JPH0963572A - Nonsintered cadmium negative electrode for alkaline storage battery and manufacture thereof - Google Patents

Nonsintered cadmium negative electrode for alkaline storage battery and manufacture thereof

Info

Publication number
JPH0963572A
JPH0963572A JP7218382A JP21838295A JPH0963572A JP H0963572 A JPH0963572 A JP H0963572A JP 7218382 A JP7218382 A JP 7218382A JP 21838295 A JP21838295 A JP 21838295A JP H0963572 A JPH0963572 A JP H0963572A
Authority
JP
Japan
Prior art keywords
negative electrode
vinyl acetate
ethylene
storage battery
active material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7218382A
Other languages
Japanese (ja)
Other versions
JP3397949B2 (en
Inventor
Masayuki Terasaka
雅行 寺坂
Toyoshige Muto
豊茂 武藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP21838295A priority Critical patent/JP3397949B2/en
Publication of JPH0963572A publication Critical patent/JPH0963572A/en
Application granted granted Critical
Publication of JP3397949B2 publication Critical patent/JP3397949B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Battery Electrode And Active Subsutance (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a nonsintered cadmium negative electrode plate for an alkaline storage battery with high active material utilization factor, high oxygen gas absorbing performance, and high charging acceptance performance at low temperature by devising a binder with high binding capability and high decomposition resistance to an alkaline electrolyte. SOLUTION: A nonsintered cadmium negative electrode for an alkaline storage battery has a powdery cadmium active material and ethylene vinyl acetate copolymer for binding the active material. In the nonsintered cadmium electrode for the alkaline storage battery, the ethylene vinyl acetate copolymer in which the ratio of ethylene to vinyl acetate is 15-25wt.% is used as a binder.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明はアルカリ蓄電池用非
焼結式カドミウム負極に関する。
TECHNICAL FIELD The present invention relates to a non-sintered cadmium negative electrode for alkaline storage batteries.

【0002】[0002]

【従来の技術】アルカリ蓄電池用非焼結式カドミウム負
極板は、活物質粉末を結着剤と共に混練しペースト状と
なし、このペーストをパンチングメタル等の導電性芯体
に塗布し、乾燥する方法により作製されている。したが
って、このような製法で作製される非焼結式カドミウム
負極板では、結着剤が重要な役割を担っている。
2. Description of the Related Art A non-sintered cadmium negative electrode plate for an alkaline storage battery is prepared by kneading an active material powder with a binder to form a paste, applying the paste to a conductive core such as punching metal, and then drying. It is made by. Therefore, in the non-sintered cadmium negative electrode plate manufactured by such a manufacturing method, the binder plays an important role.

【0003】ところで、従来より非焼結式負極板の結着
剤としては、ポリエチレンやポリテトラフルオロエチレ
ンなどの疎水性高分子、メチルセルロースやポリビニル
アルコールなどの親水性高分子、カルボキシメチルセル
ロースやヒドロキシエチルセルロースのナトリウム塩な
どのアルカリ溶解性の親水性高分子などが用いられてい
る。これらの高分子は、それぞれ一長一短があり、例え
ばポリテトラフルオロエチレンなどの疎水性高分子は、
耐薬品性(化学的安定性)が高いものの、結着強度が弱
いという欠点がある。
By the way, conventionally, as a binder for a non-sintered negative electrode plate, a hydrophobic polymer such as polyethylene or polytetrafluoroethylene, a hydrophilic polymer such as methyl cellulose or polyvinyl alcohol, carboxymethyl cellulose or hydroxyethyl cellulose is used. Alkali-soluble hydrophilic polymers such as sodium salts are used. Each of these polymers has advantages and disadvantages. For example, hydrophobic polymers such as polytetrafluoroethylene are
Although it has high chemical resistance (chemical stability), it has the drawback of weak binding strength.

【0004】また、ポリビニルアルコールなどのアルカ
リ性電解液に溶解しない親水性高分子は、結着力が強い
ものの、疎水性高分子に比べ耐薬品性が劣る。このた
め、アルカリ性電解液で分解され、次第に結着力が低下
するとともに、炭酸根を生じ電解液濃度を低下させる等
の欠点があり、また活物質表面に皮膜を形成し活物質と
電解液の接触を阻害するという欠点もある。
A hydrophilic polymer such as polyvinyl alcohol which does not dissolve in an alkaline electrolyte has a strong binding force, but is inferior in chemical resistance to a hydrophobic polymer. Therefore, it is decomposed by an alkaline electrolytic solution, and the binding force gradually decreases, and there are drawbacks such as generation of carbonates and a decrease in the electrolytic solution concentration, and a film is formed on the surface of the active material to bring the active material into contact with the electrolytic solution. There is also a drawback that it inhibits.

