JPH0963583A - Lithium secondary battery - Google Patents

Lithium secondary battery

Info

Publication number
JPH0963583A
JPH0963583A JP7222024A JP22202495A JPH0963583A JP H0963583 A JPH0963583 A JP H0963583A JP 7222024 A JP7222024 A JP 7222024A JP 22202495 A JP22202495 A JP 22202495A JP H0963583 A JPH0963583 A JP H0963583A
Authority
JP
Japan
Prior art keywords
lithium
positive electrode
active material
secondary battery
lithium secondary
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP7222024A
Other languages
Japanese (ja)
Inventor
Jun Suzuki
純 鈴木
Masayoshi Nakajima
匡良 中島
Kenji Tsuchiya
謙二 土屋
Kazuo Anzai
和雄 安斎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
FDK Twicell Co Ltd
Original Assignee
Toshiba Battery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Battery Co Ltd filed Critical Toshiba Battery Co Ltd
Priority to JP7222024A priority Critical patent/JPH0963583A/en
Publication of JPH0963583A publication Critical patent/JPH0963583A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PROBLEM TO BE SOLVED: To provide a lithium secondary battery with high capacity suitable for the power sources of various types of portable electronic apparatus by solving the problem for obtaining high capacity which cannot obtain in a lithium secondary battery using a lithium manganese composite oxide as a positive active material. SOLUTION: A lithium secondary battery has a negative electrode 5 capable of absorbing/releasing lithium, a nonaqueous electrolyte, and a positive electrode using a lithium-containing oxide as an active material. The positive active material has peaks around 19 deg., 22 deg., 32 deg., 37 deg., 42 deg., 44.5 deg., 53 deg., 56.5 deg., and 66 deg. of 2θ in the X-ray diffraction pattern using Cuk αray, and has a ratio of the peak strength around 56.5 deg. and the maximum peak strength around 37 deg. of 0.05 to less than 0.4.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明はリチウム二次電池に
係り、さらに詳しくは正極を改良したリチウム二次電池
に関する。
TECHNICAL FIELD The present invention relates to a lithium secondary battery, and more particularly to a lithium secondary battery having an improved positive electrode.

【0002】[0002]

【従来の技術】たとえば、携帯用電話機などの携帯用機
器、コードレステレフォンなどのコードレス機器、ビデ
オカメラなどの音響映像機器、ワードプロセッサーなど
の事務機器、メモリー内蔵の家電機器、電気自動車、あ
るいは太陽電池と組み合わせた時計などの主電源やメモ
リーバックアップ用電源として、長時間、かつ経済的に
使用できるリチウムが要望されている。そして、この種
リチウム二次電池においては、正極活物質として二硫化
チタン,五酸化バナジウム,マンガン酸化物などが用い
られており、その中でも資源的に豊富で安価なマンガン
酸化物が注目されている。
2. Description of the Related Art For example, portable equipment such as a portable telephone, cordless equipment such as a cordless telephone, audio-visual equipment such as a video camera, office equipment such as a word processor, home electric appliances with a built-in memory, an electric vehicle, or a solar battery. Lithium, which can be used for a long time and economically, is desired as a main power supply for a combined clock and a power supply for memory backup. In this type of lithium secondary battery, titanium disulfide, vanadium pentoxide, manganese oxide, etc. are used as a positive electrode active material, and among them, manganese oxide, which is abundant in resources and inexpensive, is drawing attention. .

【0003】ところで、マンガン酸化物の場合、マンガ
ンと酸素のみで構成(形成)された二酸化マンガンなど
は、充放電時の可逆性が乏しく充放電特性が劣るため、
たとえばLiMn2 O4 のように、マンガン酸化物にリチウ
ム塩を導入したリチウムマンガン複合酸化物の状態で使
用することが提案されている(たとえば米国特許第4,50
7,371 号明細書)。この種のリチウムマンガン複合酸化
物としては、前記LiMn2 O4 以外に、Li2 Mn4 O9 ,Li
4 Mn5 O12などのスピネル構造の化合物[たとえば、Ma
t.Res.Bull.,25,p 657(1990)],さらにはLi2 Mn O3
を含有する二酸化マンガン(特開昭 63-114064号公報)
などが知られている。
By the way, in the case of manganese oxide, manganese dioxide, which is composed (formed) of only manganese and oxygen, has poor reversibility during charge and discharge and poor charge and discharge characteristics.
For example, it has been proposed to use it in the state of a lithium manganese composite oxide in which a lithium salt is introduced into manganese oxide, such as LiMn 2 O 4 (for example, US Pat. No. 4,50).
No. 7,371). The lithium manganese composite oxide of this kind, in addition to the LiMn 2 O 4, Li 2 Mn 4 O 9, Li
Compounds of spinel structure such as 4 Mn 5 O 12 [eg Ma
t.Res.Bull., 25, p 657 (1990)], and also Li 2 Mn O 3
Manganese dioxide containing (JP-A-63-114064)
Etc. are known.

【0004】さらに、最近では、 Cukα線によるX線回
折パターンにおいて、 2θがそれぞれ19°,21°,33
°,37°,42°,53°および66°付近にピークを有し、
かつ21°付近のピークと19°付近のピークとの強度比が
1: 0.7〜 1: 1.2の値を有するリチウムマンガン複合
酸化物が正極活物質として提案されている(特開平5-17
4821号公報)。
Furthermore, recently, in the X-ray diffraction pattern by Cuk α-ray, 2θ is 19 °, 21 ° and 33 °, respectively.
Has peaks near °, 37 °, 42 °, 53 ° and 66 °,
And the intensity ratio between the peak around 21 ° and the peak around 19 ° is
A lithium manganese composite oxide having a value of 1: 0.7 to 1: 1.2 has been proposed as a positive electrode active material (Japanese Patent Application Laid-Open No. 5-17.
4821 publication).

