する長さは、送信側1 ′では図
9に示す様に、受信側4 ′では図10に示す様に、予備の
伝送路も含めた全ての伝送路の遅延時間が、各々の2対1
セレクタの遅延時間を含めて、互に等しくなるように
定められる。
In FIG. 7, 1'denotes a path switching unit on the transmission side.
, 2'is the switching signal generator (control unit), and 4'is
This is a path switching unit on the receiving side. 1'in FIG. 7 is the same as in FIG.
It consists of a 2-to-1 selector with the same function as 1
The eye consists of 2-to-1 selectors 3- (1,1) to 3- (1, n-1),
The second stage consists of 2-to-1 selectors 3- (2,2) to 3- (2, n).
The following m-th stage is a 2-to-1 selector 3- (m, m) to 3- (m, m
+ n-1). Generally a 2: 1 selector on the transmitting side 3-
(k, i) (where i = 1,2, ─, m + n-1) is
Meanwhile IHIs connected to the input signal CHi and the other input terminal I
LAre connected to the next input signal CH (i + 1). 2'off
The switching signal generation unit (control unit) uses multiple n input signals CH1.
~ CHn transmission path CH1 to CH (n + m)
2 to 1 selector of 5- (m, m) to 5- (m, m + n)
It has a function of monitoring with n output signals, and initially has multiple n inputs.
The signals CH1 to CHn are correctly transmitted on the transmission lines CH1 to CHn.
If it is, all ends of the 2-to-1 selector 3- (k, i) of the sending end
The selection signal L of the state L is sent to the child S. Transmission line CH1 ~
Transmission line CHi in CHn becomes untransmittable due to disconnection, etc.
2 ', the switching signal generator (control unit)
Read the status of and select the opposite end selector 3- (1, i)
All selectors 3- (1, i) to 3- (1, n-1) in descending state S
Send the selection signal H of. Switching of each selector at this time
The operation is the same as that of the selector 3-i shown in FIG. Continued
Transmission channel CHj (where j = i, i + 1, ─, n + 1) cannot be transmitted.
2 ', the switching signal generator (control unit)
Read that the transmission path CHj cannot be transmitted, and
Judge that ≤ j and select 3- (2, j) on the sending side
Sends selection signal H of state H to all terminals S of 3- (2, n)
I do. As a result, the route switching unit 1 on the transmission side
Avoid transmission line i and transmission line j on the transmission line
The remaining n transmission lines, including the transmission line
Enables column transmission. Then, the transmission path CHh (however, h = 1,
2 ─, i-1) also becomes unable to transmit, the 2'switching signal
The transmission path CHh cannot be transmitted in the signal generation section (control section).
Read, and determine that h ≤ i,
State H for all terminals S of selectors 3- (1, h) to 3- (1, i-1)
Of the selector 3- (2, i) to 3- (2, n).
The selection signal H of the state H is sent to all the terminals S. to this
Therefore, transmission is performed on the transmission path after the path switching unit 1 on the transmission side.
Avoid transmission line h and transmission line i, and leave the rest including the backup transmission line.
Enables parallel transmission of n-bit signals by n transmission lines of
I do. Generally, there are already n transmission lines i1,i2─iN(However, N =
 1,2─m-1, i1<i2<─ <iN) Is not transmittable,
 iN + 12'switching signal is generated
When the unit (control unit) reads it, iN + 1> iNIf,
Transmitter selector 3- (N + 1, iN + 1) ~ 3- (N + 1, n + N)
The selection signal H of the state H is sent to the terminal S, and iN + 1<iNso
If so, the 2'switching signal generator (control unit)K
<iN + 1<i k + 1To find K, N + 1 to K + 1, K + 1 to N
To K + 2 to N + 1, and then select K + 1 to N + 1
Selector 3- (x, y) (where x = K + 1, ─N + 1, y =
 i x,─, x + n-1) for all terminals S of state H selection signal H
Is sent. Fig. 8 shows the case of 2 to 1 on the transmitting side in the above general case.