【0005】他方、ヒドロキシエチルセルロースのナト
リウム塩などのアルカリ溶解性の親水性高分子は、結着
剤が電解液中に溶出するため物質表面に皮膜を形成し電
解液の浸透を妨げるということがないものの、比較的短
期に結着力が失われるとともに、上記と同様、アルカリ
性電解液に分解され易く、分解により炭酸根を生じ電解
液濃度を低下させる等の欠点がある。
On the other hand, an alkali-soluble hydrophilic polymer such as sodium salt of hydroxyethyl cellulose does not interfere with the permeation of the electrolytic solution by forming a film on the surface of the substance because the binder is eluted into the electrolytic solution. However, there are drawbacks such that the binding force is lost in a relatively short period of time, and like the above, it is easily decomposed into an alkaline electrolyte, and carbonate is generated by the decomposition to lower the concentration of the electrolyte.

【0006】このようなことから、特開昭61−240
579号公報では、アルカリ性電解液に溶解する水溶性
有機高分子と、熱可塑性有機合成樹脂の水系ラテックス
を併用する方法が提案されている。この方法によると、
2種類の結着剤が相互に補完し合う結果、極板の機械的
強度が高まり、かつ電解液の浸透阻害や炭酸根の発生を
抑制でき、活物質利用率、酸素ガス吸収性能および低温
での充電受入性能に優れた非焼結式負極板を得ることが
できるとされる。
From the above, Japanese Patent Laid-Open No. 61-240
Japanese Patent No. 579 proposes a method in which a water-soluble organic polymer dissolved in an alkaline electrolyte and an aqueous latex of a thermoplastic organic synthetic resin are used in combination. According to this method,
As a result of the two kinds of binders complementing each other, the mechanical strength of the electrode plate is increased, and the permeation inhibition of the electrolytic solution and the generation of carbonate radicals can be suppressed, and the active material utilization rate, oxygen gas absorption performance and low temperature It is said that it is possible to obtain a non-sintered negative electrode plate having excellent charge acceptance performance.

【0007】[0007]

【発明が解決しようとする課題】しかしながら、単に水
系ラテックスと水溶性有機高分子とを併用しただけで
は、これらの結着剤の分解に起因する電池性能の低下を
十分に抑制することはできない。そこで、本発明は、結
着性に優れ且つアルカリ性電解液中で分解し難い結着剤
を案出し、もって活物質利用率、酸素ガス吸収性能およ
び低温での充電受入性能に優れたアルカリ蓄電池用非焼
結式カドミウム負極とそのような負極の製造方法を提供
することを目的とする。
However, merely using the water-based latex and the water-soluble organic polymer in combination cannot sufficiently suppress the deterioration of the battery performance due to the decomposition of these binders. Therefore, the present invention has devised a binder which is excellent in binding property and is not easily decomposed in an alkaline electrolyte, and therefore has an active material utilization rate, oxygen gas absorption performance and charge acceptance performance at low temperature for alkaline storage batteries. It is an object to provide a non-sintered cadmium negative electrode and a method for producing such a negative electrode.

【0008】[0008]

【課題を解決するための手段】上記目的を達成するため
に、本発明は次の構成を有する。請求項1記載の発明
は、粉末状カドミウム活物質と、前記活物質を結着する
エチレン・酢酸ビニル共重合体とを有するアルカリ蓄電
池用非焼結式カドミウム負極において、前記エチレン・
酢酸ビニル共重合体が、酢酸ビニルに対するエチレンの
比率が15〜25重量%に規定されたものであることを
特徴とする。
In order to achieve the above object, the present invention has the following arrangement. The invention according to claim 1 provides a non-sintered cadmium negative electrode for an alkaline storage battery, which comprises a powdery cadmium active material and an ethylene / vinyl acetate copolymer binding the active material.
The vinyl acetate copolymer is characterized in that the ratio of ethylene to vinyl acetate is regulated to 15 to 25% by weight.