【0005】[0005]

【発明が解決しようとする課題】しかし、前記リチウム
マンガン複合酸化物は、スピネル系の場合はスピネル構
造において占めることができるリチウム(Li)の位置が
限定され、充放電に利用できる有効な電位範囲が小さい
という欠点がある。また、Li2 Mn O3 を含有する二酸化
マンガンの場合は、Li2 Mn O3 が充放電に関与しないた
め、電池容量が低下するという問題がある。
However, in the case of spinel type, the lithium manganese composite oxide is limited in the position of lithium (Li) that can be occupied in the spinel structure, and the effective potential range that can be used for charge and discharge is limited. Has the drawback of being small. In the case of manganese dioxide containing Li 2 Mn O 3, since Li 2 Mn O 3 is not involved in charging and discharging, there is a problem that the battery capacity decreases.

【0006】本発明者らは、上記欠点や問題点に対して
鋭意検討を重ねた結果、 Cukα線によるX線回折パター
ンにおいて、 2θがそれぞれ19°,22°,32°,37°,
42°,44.5°,53°,56.5°および66°付近にピークを
有し、かつ56.5°付近のピーク強度と37°付近の最大ピ
ーク強度との比が0.05〜 0.4未満の値を有するリチウム
含有酸化物を正極活物質として用いた場合、高容量のリ
チウム二次電池として機能することを見出した。
As a result of intensive studies on the above-mentioned defects and problems, the present inventors have found that 2θ is 19 °, 22 °, 32 °, 37 °, and 2θ in the X-ray diffraction pattern by Cuk α-ray, respectively.
Lithium-containing material having peaks near 42 °, 44.5 °, 53 °, 56.5 ° and 66 °, and having a ratio between the peak intensity near 56.5 ° and the maximum peak intensity near 37 ° of 0.05 to less than 0.4 It has been found that when an oxide is used as a positive electrode active material, it functions as a high-capacity lithium secondary battery.

【0007】本発明は、上記知見に基づいてなされたも
ので、従来のリチウムマンガン複合酸化物を正極活物質
としたリチウム二次電池で達成し得なかった高容量化の
問題を解決し、各種の携帯用電子機器の電源に適する高
容量のリチウム二次電池を提供することを目的とする。
The present invention has been made on the basis of the above findings, and solves the problem of high capacity, which cannot be achieved by a conventional lithium secondary battery using a lithium manganese composite oxide as a positive electrode active material, and has various problems. An object of the present invention is to provide a high-capacity lithium secondary battery suitable for a power source of the portable electronic device.

【0008】[0008]

【課題を解決するための手段】請求項1の発明は、リチ
ウムイオンを吸蔵・放出する負極と、非水電解液と、リ
チウム含有酸化物を活物質とする正極とを備えたリチウ
ム二次電池であって、前記正極活物質は Cukα線による
X線回折パターンにおいて、 2θがそれぞれ19°,22
°,32°,37°,42°,44.5°,53°,56.5°および66
°付近にピークを有し、かつ56.5°付近のピーク強度と
37°付近の最大ピーク強度との比が0.05〜 0.4未満の値
を有することを特徴とするリチウム二次電池である。
The invention according to claim 1 is a lithium secondary battery comprising a negative electrode which occludes and releases lithium ions, a non-aqueous electrolyte, and a positive electrode which uses a lithium-containing oxide as an active material. In the X-ray diffraction pattern by Cuk α ray, 2θ is 19 ° and 22 °, respectively.
°, 32 °, 37 °, 42 °, 44.5 °, 53 °, 56.5 ° and 66
It has a peak near ° and a peak intensity near 56.5 °.
The lithium secondary battery is characterized by having a ratio with a maximum peak intensity around 37 ° of 0.05 to less than 0.4.

【0009】請求項2の発明は、請求項1記載のリチウ
ム二次電池において、正極活物質が電解二酸化マンガン
と、水酸化リチウムもしくは水酸化リチウム一水和物と
の混合物を加熱処理して作られていることを特徴とす
る。
According to a second aspect of the present invention, in the lithium secondary battery according to the first aspect, the positive electrode active material is produced by heat-treating a mixture of electrolytic manganese dioxide and lithium hydroxide or lithium hydroxide monohydrate. It is characterized by being.