Selector 3- (k, i) (however i = 1,2, ─, m + n-1) switching
The processing procedure is shown. 4'in FIG. 7 is path switching on the receiving side
And has the same function as selector 3-i in FIG. 3 2
It consists of a pair 1 selector 5-i, and the first stage (as shown in the figure
In the order from the output side, it is called the 1st stage, 2nd stage-m stage.)
Is composed of 5- (1,1) to 5- (1, n), and the second stage is a 2-to-1 cell.
Lectors 5- (2,2) to 5- (2, n + 1).
Consists of 2-to-1 selectors 5- (m, m) to 5- (m, m + n).
 2-to-1 selector 5- (k, i) (where i = 1,2 ─, m + n) is 2
One of the input terminals IHIs connected to the output of transmission line CHi.
The other input terminal ILTo the output of the next channel CH (i + 1)
It is connected. First, n signals CH1 to CHn are transmitted to the transmission line C.
If H1 to CHn are correctly transmitted, the 2 '
The replacement signal generator (control unit) is used to select all selectors on the receiving side 4 '.
The selection signal H of the state H is sent to the terminal S of the actuator. Channel CH
Any channel CHi from 1 to CHn cannot be transmitted due to disconnection, etc.
2 ', the switching signal generator (control unit)
Read the status of and select the receiving side 4'selectors 5- (1, i) to 5-
The selection signal L of the state L is sent to all the terminals S of (1, n).
Already on the transmitting side 1 ′, signals CH1 to CHn are transmitted on channels CH (i + 1) to
Since it is transmitted by CH (n + 1), the route on the receiving side is switched.
In section 4 ', the transmissions from channels CH (i + 1) to CH (n + 1) are transmitted.
The transmission signal is switched to the output signals of transmission channels CH1 to CHn.
And outputs n parallel signals. At this time the receiving side 4 '
The path switching operation is the same as described above. Then the transmission channel CH
When j (however, j = i + 1, ─, n + 1) cannot be transmitted, 2
 ′ Switching signal generator (control unit)
 Is not transmitted, and i + 1 ≤ j
The sender 1 ′ selectors 3- (2, j) to 3- (2, n
The selection signal L of the state L is sent to all the terminals S of (+1). Already
Before the path switching unit 5'on the receiving side,
Avoid the transmission path CHj and input to n parallel transmission paths for transmission
Therefore, n parallel signals CH1 to CHn are output as output signals.
Is output. Generally, there are already n transmission lines i1,i2─iN
(However, N = 1,2─m-1, i1<i2<─ <iN) Cannot be transmitted
And then iN + 1Is not transmitted, it is switched to 2 '
When read by the signal generator (control unit),N + 1> iNso
If there is, selector 5- (N + 1, i on the receiving sideN + 1) ~ 5- (N + 1, n + N +
Send the selection signal L of state L to all terminals S of 1),
iN + 1<iNIf so, the 2'switching signal generator (control
Part) is iK<iN + 1<ik + 1To find K, and N + 1 is K + 1
, K + 1 to N are read as K + 2 to N + 1, and then K + 1
Selector 5- (x, y) (where x = K +
1, ─N + 1, y = ix,─, x + n) of all terminals S of state L
Send the selection signal L. Also, in FIG. 7, the same as in FIG.
By installing delay lines L1 and L2 in
The delay time of the transmission path is equal to each other including the delay of each selector.
Therefore, by changing the signal path when a certain transmission line fails
Suppresses the so-called skew state of n parallel data
Rukoto can. Delay on the transmission side and reception side of the transmission path
The lengths set for lines L1 and L2 are
As shown in FIG. 9, on the receiving side 4 ', as shown in FIG.
The delay time of all transmission lines including the transmission line is 2: 1
 Be equal to each other, including the selector delay time
Determined.