【0009】請求項2記載の発明は、アルカリ蓄電池用
非焼結式カドミウム負極の製造において、活物質結着剤
として、酢酸ビニルに対するエチレンの比率が15〜2
5重量%に規定されたエチレン・酢酸ビニル共重合体の
エマルジョンを用いることを特徴とする。
According to a second aspect of the present invention, in the production of a non-sintered cadmium negative electrode for an alkaline storage battery, the ratio of ethylene to vinyl acetate is 15 to 2 as the active material binder.
It is characterized by using an emulsion of an ethylene / vinyl acetate copolymer defined at 5% by weight.

【0010】[0010]

【実施の形態】[Embodiment]

〔極板の作製〕酢酸ビニルに対するエチレンの比率(以
下、E/A比率)の異なる5種類のエチレン・酢酸ビニ
ル共重合体の水系エマルジョンを結着剤として用い、エ
チレン・酢酸ビニル共重合体のE/A比率のみが異なる
5通りの非焼結式カドミウム負極板を作製した。負極板
の作製は次の通りである。
[Production of electrode plate] An aqueous emulsion of five kinds of ethylene / vinyl acetate copolymers having different ratios of ethylene to vinyl acetate (hereinafter referred to as E / A ratio) was used as a binder to prepare an ethylene / vinyl acetate copolymer. Five types of non-sintered cadmium negative electrode plates having different E / A ratios were produced. The production of the negative electrode plate is as follows.

【0011】酸化カドミウム粉末85重量%と、金属カ
ドミウム粉末15重量%を混合しカドミウム活物質粉末
とし、この活物質粉末に対し、5重量%の固形分を含む
水系のエチレン・酢酸エチレン酢酸ビニル共重合体エマ
ルジョン2重量%、及び適量の水を加えて混練し活物質
ペーストとなす。次いで、このペーストをパンチングメ
タル(厚み100μm、開口率45%)に塗布し乾燥し
て非焼結式カドミウム負極板となした。
85% by weight of cadmium oxide powder and 15% by weight of metallic cadmium powder are mixed to obtain a cadmium active material powder. Based on this active material powder, a water-based ethylene / ethylene acetate / vinyl acetate copolymer containing 5% by weight of solid content. 2% by weight of polymer emulsion and an appropriate amount of water are added and kneaded to form an active material paste. Next, this paste was applied to punching metal (thickness 100 μm, opening ratio 45%) and dried to obtain a non-sintered cadmium negative electrode plate.

【0012】上記において、エチレン・酢酸ビニル共重
合体エマルジョンとしては、E/A比率が10重量%、
15重量%、20重量%、25重量%、30重量%のも
のをそれぞれ用いた。これらのエマルジョンを使用し作
製した負極板を、E/A比率の小さいものからそれぞれ
負極板A、B、C、D、Eとする。
In the above, the ethylene / vinyl acetate copolymer emulsion has an E / A ratio of 10% by weight,
Those of 15% by weight, 20% by weight, 25% by weight and 30% by weight were used. Negative electrode plates produced using these emulsions are referred to as negative electrode plates A, B, C, D, and E, respectively, from the one having a smaller E / A ratio.

【0013】〔蓄電池の作製〕上記負極板と、この負極
板よりも容量の小さい公知の焼結式ニッケル正極板とを
ナイロン不織布を介して巻回し電極体となし電池缶に挿
入した。次いで、この電池缶に電解液として6規定の水
酸化カリウム水溶液を注液し、電池缶開口部分を密閉し
て公称容量1300mAhの密閉式円筒型ニッケル・カ
ドミウム蓄電池(JIS,KR−SCサイズ)を作製し
た。
[Preparation of Storage Battery] The above negative electrode plate and a known sintered nickel positive electrode plate having a smaller capacity than this negative electrode plate were wound around a nylon nonwoven fabric and inserted into a battery can without an electrode body. Then, a 6N potassium hydroxide aqueous solution was poured into this battery can as an electrolyte, and the opening of the battery can was closed to form a sealed cylindrical nickel-cadmium storage battery (JIS, KR-SC size) with a nominal capacity of 1300 mAh. It was made.