【0010】上記正極活物質は、リチウム塩とアンモニ
アもしくは苛性ソーダで中和した BET比表面積が20〜50
m2 /gの電解二酸化マンガンとを 250〜 420℃の温度
(好ましくは 340〜 400℃)で、10〜30時間程度反応さ
せることによって得られる。ここで、リチウム塩として
は、たとえば水酸化リチウム(LiOH),炭酸リチウム
(Li2 CO3 ),もしくはこれらの水和塩などが挙げられ
る。また、 BET比表面積が20〜50 m2 /gの電解二酸化マ
ンガンを用いるのは、 BET比表面積が20 m2 /gより小さ
いと、リチウム塩との反応が内部まで進行せず、未反応
部分が残るので放電容量が小さい傾向がある。逆に、 B
ET比表面積が50 m2 /gより大きくなると、リチウム塩と
の反応性は良好であるが嵩高いため、活物質の充填量が
減少することになって、放電容量の低下を招来する。
The positive electrode active material has a BET specific surface area of 20 to 50 neutralized with a lithium salt and ammonia or caustic soda.
It is obtained by reacting m 2 / g of electrolytic manganese dioxide at a temperature of 250 to 420 ° C. (preferably 340 to 400 ° C.) for about 10 to 30 hours. Here, examples of the lithium salt include lithium hydroxide (LiOH), lithium carbonate (Li 2 CO 3 ), and hydrated salts thereof. In addition, the use of electrolytic manganese dioxide having a BET specific surface area of 20 to 50 m 2 / g is because when the BET specific surface area is smaller than 20 m 2 / g, the reaction with the lithium salt does not proceed to the inside and the unreacted portion Is left, the discharge capacity tends to be small. Conversely, B
When the ET specific surface area is larger than 50 m 2 / g, the reactivity with the lithium salt is good but bulky, so that the filling amount of the active material is reduced and the discharge capacity is reduced.

【0011】さらに、前記リチウム塩と電解二酸化マン
ガンとの反応に当たっては、それらリチウム塩:二酸化
マンガンの組成比( mol比)を 1: 3〜 1: 7の範囲で
選択することが好ましい。すなわち、リチウム塩に対す
る二酸化マンガンの組成比が、上記範囲より小さいとリ
チウム塩の残存量が多くなって電池容量の低下となる
し、リチウム塩に対する二酸化マンガンの組成比が、上
記範囲よりを大きくなると、未反応のγ−β相の二酸化
マンガンが多くなって電池容量の低下となる。
Further, in the reaction between the lithium salt and electrolytic manganese dioxide, it is preferable to select the composition ratio (mol ratio) of the lithium salt and manganese dioxide in the range of 1: 3 to 1: 7. That is, if the composition ratio of manganese dioxide to the lithium salt is smaller than the above range, the remaining amount of the lithium salt increases and the battery capacity decreases, and if the composition ratio of manganese dioxide to the lithium salt becomes larger than the above range. However, the amount of unreacted γ-β-phase manganese dioxide increases and the battery capacity decreases.

【0012】本発明において正極は、前記正極活物質,
導電材および粘着材を混合してプレス成型するか、ある
いは正極活物質,導電材および粘着材を適当な溶媒に懸
濁し、この懸濁物を集電体に塗布、乾燥して薄板状にす
ることにより作製できる。ここで、導電材としては、た
とえばアセチレンブラック、カーボンブラック、黒鉛な
どを挙げることができ、さらに結着材としては、たとえ
ばポリテトラフルオロエチレン(PTFE)、ポリフッ化ビ
ニリデン(PVDF)、エチレン−プロピレン−ジエン共重
合体(EPDM)、スチレン−ブタジエンゴム( SBR)など
を用いることができる。そして、前記正極活物質、導電
材および結着材の配合割合は、正極活物質80〜95質量
%、導電材 3〜20質量%、結着材 2〜 7質量%の範囲に
することが好ましい。また、集電体としては、たとえば
アルミニウム箔、ステンレス箔、ニッケル箔、チタン箔
などを用いることができる。
In the present invention, the positive electrode is the positive electrode active material,
Mix the conductive material and the adhesive material and press-mold, or suspend the positive electrode active material, the conductive material and the adhesive material in an appropriate solvent, apply the suspension to the current collector, and dry to form a thin plate. It can be produced by Here, examples of the conductive material include acetylene black, carbon black, graphite, and the like, and examples of the binder include polytetrafluoroethylene (PTFE), polyvinylidene fluoride (PVDF), ethylene-propylene-. Diene copolymer (EPDM), styrene-butadiene rubber (SBR), etc. can be used. Then, the mixing ratio of the positive electrode active material, the conductive material and the binder is preferably in the range of 80 to 95 mass% of the positive electrode active material, 3 to 20 mass% of the conductive material, and 2 to 7 mass% of the binder. . As the current collector, for example, aluminum foil, stainless steel foil, nickel foil, titanium foil or the like can be used.

【0013】本発明において、正極−負極間を電気的に
絶縁するセパレータとしては、たとえば合成樹脂製不織
布、ポリエチレン多孔質フィルム、ポリプロピレン多孔
質フィルムを用いることができる。
In the present invention, as the separator that electrically insulates between the positive electrode and the negative electrode, for example, a synthetic resin non-woven fabric, a polyethylene porous film, or a polypropylene porous film can be used.

【0014】本発明において、リチウムイオンを吸蔵・
放出する負極は、たとえばリチウム金属,リチウムを含
むアルミニウム,インジウム,ガリウム,錫,マグネシ
ウムなどの合金、もしくは炭素質材料が挙げられる。こ
こで炭素質材料としては、たとえば各種コークス類,メ
ソフェーズ型炭素類,熱分解炭素類,グラファイト類,
有機高分子体の焼成体などが挙げられる。
In the present invention, the storage of lithium ions
Examples of the negative electrode to be released include lithium metal, lithium-containing aluminum, alloys such as indium, gallium, tin, and magnesium, or carbonaceous materials. Here, as the carbonaceous material, for example, various cokes, mesophase type carbons, pyrolytic carbons, graphites,
Examples include fired bodies of organic polymers.