【0011】なお、送信側1 ′と受信側4 ′とで各セレ
クタの端子Sに入力する選択信号の状態L/H を、状態H/
L に反転し、2入力端子の IH と IL とを逆にして、伝
送路CH1 には L2 のディレイラインを設け、予備の伝送
路CH(n+1) に L1 のディレイラインを設ける事によって
も本発明を実現できることは言うまでもない。
The state L / H of the selection signal input to the terminal S of each selector on the transmitting side 1'and the receiving side 4'is changed to the state H / H.
Invert to L, reverse the I H and I L of the two input terminals, provide the transmission line CH1 with the L2 delay line, and provide the backup transmission line CH (n + 1) with the L1 delay line. It goes without saying that the present invention can also be realized by.

【0012】また、図11は、本発明の請求項3に対応す
る実施例の構成図であり、6 の送信側の経路切り換え部
が、複数n の正規の伝送路CH1 〜CHnに入力する各信号C
H1〜CHn を分岐して入力とし, 1 本の伝送路CH(n+1) を
出力とする n対1 のセレクタ9 から成り、7 の受信側の
経路切り換え部の複数n の 2対1 セレクタ5-1 〜5-n
が、各2入力端子 IL, IH から或る伝送路CHi の障害時
に一方を選択する全部で n個の入力端子 IH に、前記送
信側6 の n対1 セレクタ9 の1本の伝送路CH(n+1) の出
力を入力するように構成したものである。8 の切り換え
信号発生部(制御部)は、複数n の正規の伝送路CH1 〜
CHnの伝送状況を監視する機能を有し、初め、伝送路CH1
〜CHnが複数n の信号を正しく伝送している場合は、受
信側7のセレクタ5-1 〜5-n の全ての端子Sに、状態L
の選択信号L を送り、入力端子IL を選択し、出力信号
として n個並列の信号CH1 〜CHn を出力する様になって
いる。この時は、 n対1 のセレクタ9 は任意の状態で良
い。次に、送信側6 と受信側7 の間の複数n の正規の伝
送路CH1 〜CHnの中の任意の伝送路CHi が切断等の障害
で伝送不能となった時は、8 の切り換え信号発生部(制
御部)が其の伝送路CHi の受信の障害状況を読み取り、
送信側6 の n対1 セレクタ9 の端子Sに対し、出力の予
備の伝送路CH(n+1) に n入力の中の信号CHi を出力する
様に命令する制御信号を発生し、受信側7 のセレクタ5-
i の端子Sに対して、2入力端子の中の入力端子 IH
選択させ、予備の伝送路CH(n+1) を通って来た信号CHi
を、正規の伝送路CHi の障害で断となった信号CHi の代
替として、出力するように構成する。この時、 n対1 セ
レクタ9 の遅延時間を含めた予備の伝送路CH(n+1) の遅
延時間を正規の伝送路CH1 〜CHn の遅延時間に等しくな
る様にすれば、伝送路CHi の障害時の信号CHi の経路変
更により複数n の並列データに生ずる所謂スキューの状
態となる事が抑制されるので、支障は無い。
FIG. 11 is a block diagram of an embodiment corresponding to claim 3 of the present invention, in which the transmission side path switching unit 6 inputs to a plurality n of regular transmission paths CH1 to CHn. Signal C
It consists of an n-to-1 selector 9 that branches H1 to CHn as inputs and outputs one transmission path CH (n + 1), and a plurality of n 2-to-1 selectors in the path switching unit on the receiving side of 7 5-1 to 5-n
However, one of the n-to-1 selectors 9 on the transmitting side 6 is transmitted to a total of n input terminals I H that select one of the two input terminals I L and I H when a certain transmission line CHi fails. It is configured to receive the output of the channel CH (n + 1). 8 switching signal generators (control units) are provided for multiple n regular transmission channels CH1 to CH1.
It has a function to monitor the transmission status of CHn.
~ If CHn is correctly transmitting multiple n signals, all terminals S of the selectors 5-1 to 5-n on the receiving side 7 are in state L
It sends the selection signal L of, selects the input terminal I L , and outputs n parallel signals CH1 to CHn as output signals. At this time, the n-to-1 selector 9 may be in any state. Next, if any of the n normal transmission paths CH1 to CHn between the transmission side 6 and the reception side 7 becomes incapable of transmission due to a failure such as disconnection, a switching signal of 8 is generated. Section (control section) reads the reception failure status of the transmission path CHi,
A control signal for instructing the terminal S of the n-to-1 selector 9 on the transmission side 6 to output the signal CHi in the n inputs to the output backup transmission line CH (n + 1) is generated, and the reception side 7 selectors 5-
The signal CHi that is transmitted through the spare transmission path CH (n + 1) by selecting the input terminal I H of the two input terminals for the terminal S of i
Is configured to be output as a substitute for the signal CHi that is disconnected due to the failure of the regular transmission path CHi. At this time, if the delay time of the backup transmission line CH (n + 1) including the delay time of the n-to-1 selector 9 is made equal to the delay time of the regular transmission lines CH1 to CHn, the transmission line CHi There is no hindrance because it is possible to prevent a so-called skew state that occurs in a plurality n of parallel data due to the change of the route of the signal CHi at the time of failure.

【0013】[0013]

【発明の効果】以上説明した如く、本発明によれば、並
列に複数n の伝送路の中の任意の幾つかの伝送路に障害
が発生した時の対策として、従来の制御法が複雑なマト
リックススイッチの代替として、構成も制御も簡単な冗
長化手段を提供できて、且つ複数n の並列データに所謂
スキューの状態を発生すること無く並列伝送が出来るの
で、伝送路の途中に並列に複数の光線路が入る並列伝送
装置の低コスト化や、適用できる伝送路の長距離化を可
能とし、総じて並列伝送装置の信頼性の向上にも大きく
寄与する効果が得られる。
As described above, according to the present invention, the conventional control method is complicated as a countermeasure when a failure occurs in any of several n transmission lines in parallel. As an alternative to the matrix switch, it is possible to provide a redundant means that is simple in configuration and control, and can perform parallel transmission without causing a so-called skew condition for multiple n parallel data. It is possible to reduce the cost of the parallel transmission device in which the optical line is included and to extend the applicable transmission path, and it is possible to obtain the effect of greatly contributing to the improvement of the reliability of the parallel transmission device as a whole.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明の並列信号の伝送路障害時の誤り処理
方式の基本構成を示す原理図
FIG. 1 is a principle diagram showing a basic configuration of an error processing method when a parallel signal transmission line failure according to the present invention.

【図2】 本発明の実施例としての光並列伝送制御方式
の構成図
FIG. 2 is a configuration diagram of an optical parallel transmission control system as an embodiment of the present invention.

【図3】 本発明の動作を説明する為の送信側の 2対1
セレクタの構成と其の真理値を示す図
FIG. 3 is a two-to-one transmission side for explaining the operation of the present invention.
Diagram showing selector structure and its truth value

【図4】 本発明の動作を説明する為の正規伝送路の任
意の一つの障害時の送信側の経路切り換え部の動作説明
FIG. 4 is an operation explanatory diagram of a path switching unit on the transmission side at the time of failure of any one of the regular transmission paths for explaining the operation of the present invention.

【図5】 本発明の動作を説明する為の正規伝送路の任
意の一つの障害時の受信側の経路切り換え部の動作説明
FIG. 5 is an operation explanatory diagram of a path switching unit on the receiving side when any one of the regular transmission paths has a fault for explaining the operation of the present invention.

【図6】 本発明の動作を説明する為のディレイライン
L1, L2の接続図
FIG. 6 is a delay line for explaining the operation of the present invention.
Connection diagram of L1 and L2

【図7】 本発明の請求項2に対応する実施例の回路構
成を示す図
FIG. 7 is a diagram showing a circuit configuration of an embodiment corresponding to claim 2 of the present invention.

【図8】 本発明の請求項2の実施例の送信側セレクタ
の動作フロー図
FIG. 8 is an operation flow chart of a transmitting side selector according to the second embodiment of the present invention.

【図9】 本発明の請求項2の実施例の送信側のディレ
イラインの挿入図
FIG. 9 is an insertion diagram of a delay line on the transmission side according to the second embodiment of the present invention.

【図10】 本発明の請求項2の実施例の受信側のディ
レイラインの挿入図
FIG. 10 is an insertion diagram of a delay line on the receiving side according to the second embodiment of the present invention.

【図11】 本発明の請求項3に対応する実施例の回路
構成を示す図
FIG. 11 is a diagram showing a circuit configuration of an embodiment corresponding to claim 3 of the present invention.

【図12】 従来の技術を説明する為の光並列伝送制御
方式の構成図
FIG. 12 is a block diagram of an optical parallel transmission control method for explaining a conventional technique.

【符号の説明】[Explanation of symbols]

1,6は送信側の経路切り換え部、2,8は切り換え信
号発生部(制御部)、3-1 〜3-(n-1) は送信側の 2対1
セレクタ、4,7は受信側の経路切り換え部、5-1 〜5-
n は受信側の 2対1 セレクタ、CH1 〜CHn はn個並列の
入力データ又は出力データであり且つn本並列の正規の
伝送路、CH(n+1) は1本の予備の伝送路である。
1, 6 are path switching units on the transmission side, 2, 8 are switching signal generation units (control units), and 3-1 to 3- (n-1) are 2 to 1 on the transmission side.
Selectors 4 and 7 are path switching units on the receiving side, 5-1 to 5-
n is a 2-to-1 selector on the receiving side, CH1 to CHn are n input data or output data in parallel, and n parallel transmission channels, and CH (n + 1) is a backup transmission channel. is there.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 複数n の信号系列を同じ複数n の並列の
伝送路で伝送する場合に、該複数n の正規の伝送路 CH1
〜CHn の他に其の送端が前記正規の伝送路の第n番 CHn
の入力信号に直結された1本の予備の伝送路 CH(n+1)
と、該複数の伝送路の送端と受端とに相対向して障害
時には正常時の伝送路 CHi を次の伝送路 CH(i+1) に順
に切り替える 2対1 セレクタ 3-1〜3-(n-1),5-1〜5-n
と、前記正規の伝送路の第1番 CH1 及び予備の伝送路
CH(n+1) の両方に各セレクタの遅延時間を含み他の伝送
路と全遅延時間を等しくするディレイライン L1,L2 と
を設け、前記受端の各セレクタ 5-1〜5-n の出力を監視
して、正規の複数n の伝送路 CH1〜CHn の中の任意の1
つ 例えばCH2 に障害が起きた事を検出した時は、制御
信号を発生し其の障害が起きた伝送路 CH2 の送端と受
端のセレクタ 3-2,5-2 以降の全セレクタ 3-2〜3-(n-
1), 5-2〜5-n に前記の選択動作をさせ前記障害が起き
た時も常に等しい遅延時間を持つn並列の伝送路を確保
し出力するようにしたことを特徴とする並列信号の伝送
路障害時の誤り処理方式。
1. When a plurality n of signal sequences are transmitted through the same plurality n of parallel transmission lines, the plurality n of regular transmission lines CH1
~ CHn and its sending end is the nth CHn of the regular transmission line
One spare transmission line CH (n + 1) directly connected to the input signal of
And the transmission end and the reception end of the plurality of transmission lines are opposed to each other, and when there is a failure, the transmission line CHi in the normal state is sequentially switched to the next transmission line CH (i + 1). -(n-1), 5-1 ~ 5-n
And the first CH1 of the regular transmission line and the backup transmission line
The delay lines L1 and L2 that include the delay time of each selector in both CH (n + 1) and equalize the total delay time with other transmission lines are provided, and the selectors 5-1 to 5-n of each receiving end are The output is monitored and any one of the regular multiple n transmission channels CH1 to CHn is selected.
For example, when a failure is detected in CH2, a control signal is generated and the failure occurs in the transmission path CH2 selectors 3-2 and 5-2 and all selectors after selector 3- 2 to 3- (n-
1), 5-2 to 5-n, the selection operation is performed, and even when the failure occurs, n parallel transmission lines having the same delay time are always secured and output, and a parallel signal. Error handling method when a transmission line failure occurs.
【請求項2】 前記請求項1における複数n の正規の伝
送路 CH1〜CHn に対する1本の予備の伝送路 CH(n+1)
が、1より大きいm本の予備の伝送路 CH(n+1)〜CH(n+
m) となった場合には、該複数の伝送路の送端と受端と
に相対向して障害時には正常時の伝送路 CHi を次の伝
送路 CH(i+1) に順に切り替える 2対1 セレクタ 3-1〜3
-(n-1),5-1〜5-n をm段だけ縦続し、各伝送路に設ける
ディレイライン L1,L2 も該m段のセレクタの各遅延時
間を含めて他の伝送路と全遅延時間が等しくなるように
設けることを特徴とする並列信号の伝送路障害時の誤り
処理方式。
2. One spare transmission line CH (n + 1) for the plurality n of regular transmission lines CH1 to CHn in claim 1.
Is more than 1, and there are m backup channels CH (n + 1) to CH (n +
m), the transmission end and the reception end of the multiple transmission paths are opposed to each other, and in the event of a failure, the normal transmission path CHi is switched to the next transmission path CH (i + 1) in order. 1 Selector 3-1 to 3
-(n-1), 5-1 to 5-n are cascaded for m stages, and the delay lines L1 and L2 provided in each transmission line are also connected to other transmission lines including each delay time of the m stage selector. An error processing method at the time of a transmission line failure of a parallel signal, which is provided so that the delay times are equal.
【請求項3】 前記請求項1において、複数の並列伝送
路の送端に設けた 2対1 セレクタ 3-1〜3-(n-1) の代り
に、複数n の正規伝送路 CH1〜CHn の各入力を分岐した
信号を入力とし, 1 本の予備伝送路 CH(n+1) へ出力す
る n対1 セレクタ 9 を設け、該 n対1 セレクタの出力
の予備伝送路 CH(n+1) の出力を前記複数の並列伝送路
の受端に設けた 2対1 セレクタ 5-1〜5-n の各2入力端
子のうち前記正規伝送路 CH1〜CHn の任意の1伝送路 C
Hi の障害時に選択する一方の入力端子 IH の全てに
入力するようにしたことを特徴とする並列信号の伝送路
障害時の誤り処理方式。
3. A plurality of normal transmission lines CH1 to CHn instead of the 2 to 1 selectors 3-1 to 3- (n-1) provided at the transmission ends of the plurality of parallel transmission lines according to claim 1. An n-to-1 selector 9 that outputs the signal to each spare transmission line CH (n + 1) by using the signal branched from each input as input is provided, and the spare transmission line CH (n + 1 ) Output is provided at the receiving end of the plurality of parallel transmission lines, and one of the normal transmission lines CH1 to CHn is selected from the two input terminals of the two-to-one selectors 5-1 to 5-n.
Error processing method for parallel channel transmission path failure, characterized in that input is made to all of the one input terminal I H selected at Hi failure.
JP7214597A 1995-08-23 1995-08-23 Error processing system for parallel signal on the occurrence of fault in transmission line Withdrawn JPH0964853A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7214597A JPH0964853A (en) 1995-08-23 1995-08-23 Error processing system for parallel signal on the occurrence of fault in transmission line

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7214597A JPH0964853A (en) 1995-08-23 1995-08-23 Error processing system for parallel signal on the occurrence of fault in transmission line

Publications (1)

Publication Number Publication Date
JPH0964853A true JPH0964853A (en) 1997-03-07

Family

ID=16658359

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7214597A Withdrawn JPH0964853A (en) 1995-08-23 1995-08-23 Error processing system for parallel signal on the occurrence of fault in transmission line

Country Status (1)

Country Link
JP (1) JPH0964853A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8050174B2 (en) 2003-01-09 2011-11-01 International Business Machines Corporation Self-healing chip-to-chip interface

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8050174B2 (en) 2003-01-09 2011-11-01 International Business Machines Corporation Self-healing chip-to-chip interface

Similar Documents

Publication Publication Date Title
JP2697519B2 (en) Intelligent interconnect and data transmission method for broadband optical networks
US4712215A (en) CRC calculation machine for separate calculation of checkbits for the header packet and data packet
WO2005048520A1 (en) Data transmission method and data transmission device
JP2849819B2 (en) switch
US5448572A (en) Spare signal line switching method and apparatus
EP1036483A2 (en) Redundancy termination for dynamic fault isolation
US6941486B1 (en) Method and device for optimizing the transmission safety and the defect tolerance in high-bit-rate data networks
JPH0964853A (en) Error processing system for parallel signal on the occurrence of fault in transmission line
JP2000068986A (en) Transmission system
JP3039385B2 (en) ATM communication device
JPH0454738A (en) Receiving end switching transmission system
JP2002027025A (en) Data transmitting system
JPH06197080A (en) Optical parallel transmission control system
US7414965B2 (en) Hitless protection switching
JP2697395B2 (en) Transmission line switching device
JP3138508B2 (en) Signal path switching method between transmission devices
JPH11331374A (en) Crossbar switch device and its redundancy method
KR100946732B1 (en) A fault-tolerant broadcast router
JPH09146709A (en) Control device having highly reliable a/d conversion function
JP2734859B2 (en) Communication path switching device
KR200403625Y1 (en) Units of communication system having duplex control signal
JP2500763B2 (en) Transmission equipment
JPH09200299A (en) Signal transmitter
JP2000295204A (en) Device for selecting data line
JP2695953B2 (en) Failure detection circuit

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20021105