【0014】〔結着強度および電池性能の測定・評価〕
上記で作製した負極板及び蓄電池を用い、エチレン・酢
酸ビニル共重合体(結着剤)のE/A比率の違いが、結
着強度及び蓄電池の性能に及ぼす影響を調べた。以下順
次試験内容とその結果を説明する。
[Measurement / Evaluation of Binding Strength and Battery Performance]
Using the negative electrode plate and the storage battery produced above, the influence of the difference in the E / A ratio of the ethylene / vinyl acetate copolymer (binder) on the binding strength and the performance of the storage battery was investigated. The contents of the test and the results thereof will be described below.

【0015】(結着強度)上記各負極板をナイロン不織
布とともに巻回し、巻回時における活物質粒子の脱落や
負極板クラックの発生の有無を肉眼観察した。その結
果、上記負極板A〜Eの何れについても、活物質粒子の
脱落やクラックの発生がないことが確認された。このこ
とから、E/A比率が10〜30重量%の範囲のエチレ
ン・酢酸ビニル共重合体のエマルジョンを結着剤として
使用した場合、活物質粒子が十分な結着強度をもって導
電性芯体に結着保持され、少なくとも電池組み立て時に
おいて結着強度の不足に起因するトラブルを生じないこ
とが確認できた。
(Binding Strength) Each of the negative electrode plates was wound with a nylon nonwoven fabric, and the presence or absence of the active material particles falling off and the occurrence of cracks in the negative electrode plate were visually observed during the winding. As a result, it was confirmed that the active material particles did not fall off or crack in any of the negative electrode plates A to E. From this, when an emulsion of ethylene / vinyl acetate copolymer having an E / A ratio of 10 to 30% by weight is used as a binder, the active material particles form a conductive core with sufficient bonding strength. It was confirmed that the binder was held and at least at the time of assembling the battery, no trouble caused by insufficient bond strength occurred.

【0016】(炭酸根量の測定)上記各蓄電池に対し、
130mAhで16時間充電を行い、1300mAhで
電池電圧が0.8Vに達するまで放電する充放電サイク
ルを室温中(18〜27℃)で100回繰り返した後、
各蓄電池から電解液を取り出し、塩酸を用いた滴定法に
より電解液中の炭酸根量を測定した。その結果を、エチ
レン・酢酸ビニル共重合体のE/A比率と炭酸根量との
関係で図1に示す。なお、図1において、各蓄電池の炭
酸根量(縦軸)は、E/A比率が30重量%の蓄電池E
における炭酸根量を基準(100)とし指数値で表して
ある。
(Measurement of Carbonate Content) For each of the above storage batteries,
After charging for 16 hours at 130 mAh and discharging at 1300 mAh until the battery voltage reaches 0.8 V, after repeating 100 times at room temperature (18 to 27 ° C.),
The electrolytic solution was taken out from each storage battery, and the amount of carbonate radical in the electrolytic solution was measured by a titration method using hydrochloric acid. The results are shown in FIG. 1 as a relationship between the E / A ratio of the ethylene / vinyl acetate copolymer and the amount of carbonate. In FIG. 1, the amount of carbonate radicals (vertical axis) of each storage battery is the storage battery E with an E / A ratio of 30% by weight.
The amount of carbonate radicals in Table 1 is used as a reference (100) and is represented by an index value.

【0017】図1から、電解液中の炭酸根量は、E/A
比率が大きくなるに従い減少する傾向が認められた。ま
た、電解液中の炭酸根量は、E/A比率が15重量%よ
り小さい場合に顕著に増加するが、15重量%から30
重量%の間では大きな変動が認められなかった。このこ
とからして、炭酸根の生成を抑制するためには、エチレ
ン・酢酸ビニル共重合体のE/A比率を15重量%以上
に規定するのがよいことが判る。
From FIG. 1, the amount of carbonate in the electrolytic solution is E / A.
It was recognized that the ratio decreased as the ratio increased. Further, the amount of carbonate radicals in the electrolytic solution remarkably increases when the E / A ratio is less than 15% by weight, but it is from 30% by weight to 30% by weight.
No significant variation was observed between the weight percentages. From this, it is understood that the E / A ratio of the ethylene / vinyl acetate copolymer should be regulated to 15% by weight or more in order to suppress the generation of carbonate radicals.

【0018】なお、図1の結果は、E/A比率の増加と
ともにエチレン・酢酸ビニル共重合体の化学的安定性
(対アルカリ性)が増加することを意味すると考えられ
る。
The results shown in FIG. 1 are considered to mean that the chemical stability (against alkalinity) of the ethylene / vinyl acetate copolymer increases as the E / A ratio increases.