【0015】本発明において、非水電解液を一成分を成
す電解質としては、たとえば過塩素酸リチウム( LiClO
4 )、六フッ化リン酸リチウム(LiPF6 )、ホウフッ化
リチウム(LiBF4 )、トリフルオロメタスルホン酸リチ
ウム(LiCF3 SO3 )などのリチウム塩が挙げられる。こ
の中で安全性、電池性能を考慮するとLiPF6 、LiBF4
さらに好ましい。一方、前記電解質の溶媒としては、た
とえばエチレンカーボネート,プロピレンカーボネー
ト,ブチレンカーボネートなどの環状カーボネート、エ
チルメチルカーボネート,ジメチルカーボネート,ジメ
チルカーボネートなどの鎖状カーボネート、γ−ブチロ
ラクトン,γ−バレロラクトンなどのエステル類、1,2-
ジメトキシエタン,ジメトキシエタン,ジメトキシプロ
パン,1,3-ジオキソラン,テトラヒドロフラン,4-メチ
ル-1, 3-ジオキソラン,2-メチルテトラヒドロフランな
どのエーテル類の1種もしくは2種以上の混合系が挙げ
られる。
In the present invention, the electrolyte that forms one component of the non-aqueous electrolyte is, for example, lithium perchlorate (LiClO).
4 ), lithium hexafluorophosphate (LiPF 6 ), lithium borofluoride (LiBF 4 ), lithium trifluorometasulfonate (LiCF 3 SO 3 ), and other lithium salts. Of these, LiPF 6 and LiBF 4 are more preferable in consideration of safety and battery performance. On the other hand, examples of the solvent for the electrolyte include cyclic carbonates such as ethylene carbonate, propylene carbonate and butylene carbonate, chain carbonates such as ethylmethyl carbonate, dimethyl carbonate and dimethyl carbonate, and esters such as γ-butyrolactone and γ-valerolactone. , 1,2-
Examples thereof include one or a mixture of two or more ethers such as dimethoxyethane, dimethoxyethane, dimethoxypropane, 1,3-dioxolane, tetrahydrofuran, 4-methyl-1,3-dioxolane, and 2-methyltetrahydrofuran.

【0016】本発明に係る非水電解液二次電池は、正極
活物質として Cukα線によるX線回折パターンにおい
て、 2θがそれぞれ19°,22°,32°,37°,42°,4
4.5°,53°,56.5°および66°付近にピークを有し、
かつ56.5°付近のピーク強度と37°付近の最大ピーク強
度との比が0.05〜 0.4未満の値を有するリチウム含有酸
化物を用いている。そして、このような正極活物質は、
充放電に利用できる有効な電位範囲を広く採り得るなど
効果的に作用するので、電池の高容量化に図られるだけ
でなく、このようなすぐれた機能を長期間に亘って保持
・発揮する。
In the non-aqueous electrolyte secondary battery according to the present invention, 2θ is 19 °, 22 °, 32 °, 37 °, 42 °, 4 in the X-ray diffraction pattern by Cuk α ray as the positive electrode active material.
Has peaks near 4.5 °, 53 °, 56.5 ° and 66 °,
Further, a lithium-containing oxide having a ratio of the peak intensity near 56.5 ° to the maximum peak intensity near 37 ° of 0.05 to less than 0.4 is used. And, such a positive electrode active material,
Since it works effectively such that a wide effective potential range that can be used for charging and discharging can be taken, not only can the capacity of the battery be increased, but also such an excellent function can be retained and exhibited for a long period of time.

【0017】[0017]

【発明の実施の形態】以下、図1を参照して本発明の実
施例を説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to FIG.

【0018】実施例1 平均粒径10μm ,BET 比表面積 30m2 /gの電解二酸化マ
ンガン100gに、予め粗粉砕した水酸化リチウムをLi/Mn
mol比で 1/ 4に相当する量加え、自動乳鉢で1時間混
合した。この混合物を 115mm× 115mm×60mmの石英ガラ
ス質ボートに収容し、 110℃で 2時間加熱を行い水分を
除去した。
Example 1 100 g of electrolytic manganese dioxide having an average particle size of 10 μm and a BET specific surface area of 30 m 2 / g was preliminarily coarsely pulverized with lithium hydroxide to obtain Li / Mn.
An amount corresponding to 1/4 in mol ratio was added, and the mixture was mixed in an automatic mortar for 1 hour. The mixture was placed in a 115 mm × 115 mm × 60 mm quartz glass boat and heated at 110 ° C. for 2 hours to remove water.

【0019】前記水分を除去した混合物を自動乳鉢で 2
時間再混合してから、前記石英ガラス質ボートにほぼ一
様に収容した後、電気炉に収容して、大気中 380℃で20
時間加熱処理を行い正極活物質を作成した。この正極活
物質は、 Cukα線によるX線回折パターンにおいて、 2
θがそれぞれ19°,22°,32°,,37°,42°,44.5
°,53°,56.5°および66°付近にピークを有し、かつ
37°付近の最大ピーク強度に比べ56.5°付近のピーク強
度が0.15の値であった。なお、図1は、前記X線回折パ
ターンを示す特性図である。
The mixture from which the water was removed was placed in an automatic mortar.
After re-mixing for an hour, the quartz glassy boat was placed in the boat almost evenly and then in an electric furnace at 20 ° C. in the atmosphere at 380 ° C.
A heat treatment was carried out for a period of time to prepare a positive electrode active material. This positive electrode active material has a Cuk α-ray X-ray diffraction pattern,
θ is 19 °, 22 °, 32 °, 37 °, 42 °, 44.5 respectively
Has peaks near °, 53 °, 56.5 ° and 66 °, and
The peak intensity near 56.5 ° was 0.15 compared to the maximum peak intensity near 37 °. Note that FIG. 1 is a characteristic diagram showing the X-ray diffraction pattern.