【0019】(電池内ガス圧の測定)上記各蓄電池に対
し、1300mAhで2時間充電(室温)を行い、電池
内ガス圧を測定した。その結果を、エチレン・酢酸ビニ
ル共重合体のE/A比率と電池内ガス圧との関係で図2
に示す。図2の電池内ガス圧(縦軸)は、前記図1と同
様、蓄電池E(E/A比率;30重量%)における電池
内ガス圧を基準(100)とし指数値で表してある。
(Measurement of Gas Pressure in Battery) Each storage battery was charged at 1300 mAh for 2 hours (room temperature) and the gas pressure in the battery was measured. The results are shown in the relationship between the E / A ratio of ethylene / vinyl acetate copolymer and the gas pressure in the battery.
Shown in The gas pressure in the battery (vertical axis) in FIG. 2 is represented by an index value with the battery gas pressure in the storage battery E (E / A ratio; 30% by weight) as the reference (100), as in FIG.

【0020】図2において、電池内ガス圧は、上記炭酸
根量の結果とは逆に、E/A比率が20重量%を越える
と顕著に増加する傾向が認められた。但し、E/A比率
が25重量%の場合における電池内ガス圧は、E/A比
率が30重量%における場合に比べかなり小さかった。
このことから、電池充電におけるガス発生を低く抑える
ためには、エチレン・酢酸ビニル共重合体のE/A比率
を20重量%以下とするのがより好ましい。しかし、2
0重量%以下の場合と25重量%の電池内ガス圧に大き
な差がないことから、E/A比率を25重量%以下に規
定すれば十分にガス発生量が抑制できることが判る。
In FIG. 2, contrary to the result of the above-mentioned amount of carbonates, it was recognized that the gas pressure in the battery tends to remarkably increase when the E / A ratio exceeds 20% by weight. However, the gas pressure in the battery when the E / A ratio was 25% by weight was considerably smaller than when the E / A ratio was 30% by weight.
From this, in order to suppress gas generation during battery charging to a low level, it is more preferable that the E / A ratio of the ethylene / vinyl acetate copolymer is 20% by weight or less. But 2
Since there is no great difference in the gas pressure in the battery between 0% by weight or less and 25% by weight, it can be understood that the gas generation amount can be sufficiently suppressed by setting the E / A ratio to 25% by weight or less.

【0021】なお、エチレン・酢酸ビニル共重合体のE
/A比率が20重量%を越えた場合、電池内ガス圧が高
まる原因は、E/A比率が大きくなるに従い、エチレン
・酢酸ビニル共重合体の結着性が高まり、活物質粒子を
包み込む形で強力に結着するため、活物質と電解液との
接触が円滑になされなくなり、その結果として負極の酸
素ガス消費反応が阻害されると考えられる。
The ethylene-vinyl acetate copolymer E
When the A / A ratio exceeds 20% by weight, the reason why the gas pressure inside the battery increases is that the binding property of the ethylene / vinyl acetate copolymer increases as the E / A ratio increases and the active material particles are wrapped. It is considered that since the active material and the electrolytic solution are not smoothly contacted with each other because of strong binding, the oxygen gas consumption reaction of the negative electrode is hindered.

【0022】以上の図1と図2の結果を合わせると、炭
酸根の生成を抑え且つガスの発生を抑制するためには、
エチレン・酢酸ビニル共重合体のE/A比率を15重量
%〜25重量%に規定すればよいと結論できる。
Combining the results of FIG. 1 and FIG. 2 above, in order to suppress the generation of carbonate radicals and the generation of gas,
It can be concluded that the E / A ratio of the ethylene / vinyl acetate copolymer should be regulated to 15% by weight to 25% by weight.

【0023】[0023]

【発明の効果】上述から明らかなように、E/A比率が
15重量%〜25重量%に規定されたエチレン・酢酸ビ
ニル共重合体は、結着力、耐アルカリ性に優れ、且つ活
物質粒子を包み込み電解液との接触を阻害する程度が小
さい。よって、活物質の電気化学反応を阻害せず、長期
にわたって活物質を導電性芯体に結着保持できる。した
がって、このようなエチレン・酢酸ビニル共重合体を結
着剤として使用した本発明アルカリ蓄電池用カドミウム
負極は、活物質利用率、酸素ガス吸収性能および低温で
の充電受入れ性能に優れたものとなる。
As is apparent from the above, the ethylene / vinyl acetate copolymer having the E / A ratio of 15% by weight to 25% by weight is excellent in binding strength and alkali resistance, and has active material particles. The degree to which contact with the wrapping electrolyte is hindered is small. Therefore, the electrochemical reaction of the active material is not hindered, and the active material can be bound and held to the conductive core for a long period of time. Therefore, the cadmium negative electrode for alkaline storage batteries of the present invention using such an ethylene / vinyl acetate copolymer as a binder is excellent in active material utilization rate, oxygen gas absorption performance and charge acceptance performance at low temperature. .

【0024】一方、上記のようなエチレン・酢酸ビニル
共重合体を主成分とするエマルジョンは低粘度液状であ
るので、エマルジョン(結着剤)とカドミウム活物質粉
末とが均一に混合した良好な活物質スラリーを調製し易
い。また、活物質スラリーを導電性芯体に塗布し易いと
ともに、塗布後に行う通常温度の極板乾燥操作により容
易に固化させ、活物質粉末を芯体に強力に結着すること
ができる。
On the other hand, since the emulsion containing the ethylene / vinyl acetate copolymer as a main component as described above is a low-viscosity liquid, a good activity in which the emulsion (binder) and the cadmium active material powder are uniformly mixed is obtained. Easy to prepare material slurry. Further, the active material slurry can be easily applied to the conductive core, and the active material powder can be strongly bound to the core by being easily solidified by the normal temperature electrode plate drying operation performed after the application.

【0025】したがって、このようなエチレン・酢酸ビ
ニル共重合体のエマルジョンを結着剤として用いた場
合、例えば高温加熱して固化・結着させるタイプの熱可
塑性合成樹脂を使用する場合等に比べ、極板全体にわた
って均一な結着強度が得られる。また、結着剤の分解を
抑制することが可能であるため、結着剤の分解に起因す
る電池性能の低下を防止できる。よって、本発明アルカ
リ蓄電池用カドミウム負極の製造方法によれば、結着剤
に起因する電池性能の劣化の少ないアルカリ蓄電池用カ
ドミウム負極を低コストで提供できるという効果を得ら
れる。
Therefore, when such an ethylene / vinyl acetate copolymer emulsion is used as a binder, compared with the case where a thermoplastic synthetic resin of a type that is heated at a high temperature to solidify and bind is used, Uniform binding strength is obtained over the entire electrode plate. Further, since the decomposition of the binder can be suppressed, it is possible to prevent the deterioration of the battery performance due to the decomposition of the binder. Therefore, according to the method for producing a cadmium negative electrode for an alkaline storage battery of the present invention, it is possible to provide an effect of providing a cadmium negative electrode for an alkaline storage battery at a low cost with less deterioration in battery performance due to the binder.

【図面の簡単な説明】[Brief description of drawings]

【図1】エチレン・酢酸ビニル共重合体のE/A比率と
炭酸根生成量との関係を示すグラフである。
FIG. 1 is a graph showing the relationship between the E / A ratio of an ethylene / vinyl acetate copolymer and the amount of carbonate radical formation.

【図2】エチレン・酢酸ビニル共重合体のE/A比率と
電池内ガス圧との関係を示すグラフである。
FIG. 2 is a graph showing the relationship between the E / A ratio of an ethylene / vinyl acetate copolymer and the gas pressure in the battery.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 粉末状カドミウム活物質と、前記活物質
を結着するエチレン・酢酸ビニル共重合体とを有するア
ルカリ蓄電池用非焼結式カドミウム負極において、 前記エチレン・酢酸ビニル共重合体は、酢酸ビニルに対
するエチレンの比率が15〜25重量%であることを特
徴とするアルカリ蓄電池用非焼結式カドミウム負極。
1. A non-sintered cadmium negative electrode for an alkaline storage battery, which comprises a powdery cadmium active material and an ethylene / vinyl acetate copolymer binding the active material, wherein the ethylene / vinyl acetate copolymer is A non-sintered cadmium negative electrode for an alkaline storage battery, wherein the ratio of ethylene to vinyl acetate is 15 to 25% by weight.
【請求項2】 酢酸ビニルに対するエチレンの比率が1
5〜25重量%であるエチレン・酢酸ビニル共重合体の
エマルジョンを活物質結着剤として用いることを特徴と
するアルカリ蓄電池用非焼結式カドミウム負極の製造方
法。
2. The ratio of ethylene to vinyl acetate is 1.
A method for producing a non-sintered cadmium negative electrode for an alkaline storage battery, which comprises using an emulsion of an ethylene / vinyl acetate copolymer in an amount of 5 to 25% by weight as an active material binder.
JP21838295A 1995-08-28 1995-08-28 Non-sintered cadmium negative electrode for alkaline storage battery and method for producing the same Expired - Fee Related JP3397949B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21838295A JP3397949B2 (en) 1995-08-28 1995-08-28 Non-sintered cadmium negative electrode for alkaline storage battery and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21838295A JP3397949B2 (en) 1995-08-28 1995-08-28 Non-sintered cadmium negative electrode for alkaline storage battery and method for producing the same