【0020】上記正極活物質90重量部に対して、黒鉛
(導電材)10重量部を加えて、自動乳鉢で10分間混合し
てから、テフロン粉末 3重量部加え十分繊維化するまで
約10分間混合を続行した。次いで、前記混合粉体をブレ
ンダーにかけて十分破砕した後、篩にかけて粗大粒子を
取り除いた。このようにして得た正極活物質系混合粉体
を約0.4g秤取し、直径15.5mm,厚さ 0.8mmに圧縮成形し
てペレット状の正極活物質を作成した。
To 90 parts by weight of the above positive electrode active material, 10 parts by weight of graphite (conductive material) was added and mixed in an automatic mortar for 10 minutes, and then 3 parts by weight of Teflon powder was added to the mixture for about 10 minutes until sufficient fiberization was achieved. Mixing continued. Next, the mixed powder was thoroughly crushed in a blender and then sieved to remove coarse particles. About 0.4 g of the positive electrode active material-based mixed powder thus obtained was weighed and compression-molded to a diameter of 15.5 mm and a thickness of 0.8 mm to prepare a pellet-shaped positive electrode active material.

【0021】次ぎに、予め容易しておいた負極(直径1
6.0mm,厚さ 1.0mmのLi金属箔),集電体(ニッケル
箔),セパレーター(ポリプロピレン製多孔質フィルム
およびポリプロピレン不織布の組み合わせ),電解液
( 1 molの LiClO4 を含むエチレンカーボネート/ジエ
チルカーボネート(体積比 1: 1)),アウター缶,キ
ャップを組み立てて、図2に要部を断面的に示すような
コイン形リチウム二次電池を製作した。図2において、
1はアウター缶、2は正極集電体、3は正極活物質、4
はセパレーター、5は負極、6は負極集電体、ち7はキ
ャップであり、前記アウター缶1の開口部にキャップ7
の開口端縁部を,絶縁性シーリング8を介して液密にか
しめ封じした構成を採っている。
Next, the negative electrode (diameter 1
6.0mm, 1.0mm thick Li metal foil), current collector (nickel foil), separator (combination of polypropylene porous film and polypropylene non-woven fabric), electrolytic solution (ethylene carbonate / diethyl carbonate containing 1 mol of LiClO 4 ). (Volume ratio 1: 1)), the outer can and the cap were assembled to fabricate a coin-type lithium secondary battery whose main part is shown in cross section in FIG. In FIG.
1 is an outer can, 2 is a positive electrode current collector, 3 is a positive electrode active material, 4
Is a separator, 5 is a negative electrode, 6 is a negative electrode current collector, and 7 is a cap, and the opening 7 of the outer can 1 has a cap 7
The opening end edge portion of (1) is liquid-tightly caulked and sealed via an insulating ceiling 8.

【0022】前記構成のボタン形リチウム二次電池池に
ついて、20℃、 250μA で2.0Vまで放電させ(1回目放
電)、次いで 250μA で3.4Vまで充電を行ってから、さ
らに250μA で2.0Vまで放電させ(2回目放電)、正極
の放電比容量を測定した。その結果、2回目放電の比容
量は 195 mAh/ gであった。
The button-type lithium secondary battery cell having the above structure was discharged at 20 ° C. and 250 μA to 2.0 V (first discharge), then charged at 250 μA to 3.4 V, and further discharged at 250 μA to 2.0 V. Then, the discharge specific capacity of the positive electrode was measured (second discharge). As a result, the specific capacity of the second discharge was 195 mAh / g.

【0023】実施例2,3,4 前記実施例1の場合において、平均粒径10μm ,BET 比
表面積 30m2 /gの電解二酸化マンガン100gに、予め粗粉
砕した水酸化リチウムをLi/Mn mol比で 1/ 4に相当す
る量加える代わりに、Li/Mn mol比で 1/ 3相当量(実
施例2)、Li/Mn mol比で 1/ 5相当量(実施例3)、
もしくはLi/Mn mol比で 1/ 7相当量(実施例4)とし
た外は、実施例1の場合と同様の条件で正極活物質を作
成した。 なお、これらの正極活物質は、 Cukα線によ
るX線回折パターンにおいて、2θがそれぞれ19°,22
°,32°,37°,42°,44.5°,53°,56.5°および66
°付近にピークを有し、かつ37°付近の最大ピーク強度
に比べ56.5°付近のピーク強度が実施例2の場合0.06の
値、実施例3の場合0.25の値、実施例4の場合0.37の値
であった。なお、図3は、前記正極活物質中、実施例2
の場合のX線回折パターンを示す特性図であり、実施例
3,4の場合も同様なX線回折パターンを示す。
Examples 2, 3 and 4 In the case of Example 1, 100 g of electrolytic manganese dioxide having an average particle size of 10 μm and a BET specific surface area of 30 m 2 / g was preliminarily coarsely pulverized with lithium hydroxide to obtain a Li / Mn mol ratio. Instead of adding an amount corresponding to 1/4, an amount equivalent to 1/3 in Li / Mn mol ratio (Example 2), an amount equivalent to 1/5 in Li / Mn mol ratio (Example 3),
Alternatively, a positive electrode active material was prepared under the same conditions as in Example 1 except that the Li / Mn mol ratio was 1/7 (Example 4). In addition, these positive electrode active materials have 2θ of 19 ° and 22 ° respectively in the X-ray diffraction pattern by Cuk α-ray.
°, 32 °, 37 °, 42 °, 44.5 °, 53 °, 56.5 ° and 66
The peak intensity around 56.5 ° has a peak in the vicinity of 37 °, and the peak intensity around 56.5 ° is 0.06 in the case of Example 2, 0.25 in the case of Example 3, and 0.37 in the case of Example 4. It was a value. It is to be noted that FIG.
It is a characteristic view showing an X-ray diffraction pattern in the case of, and the same X-ray diffraction pattern is shown in the cases of Examples 3 and 4.

【0024】また、前記正極活物質をそれぞれ用いて正
極を作成し、実施例1の場合と同様のボタン形リチウム
二次電池をそれぞれ製作して、前記実施例1の場合と同
様に特性評価を行ったところ、表1に示すような結果が
得られた。
Further, a positive electrode was formed by using each of the positive electrode active materials, a button-type lithium secondary battery similar to that in the case of Example 1 was manufactured, and characteristic evaluation was performed in the same manner as in Example 1. As a result, the results shown in Table 1 were obtained.

【0025】 実施例5,6,7,8 前記実施例1〜4の場合において、平均粒径25μm ,BE
T 比表面積 30m2 /gの電解二酸化マンガンを用いた外
は、実施例1などの場合と同様の条件で正極活物質を作
成した。
[0025] Examples 5, 6, 7 and 8 In the case of Examples 1 to 4, the average particle size is 25 μm, BE
A positive electrode active material was prepared under the same conditions as in Example 1 except that electrolytic manganese dioxide having a T specific surface area of 30 m 2 / g was used.

【0026】なお、これらの正極活物質は、 Cukα線に
よるX線回折パターンにおいて、 2θがそれぞれ19°,
22°,32°,37°,42°,44.5°,53°,56.5°および
66°付近にピークを有し、かつ37°付近の最大ピーク強
度に比べ56.5°付近のピーク強度が実施例5の場合0.18
の値、実施例6の場合0.06の値、実施例7の場合0.24の
値、実施例8の場合0.35の値であった。なお、これら正
極活物質の場合も、前記図1および図3にそれぞれ示し
たようなX線回折パターンであった。
In the X-ray diffraction pattern of Cuk α-ray, these positive electrode active materials have 2θ of 19 °,
22 °, 32 °, 37 °, 42 °, 44.5 °, 53 °, 56.5 ° and
In the case of Example 5, the peak intensity near 56.5 ° is 0.18 in comparison with the maximum peak intensity around 37 °.
Of Example 6, the value of 0.06 in the case of Example 6, the value of 0.24 in the case of Example 7, and the value of 0.35 in the case of Example 8. Also in the case of these positive electrode active materials, the X-ray diffraction patterns were as shown in FIGS. 1 and 3, respectively.

【0027】また、前記正極活物質をそれぞれ用いて正
極を作成し、実施例1の場合と同様のボタン形リチウム
二次電池をそれぞれ製作して、前記実施例1の場合と同
様に特性評価を行ったところ、表2に示すような結果が
得られた。
Further, a positive electrode was prepared using each of the positive electrode active materials, and button-type lithium secondary batteries similar to those in Example 1 were manufactured, and the characteristics were evaluated in the same manner as in Example 1. As a result, the results shown in Table 2 were obtained.

【0028】 実施例9,10,11,12 前記実施例1〜4の場合において、平均粒径40μm ,BE
T 比表面積 30m2 /gの電解二酸化マンガンを用いた外
は、実施例1などの場合と同様の条件で正極活物質を作
成した。
[0028] Examples 9, 10, 11, 12 In the case of Examples 1 to 4, average particle diameter 40 μm, BE
A positive electrode active material was prepared under the same conditions as in Example 1 except that electrolytic manganese dioxide having a T specific surface area of 30 m 2 / g was used.

【0029】なお、これらの正極活物質は、 Cukα線に
よるX線回折パターンにおいて、 2θがそれぞれ19°,
22°,32°,37°,42°,44.5°,53°,56.5°および
66°付近にピークを有し、かつ37°付近の最大ピーク強
度に比べ56.5°付近のピーク強度が実施例9の場合0.20
の値、実施例10の場合0.07の値、実施例11の場合0.26の
値、実施例12の場合0.37の値であった。
In the X-ray diffraction pattern by Cuk α-ray, these positive electrode active materials have 2θ of 19 °,
22 °, 32 °, 37 °, 42 °, 44.5 °, 53 °, 56.5 ° and
In the case of Example 9, the peak intensity near 56.5 ° is 0.20 compared with the maximum peak intensity around 37 °.
Of Example 10, the value of 0.07 in Example 10, the value of 0.26 in Example 11, and the value of 0.37 in Example 12.

【0030】また、前記正極活物質をそれぞれ用いて正
極を作成し、実施例1の場合と同様のボタン形リチウム
二次電池をそれぞれ製作して、前記実施例1の場合と同
様に特性評価を行ったところ、表3に示すような結果が
得られた。
Further, a positive electrode was prepared by using each of the positive electrode active materials, and button-type lithium secondary batteries similar to those in Example 1 were manufactured, and the characteristics were evaluated in the same manner as in Example 1. As a result, the results shown in Table 3 were obtained.

【0031】比較例として、平均粒径10μm ,BET 比表
面積 30m2 /gの電解二酸化マンガン100gに、予め粗粉砕
した硝酸リチウムをLi/Mn mol比で 1/ 4に相当する量
加えた外は、実施例1などの場合と同様の条件で正極活
物質を作成した。
As a comparative example, 100 g of electrolytic manganese dioxide having an average particle size of 10 μm and a BET specific surface area of 30 m 2 / g was added with lithium nitrate which had been roughly crushed in advance in an amount corresponding to 1/4 in Li / Mn mol ratio. A positive electrode active material was prepared under the same conditions as in Example 1.

【0032】なお、これらの正極活物質は、 Cukα線に
よるX線回折パターンにおいて、図4に示すごとく、 2
θがそれぞれ19°,22°,32°,37°,42°,44.5°,
53°および66°付近にピークを有し、56.5°付近のピー
クは認められなかった。したがって、37°付近の最大ピ
ーク強度に比べ56.5°付近のピーク強度は 0の値であっ
た。そして、この正極活物質を用いて正極を作成し、実
施例1の場合と同様のボタン形リチウム二次電池をそれ
ぞれ製作して、前記実施例1の場合と同様に特性評価を
行った結果を表3に併せて示す。
These positive electrode active materials are shown in FIG. 4 in the X-ray diffraction pattern by Cuk α-ray.
θ is 19 °, 22 °, 32 °, 37 °, 42 °, 44.5 °,
It had peaks near 53 ° and 66 ° and no peak near 56.5 °. Therefore, the peak intensity around 56.5 ° was 0 compared to the maximum peak intensity around 37 °. Then, a positive electrode was prepared using this positive electrode active material, button-type lithium secondary batteries similar to those in Example 1 were respectively manufactured, and the results of characteristic evaluation performed in the same manner as in Example 1 were shown. It is also shown in Table 3.

【0033】 上記では、ボタン形リチウム二次電池の構成例を説明し
たが、本発明は、前記例示に限定されるものでなく、発
明の趣旨を逸脱しない範囲でいろいろの変形を採ること
ができる。たとえば、リチウム二次電池の形態・構造は
円筒形であってもよい。
[0033] Although the example of the configuration of the button type lithium secondary battery has been described above, the present invention is not limited to the above examples, and various modifications can be made without departing from the spirit of the invention. For example, the form / structure of the lithium secondary battery may be cylindrical.

【0034】[0034]

【発明の効果】上記実施例の説明からも分かるように、
本発明によれば、資源面およびコスト面でも、正極活物
質として期待・注目されているマンガン酸化物が実用化
され、コンパクトで高容量のリチウム二次電池を提供す
ることが可能となる。すなわち、従来、正極活物質とし
て試用・検討されているスピネル構造系のリチウムマン
ガン複合酸化物、もしくはLi2 MnO3 を含む二酸化マン
ガンなどの場合問題視されていた利用効率や容量低下な
どが解消されて、長寿命,高容量のリチウム二次電池が
提供されることになる。
As can be seen from the description of the above embodiment,
According to the present invention, in terms of resources and costs, manganese oxide, which is expected and attracting attention as a positive electrode active material, is put into practical use, and it is possible to provide a compact and high-capacity lithium secondary battery. In other words, the utilization efficiency and capacity reduction, which had been problematic in the case of spinel structure-type lithium manganese composite oxides or manganese dioxide containing Li 2 MnO 3 , which have been tried and studied as positive electrode active materials, have been solved. Thus, a long-life, high-capacity lithium secondary battery will be provided.

【図面の簡単な説明】[Brief description of drawings]

【図1】第1実施例に係る正極活物質の Cukα線による
X線回折パターンを示す特性図。
FIG. 1 is a characteristic diagram showing an X-ray diffraction pattern by Cuk α-ray of a positive electrode active material according to a first example.

【図2】本発明に係るボタン形リチウム二次電池の要部
構成例を示す断面図。
FIG. 2 is a sectional view showing a configuration example of a main part of a button type lithium secondary battery according to the present invention.

【図3】第2実施例に係る正極活物質の Cukα線による
X線回折パターン例を示す特性図。
FIG. 3 is a characteristic diagram showing an example of an X-ray diffraction pattern by Cuk α ray of the positive electrode active material according to the second example.

【図4】従来の正極活物質の Cukα線によるX線回折パ
ターン例を示す特性図。
FIG. 4 is a characteristic diagram showing an example of an X-ray diffraction pattern of a conventional positive electrode active material by Cuk α ray.

【符号の説明】[Explanation of symbols]

1………アウター缶 2………正極集電体 3………正極活物質 4………セパレーター 5………負極 6………負極集電体 7………キャップ 8………絶縁性シーリング 1 ... outer can 2 positive electrode current collector 3 positive electrode active material 4 separator 5 negative electrode 6 negative electrode current collector 7 cap 8 insulation Ceiling

フロントページの続き (72)発明者 安斎 和雄 東京都品川区南品川3丁目4番10号 東芝 電池株式会社内Continued Front Page (72) Inventor Kazuo Ansai 3-4-10 Minami-Shinagawa, Shinagawa-ku, Tokyo Inside Toshiba Battery Co., Ltd.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 リチウムイオンを吸蔵・放出する負極
と、非水電解液と、リチウム含有酸化物を活物質とする
正極とを備えたリチウム二次電池であって、 前記正極活物質は Cukα線によるX線回折パターンにお
いて、 2θがそれぞれ19°,22°,32°,37°,42°,
44.5°,53°,56.5°および66°付近にピークを有し、
かつ56.5°付近のピーク強度と37°付近の最大ピーク強
度との比が0.05〜 0.4未満の値を有することを特徴とす
るリチウム二次電池。
1. A lithium secondary battery comprising a negative electrode which absorbs and releases lithium ions, a non-aqueous electrolyte, and a positive electrode which uses a lithium-containing oxide as an active material, wherein the positive electrode active material is Cuk α-ray. In the X-ray diffraction pattern by, 2θ is 19 °, 22 °, 32 °, 37 °, 42 °,
Has peaks near 44.5 °, 53 °, 56.5 ° and 66 °,
A lithium secondary battery having a ratio of a peak intensity near 56.5 ° to a maximum peak intensity near 37 ° of 0.05 to less than 0.4.
【請求項2】 正極活物質が電解二酸化マンガンと、水
酸化リチウムもしくは水酸化リチウム一水和物との混合
物を加熱処理して作られていることを特徴とする請求項
1記載のリチウム二次電池。
2. The lithium secondary according to claim 1, wherein the positive electrode active material is prepared by heat-treating a mixture of electrolytic manganese dioxide and lithium hydroxide or lithium hydroxide monohydrate. battery.
JP7222024A 1995-08-30 1995-08-30 Lithium secondary battery Withdrawn JPH0963583A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7222024A JPH0963583A (en) 1995-08-30 1995-08-30 Lithium secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7222024A JPH0963583A (en) 1995-08-30 1995-08-30 Lithium secondary battery

Publications (1)

Publication Number Publication Date
JPH0963583A true JPH0963583A (en) 1997-03-07

Family

ID=16775910

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7222024A Withdrawn JPH0963583A (en) 1995-08-30 1995-08-30 Lithium secondary battery

Country Status (1)

Country Link
JP (1) JPH0963583A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000006496A1 (en) * 1998-07-31 2000-02-10 Mitsui Mining & Smelting Company, Ltd. Process for producing spinel type lithium manganate
WO2000032518A1 (en) * 1998-12-02 2000-06-08 Mitsui Mining & Smelting Company, Ltd. Method for producing lithium manganate
CN115594231A (en) * 2022-10-19 2023-01-13 湖南长远锂科新能源有限公司(Cn) Method for preparing cathode material by using crude lithium source

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000006496A1 (en) * 1998-07-31 2000-02-10 Mitsui Mining & Smelting Company, Ltd. Process for producing spinel type lithium manganate
US6383683B1 (en) 1998-07-31 2002-05-07 Mitsui Mining And Smelting Company, Ltd. Process for producing spinel type lithium manganate
WO2000032518A1 (en) * 1998-12-02 2000-06-08 Mitsui Mining & Smelting Company, Ltd. Method for producing lithium manganate
US6409985B1 (en) 1998-12-02 2002-06-25 Mitsui Mining And Smelting Company, Ltd. Method for producing lithium manganate
CN115594231A (en) * 2022-10-19 2023-01-13 湖南长远锂科新能源有限公司(Cn) Method for preparing cathode material by using crude lithium source

Similar Documents

Publication Publication Date Title
US6156457A (en) Lithium secondary battery and method for manufacturing a negative electrode
JP3873717B2 (en) Positive electrode material and battery using the same
JP2004319129A (en) Anode active material and nonaqueous electrolyte secondary battery using it
JP2004227790A (en) Positive electrode active material for nonaqueous electrolyte solution secondary battery
JPH07201316A (en) Nonaqueous electrolyte secondary battery
JPH1083815A (en) Lithium secondary battery
JP2002083630A (en) LACTONE DERIVATIVE, gamma-BUTYROLACTONE DERIVATIVE, NONAQUEOUS ELECTROLYTE AND NONAQUEOUS ELECTROLYTE SECONDARY BATTERY
JP3546566B2 (en) Non-aqueous electrolyte secondary battery
JP2004071159A (en) Nonaqueous electrolyte secondary battery
JP3650548B2 (en) Electrode active material and non-aqueous electrolyte secondary battery using the electrode active material
JP2003282147A (en) Lithium ion secondary battery
JPH09199172A (en) Nonaqueous electrolyte secondary battery
JP2001210325A (en) Nonaqueous electrolytic solution secondary battery
JP3522783B2 (en) Lithium secondary battery
JPH10302766A (en) Lithium ion secondary battery
JP2001135317A (en) Nonaqueous electrolytic secondary battery
JPH05174823A (en) Lithium secondary battery and its manufacture
JPH0963583A (en) Lithium secondary battery
JPH10270079A (en) Nonaqueous electrolyte battery
JP2003157843A (en) Positive electrode material, its manufacturing method, and battery using it
JPH0521065A (en) Lithium secondary battery
JPH05242889A (en) Manufacture of positive electrode active material for non-aqueous electrolyte secondary battery
JP2003317718A (en) Positive electrode material, electrode and battery
JPH09231975A (en) Positive electrode material for lithium secondary battery, and nonaqueous electrolyte secondary battery using it
JP3029715B2 (en) Non-aqueous electrolyte secondary battery

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20021105