Publications (2)

Publication Number Publication Date
JPH0963572A true JPH0963572A (en) 1997-03-07
JP3397949B2 JP3397949B2 (en) 2003-04-21

Family

ID=16719031

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21838295A Expired - Fee Related JP3397949B2 (en) 1995-08-28 1995-08-28 Non-sintered cadmium negative electrode for alkaline storage battery and method for producing the same

Country Status (1)

Country Link
JP (1) JP3397949B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008031936A1 (en) * 2006-09-15 2008-03-20 Saft Groupe Sa Plastified electrode for alkaline battery

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008031936A1 (en) * 2006-09-15 2008-03-20 Saft Groupe Sa Plastified electrode for alkaline battery
FR2906083A1 (en) * 2006-09-15 2008-03-21 Accumulateurs Fixes PLASTICATED ELECTRODE FOR ALKALINE ACCUMULATOR.
US20100062336A1 (en) * 2006-09-15 2010-03-11 Saft Groupe Sa Plasticized electrode for an alkaline battery

Also Published As

Publication number Publication date
JP3397949B2 (en) 2003-04-21

Similar Documents

Publication Publication Date Title
GB2109985A (en) Recharcheable electrical storage batteries
JP2682162B2 (en) Nickel electrode active material for alkaline storage batteries
US6348284B1 (en) Non-sintered nickel electrode for a secondary electro-chemical cell having an alkaline electrolyte
JP3397949B2 (en) Non-sintered cadmium negative electrode for alkaline storage battery and method for producing the same
JP3245072B2 (en) Hydrogen storage alloy electrode and method for producing the same
JP2015130249A (en) Positive electrode for alkali storage batteries and alkali storage battery using the same
JP2591988B2 (en) Cadmium negative electrode plate and alkaline secondary battery using the negative electrode plate
JP2926732B2 (en) Alkaline secondary battery
JP2584280B2 (en) Alkaline storage battery and method of manufacturing the same
JPH0542779B2 (en)
JP2020061222A (en) Negative electrode for nickel zinc battery and nickel zinc battery
JP3225608B2 (en) Nickel hydroxide positive electrode plate for alkaline battery and method for producing the same
JPH0541213A (en) Unsintering type positive nickel electrode for alkaline storage battery
JP2577964B2 (en) Cadmium negative electrode plate and alkaline secondary battery using the negative electrode plate
JP2002175811A (en) Non-sintered nickel cathode for alkali storage battery, it manufacturing method, and alkali storage battery using the cathode
JP2796674B2 (en) Cadmium negative electrode plate and alkaline secondary battery using the negative electrode plate
JP2591986B2 (en) Cadmium negative electrode plate and alkaline secondary battery using the negative electrode plate
JPH11250908A (en) Electrode for alkaline secondary battery and alkaline secondary battery
JP6915510B2 (en) Alkaline storage battery
JP2591987B2 (en) Cadmium negative electrode plate and alkaline secondary battery using the negative electrode plate
JP2008123770A (en) Battery
JP2591982B2 (en) Cadmium negative electrode plate and alkaline secondary battery using the negative electrode plate
JP2591985B2 (en) Cadmium negative electrode plate and alkaline secondary battery using the negative electrode plate
JP2564176B2 (en) Cadmium negative electrode plate for sealed alkaline secondary battery and sealed alkaline secondary battery using the negative electrode plate
JP2600307B2 (en) Cadmium negative electrode plate and alkaline secondary battery using the negative electrode plate

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees