JPH0963522A - X-ray source movement compensation mechanism for x-ray tube device - Google Patents

X-ray source movement compensation mechanism for x-ray tube device

Info

Publication number
JPH0963522A
JPH0963522A JP16531896A JP16531896A JPH0963522A JP H0963522 A JPH0963522 A JP H0963522A JP 16531896 A JP16531896 A JP 16531896A JP 16531896 A JP16531896 A JP 16531896A JP H0963522 A JPH0963522 A JP H0963522A
Authority
JP
Japan
Prior art keywords
ray
ray source
ray tube
thermal expansion
movement amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP16531896A
Other languages
Japanese (ja)
Inventor
Hideshi Kanazawa
英志 金澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Healthcare Manufacturing Ltd
Original Assignee
Hitachi Medical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Medical Corp filed Critical Hitachi Medical Corp
Priority to JP16531896A priority Critical patent/JPH0963522A/en
Publication of JPH0963522A publication Critical patent/JPH0963522A/en
Pending legal-status Critical Current

Links

Landscapes

  • X-Ray Techniques (AREA)

Abstract

PROBLEM TO BE SOLVED: To maintain a position of an X-ray source in operation, by equipping a support part supporting a positive electrode with a means capable of controlling expansions/contractions in the opposite direction to the moving direction of the X-ray source due to thermal expansions of a positive electrode member. SOLUTION: An X-ray tube 4 is constituted by disposing a negative electrode member and a rotating positive electrode target 10 so as to stand opposite to each other in a vacuum airtight enclosure 1. An end part 16 of the X-ray tube 4 which supports the positive electrode target 10 via a rotating shaft 12 is fixed to a tube container 6 via a positive electrode supporting part 14. A positive electrode member comprizing the positive electrode target 10, the rotating shaft 12 and the like expands due to heat generated when thermal electrons collide against an X-ray source 8 and cause X rays 9 to be radiated, resulting in a longitudinal position change of the X-ray source 8 occurring. The positive electrode supporting part 14 being composed of a thermally expanding support body 29 of a cylindrical shape which is made of a metal or synthetic resin such as 6 epoxy, heater wire 28 being embeded therewithin, an electric current being supplied thereto from a controller 30, a longitudinal expansion of the thermally expanding support body 29, which is caused by heat generated by the current, cancels the position change of the X-ray source 8.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、例えばX線CT装
置などにおいて被検体の診断部位にX線を放射するX線
管装置に関し、特にX線管内の陽極部材の熱膨張によっ
て生ずるX線源の移動量を相殺し動作中のX線源の位置
を一定位置に維持できるX線管装置のX線源移動量補償
機構に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an X-ray tube apparatus for radiating X-rays to a diagnostic region of a subject in, for example, an X-ray CT apparatus, and particularly to an X-ray source generated by thermal expansion of an anode member in the X-ray tube. The present invention relates to an X-ray source movement amount compensating mechanism of an X-ray tube device capable of canceling the movement amount of the X-ray and maintaining the position of the X-ray source during operation at a constant position.

【0002】[0002]

【従来の技術】従来のこの種のX線管装置は、図9に示
すように、外囲器1の内部に陰極部材2と陽極部材3と
を対向配置し、この外囲器1の内部を真空気密に保持し
て陰極部材2と陽極部材3とを封入したX線管4と、こ
のX線管4の周りにX線管4の冷却と高電圧絶縁を行う
絶縁油5を収容し、かつ、X線管4の全体を包み込んだ
管容器6と、X線管4の陽極部材3の端部を管容器6の
内壁に支持する陽極支持部14を有し、X線管4の陰極
部材2と陽極部材3との間に高電圧を印加し、陰極部材
2から発せられる熱電子7が陽極部材3へ衝突すること
によって陽極部材3のX線源8からX線9を放射するよ
うになっていた。
2. Description of the Related Art In a conventional X-ray tube device of this type, as shown in FIG. 9, a cathode member 2 and an anode member 3 are disposed inside an envelope 1 so as to face each other. And an X-ray tube 4 enclosing the cathode member 2 and the anode member 3 in a vacuum-tight manner, and an insulating oil 5 for cooling the X-ray tube 4 and performing high-voltage insulation around the X-ray tube 4. In addition, the tube container 6 enclosing the entire X-ray tube 4 and the anode support portion 14 for supporting the end portion of the anode member 3 of the X-ray tube 4 on the inner wall of the tube container 6 are provided. When a high voltage is applied between the cathode member 2 and the anode member 3 and the thermoelectrons 7 emitted from the cathode member 2 collide with the anode member 3, the X-ray source 8 of the anode member 3 emits X-rays 9. It was like this.

【0003】特に、図9は回転陽極型のX線管装置を示
しており、陽極部材3は、陰極部材2に対向配置され
て、回転可能の陽極ターゲット10と、この陽極ターゲ
ット10の中心部を軸支するロータ11と、このロータ
11の内部に同軸に設けられた回転軸12と、この回転
軸12を軸受13を介して回転自在に支持すると共に陽
極支持部14に固定される固定部15とから成る。な
お、陽極部材3の固定部15の後端は、支持端板16及
び固定ネジ17を介して陽極支持部14の後端部に固定
されている。また、X線管4の陰極部材2側の支持は、
外囲器1の先端部の外径部に設けられた絶縁材料から成
る陰極支持部18で管容器6の内壁面に結合固定されて
いる。そして、陽極部材3の陽極ターゲット10は、ロ
ータ11の外周面よりやや外方にて陽極支持部14の中
間部又は前端部の内周面に設けられたコア19A及びス
テータコイル19Bから成るステ−タ19よって、モ−
タの原理により発生される回転力で回転されるロータ1
1の回転により、回転されるようになっている。
In particular, FIG. 9 shows a rotary anode type X-ray tube apparatus, in which an anode member 3 is arranged to face the cathode member 2, and a rotatable anode target 10 and a central portion of the anode target 10 are provided. A rotor 11 for supporting the rotor, a rotary shaft 12 provided coaxially inside the rotor 11, and a fixed portion for rotatably supporting the rotary shaft 12 via a bearing 13 and being fixed to the anode support portion 14. 15 and. The rear end of the fixed portion 15 of the anode member 3 is fixed to the rear end of the anode support portion 14 via a support end plate 16 and a fixing screw 17. The support of the X-ray tube 4 on the side of the cathode member 2 is
The cathode supporting portion 18 made of an insulating material is provided on the outer diameter portion of the tip portion of the envelope 1, and is fixedly coupled to the inner wall surface of the tube container 6. The anode target 10 of the anode member 3 is composed of a core 19A and a stator coil 19B provided on the inner peripheral surface of the intermediate portion or the front end portion of the anode supporting portion 14 slightly outside the outer peripheral surface of the rotor 11. It's a 19
Rotor 1 rotated by the rotational force generated by the principle of
It is adapted to be rotated by the rotation of 1.

【0004】このようなX線管装置においてX線を放射
するには、陰極部材2と陽極部材3の陽極ターゲット1
0との間に百数十kVの高電圧を印加し、陰極部材2か
ら発せられる熱電子7が陽極ターゲット10のX線源8
(熱電子7が集束する焦点源ともいう。)に衝突するこ
とによってX線9が外部へ放射されるようになってい
る。
In order to emit X-rays in such an X-ray tube device, the anode target 1 of the cathode member 2 and the anode member 3 is used.
When a high voltage of 100 kV is applied between 0 and 0, the thermoelectrons 7 emitted from the cathode member 2 generate the X-ray source 8 of the anode target 10.
The X-ray 9 is radiated to the outside by colliding with (a focal source on which the thermoelectrons 7 are focused).

【0005】しかし、このような従来のX線管装置にお
いては、X線管4からX線9を放射する際に、陰極部材
2から発せられる熱電子7が陽極ターゲット10のX線
源8へ衝突することによって、陽極ターゲット10が約
1000℃に加熱され、これにより陽極部材3の各部分
の温度が上昇し、数百℃に達することがあった。このと
き、陽極部材3を構成する陽極ターゲット10及びロー
タ11,回転軸12,軸受13,固定部15が加熱さ
れ、熱膨張により陽極支持部14の支持端板16を基点
にして、陽極ターゲット10が陰極部材2側へ移動する
ものであった。すなわち、陽極ターゲット10上のX線
源8が陰極部材2側へ接近し、その移動量は負荷の印加
前後で大きいものでは約400μmに達することがあっ
た。このことから、X線管装置の動作過程における管容
器6からのX線9の放射中心に対するX線放射の位置が
変位し、被検体に対するX線照射の線量分布が変動する
ものであった。従って、上記X線管装置に対し図示省略
の被検体テーブルを間にして対向配置されたX線検出器
(図示省略)で収集するX線画像の画質が劣化するもの
であった。
However, in such a conventional X-ray tube device, when the X-ray tube 4 radiates X-rays 9, thermoelectrons 7 emitted from the cathode member 2 are directed to the X-ray source 8 of the anode target 10. Due to the collision, the anode target 10 was heated to about 1000 ° C., and the temperature of each part of the anode member 3 was raised, and sometimes reached several hundred ° C. At this time, the anode target 10 and the rotor 11, the rotating shaft 12, the bearing 13, and the fixed portion 15 that constitute the anode member 3 are heated, and the thermal expansion causes the support end plate 16 of the anode support portion 14 as a base point to make the anode target 10 Was moved to the cathode member 2 side. That is, the X-ray source 8 on the anode target 10 approaches the cathode member 2 side, and the amount of movement thereof may reach about 400 μm before and after the load is applied. From this, the position of the X-ray radiation with respect to the radiation center of the X-ray 9 from the tube container 6 in the operation process of the X-ray tube device was displaced, and the dose distribution of the X-ray irradiation to the subject was fluctuated. Therefore, the image quality of the X-ray image collected by the X-ray detector (not shown) arranged opposite to the X-ray tube device with the subject table (not shown) interposed therebetween deteriorates.

【0006】このX線源の移動量を小さくするための先
願発明としては特開平07−130310号公報で開示
されているものがある。この発明はX線管とその取付部
材の改良に関するもので、X線管の陽極を構成する部材
と管容器の陽極支持部材の熱膨張係数を適当に選択する
ことによって、X線管温度上昇時のX線源の移動を相殺
する構造をとっている。
As a prior invention for reducing the movement amount of the X-ray source, there is one disclosed in Japanese Patent Laid-Open No. 07-130310. The present invention relates to an improvement in an X-ray tube and a mounting member thereof, which can be achieved by appropriately selecting the thermal expansion coefficients of a member forming an anode of the X-ray tube and an anode supporting member of a tube container. It has a structure that offsets the movement of the X-ray source.

【0007】[0007]

【発明が解決しようとする課題】従来のX線管装置を用
いてシミュレ−ション及び実験を行った結果では、X線
管装置のX線源の移動はX線管装置を構成する各部材の
温度分布により移動方向及び移動量が決定され、特に、
X線管装置が冷えている時は、診断開始直後から急激に
X線源の移動量が大きくなる。陽極部材の熱膨張は負加
印加による熱エネルギ−を直接受けるため比較的レスポ
ンスが速いが、陽極支持部の熱膨張は陽極タ−ゲットか
らの熱輻射、外囲器からの放熱、陽極部材を通しての熱
伝導などで放出された熱によるものであるので、温度変
化のレスポンスが悪く、陽極部材の熱膨張によるX線源
の移動が過渡的に大きく発生し、陽極支持部の熱膨張で
補償しきれないという問題があった。
According to the result of the simulation and the experiment using the conventional X-ray tube apparatus, the movement of the X-ray source of the X-ray tube apparatus is caused by the movement of each member constituting the X-ray tube apparatus. The direction of movement and the amount of movement are determined by the temperature distribution.
When the X-ray tube device is cold, the amount of movement of the X-ray source rapidly increases immediately after the start of diagnosis. The thermal expansion of the anode member is relatively quick because it directly receives the heat energy due to the negative applied voltage, but the thermal expansion of the anode support part is due to the heat radiation from the anode target, the heat radiation from the envelope, and the anode member. It is due to the heat released due to the heat conduction, etc., so the response of the temperature change is poor, and the movement of the X-ray source due to the thermal expansion of the anode member occurs transiently, which is compensated by the thermal expansion of the anode support part. There was a problem that I could not cut it.

【0008】そこで、本発明は、このような問題点に対
処し、診断開始直後から急激に生ずるX線管内の陽極部
材の熱膨張によって生ずるX線源の移動量を相殺し、診
断動作中のX線源の位置を一定位置に維持することがで
きるX線管装置のX線源移動量補償機構を提供すること
を目的とする。
Therefore, the present invention copes with such a problem and cancels the movement amount of the X-ray source caused by the thermal expansion of the anode member in the X-ray tube, which occurs abruptly immediately after the diagnosis is started, and the diagnosis operation is performed. It is an object of the present invention to provide an X-ray source movement amount compensating mechanism for an X-ray tube device that can maintain the position of the X-ray source at a fixed position.

【0009】[0009]

【課題を解決するための手段】本発明の目的は、次の解
決手段によって達成される。本発明のX線管装置のX線
源移動量補償機構は、外囲器の内部に陰極部材と陽極部
材とを対向配置し、該外囲器の内部を真空気密に保持し
て前記陰極部材と陽極部材とを封入したX線管と、該X
線管の周りに該X線管の冷却と高電圧絶縁を行う絶縁油
を収容し、かつ、前記X線管の全体を包み込んだ管容器
と、前記X線管の陽極部材の端部を支持し、かつ、前記
管容器の内壁に固定された陽極支持部とを有し、前記X
線管の陰極部材と陽極部材との間に高電圧を印加し、前
記陰極部材から発せられる熱電子が陽極部材へ衝突する
ことによって前記陽極部材のX線源からX線を放射する
X線管装置において、前記X線管の陰極部材と陽極部材
との間の高電圧印加で生ずる陽極部材の熱膨張によるX
線源の移動量に対応して、該X線源の移動方向と反対方
向に伸縮し、かつ、その伸縮量の制御が可能なX線源移
動量相殺手段を、前記陽極部材を支持する陽極支持部に
設けたものである(請求項1)。この構成では、陽極支
持部に設けられた移動量相殺手段により、陽極支持部を
陽極部材の熱膨張によるX線源の移動方向と反対方向に
伸縮させて、陽極部材の熱膨張によるX線源の移動量を
相殺するように動作する。この結果、動作中のX線管内
のX線源の位置を一定位置に維持することができる。
The object of the present invention is achieved by the following means. In the X-ray source movement amount compensating mechanism of the X-ray tube device of the present invention, a cathode member and an anode member are disposed inside an envelope so as to face each other, and the inside of the envelope is vacuum-tightly held to prevent the cathode member. And an X-ray tube enclosing the anode member and the X-ray tube.
A container for accommodating insulating oil for cooling the X-ray tube and performing high-voltage insulation around the X-ray tube, and enclosing the entire X-ray tube, and supporting an end portion of the anode member of the X-ray tube. And an anode supporting part fixed to the inner wall of the tube container,
An X-ray tube that emits X-rays from an X-ray source of the anode member by applying a high voltage between a cathode member and an anode member of the X-ray tube and causing thermoelectrons emitted from the cathode member to collide with the anode member. In the apparatus, X due to thermal expansion of the anode member generated by applying a high voltage between the cathode member and the anode member of the X-ray tube.
The anode supporting the anode member is provided with an X-ray source movement amount canceling means that expands and contracts in a direction opposite to the moving direction of the X-ray source in accordance with the movement amount of the X-ray source and can control the expansion and contraction amount. It is provided on the support portion (Claim 1). In this configuration, the movement amount canceling means provided in the anode support portion expands and contracts the anode support portion in a direction opposite to the movement direction of the X-ray source due to thermal expansion of the anode member, and the X-ray source due to thermal expansion of the anode member. It works to offset the movement amount of. As a result, the position of the X-ray source in the operating X-ray tube can be maintained at a fixed position.

【0010】本発明のX線管装置のX線源移動量補償機
構は更に、前記X線源移動量相殺手段は、一端が前記陽
極部材を固定・支持する陽極支持体に接続され、他端が
前記管容器の内壁に固定され、円筒状の熱膨張支持体
と、該熱膨張支持体に装着されて該熱膨張支持体を加熱
するヒ−タと、前記熱膨張支持体の温度を検知して、該
熱膨張支持体の伸びが前記X線源の移動量を相殺できる
ように前記ヒ−タによる熱膨張支持体の加熱を制御する
ヒ−タコントロ−ラとを具備する(請求項2)。この構
成では、移動量相殺手段が熱膨張支持体とヒ−タとヒ−
タコントロ−ラの3つの要素から成り、熱膨張支持体を
ヒ−タコントロ−ラの制御に従ってヒ−タで加熱又は冷
却して伸縮して、X線源の移動量を相殺している。
In the X-ray source movement amount compensating mechanism of the X-ray tube apparatus of the present invention, further, the X-ray source movement amount canceling means has one end connected to an anode support for fixing and supporting the anode member, and the other end. Is fixed to the inner wall of the tube container, has a cylindrical thermal expansion support, a heater mounted on the thermal expansion support to heat the thermal expansion support, and detects the temperature of the thermal expansion support. And a heater controller for controlling heating of the thermal expansion support by the heater so that the expansion of the thermal expansion support can offset the movement amount of the X-ray source. ). In this structure, the movement amount offsetting means is provided with the thermal expansion support, the heater and the heater.
It consists of three elements of the tacon controller, and the thermal expansion support is heated or cooled by the heater under the control of the heater controller to expand and contract to offset the movement amount of the X-ray source.

【0011】本発明のX線管装置のX線源移動量補償機
構では更に、前記ヒ−タコントロ−ラは、前記熱膨張支
持体の温度を検知する温度センサ部と、前記X線源の移
動量に基づき前記熱膨張支持体の上昇又は降下すべき温
度を求める計算処理部と、前記熱膨張支持体の温度を上
昇する場合には前記ヒ−タに加熱電流を流し、前記熱膨
張支持体の温度を降下する場合には前記ヒ−タの加熱電
流を止める制御を行うヒ−タ電流制御部とを具備する
(請求項3)。この構成では、ヒ−タコントロ−ラが温
度センサ部と計算処理部とヒ−タ電流制御部とを具備
し、熱膨張支持体の温度に基づき、ヒ−タに流すべき電
流を求め、そのデ−タに従ってヒ−タ電流を制御するこ
とにより、X線源の移動量を相殺している。
In the X-ray source movement amount compensating mechanism of the X-ray tube apparatus according to the present invention, the heater controller further comprises a temperature sensor section for detecting the temperature of the thermal expansion support, and movement of the X-ray source. A calculation processing unit for obtaining the temperature at which the thermal expansion support should rise or fall based on the amount, and a heating current is passed through the heater to increase the temperature of the thermal expansion support, and the thermal expansion support is heated. And a heater current controller for controlling the heating current of the heater when the temperature of the heater is lowered (claim 3). In this configuration, the heater controller includes a temperature sensor section, a calculation processing section, and a heater current control section. Based on the temperature of the thermal expansion support, the current to be passed to the heater is obtained and the data is calculated. The amount of movement of the X-ray source is offset by controlling the heater current according to the data.

【0012】本発明のX線管装置のX線源移動量補償機
構では更に、前記X線源移動量相殺手段は、前記熱膨張
支持体と前記ヒ−タの間に弾性体の層を挿入したもので
ある(請求項4)。この構成では、熱膨張支持体とヒ−
タの間に弾性体が挿入されるので、ヒ−タによる局部加
熱がなくなり、熱膨張支持体の局部的な熱変形等が防止
される。
Further, in the X-ray source movement amount compensating mechanism of the X-ray tube device of the present invention, the X-ray source movement amount canceling means inserts an elastic layer between the thermal expansion support and the heater. (Claim 4). In this configuration, the thermal expansion support and the heat
Since the elastic body is inserted between the heaters, local heating by the heater is eliminated, and local thermal deformation of the thermal expansion support is prevented.

【0013】本発明のX線管装置のX線源移動量補償機
構では更に、前記ヒ−タがシ−ト状ヒ−タである(請求
項5)。この構成では、熱膨張支持体全体を均一に加熱
することができ、X線源移動量の補償精度を向上でき
る。
In the X-ray source movement amount compensating mechanism of the X-ray tube device of the present invention, the heater is a sheet-shaped heater (Claim 5). With this configuration, the entire thermal expansion support can be uniformly heated, and the compensation accuracy of the X-ray source movement amount can be improved.

【0014】本発明のX線管装置のX線源移動量補償機
構では更に、前記X線管の陽極部材の熱膨張によるX線
源の移動量を検出するX線源移動量検出手段を設けたも
のである(請求項6)。この構成では、X線源の移動量
を実測できるようにX線源移動量検出手段を付加したも
のである。
The X-ray source movement amount compensating mechanism of the X-ray tube apparatus of the present invention further comprises X-ray source movement amount detecting means for detecting the movement amount of the X-ray source due to thermal expansion of the anode member of the X-ray tube. (Claim 6). In this configuration, X-ray source movement amount detection means is added so that the movement amount of the X-ray source can be measured.

【0015】本発明のX線管装置のX線源移動量補償機
構では更に、前記X線源移動量検出手段は、前記X線管
装置に対し被検体テ−ブルを間にして対向配置されたX
線検出器の一部に、X線源幅より狭いスリットを有する
X線透過制限部材を設けると共に、上記スリットを介し
て入射するX線の線量分布の変化を検出するX線源移動
量検出器を設けたものである(請求項7)。この構成で
は、X線源移動量検出手段はスリットを透過したX線量
分布がX線源の移動量に従って変化することを利用して
おり、スリットとX線量計から構成されている。
In the X-ray source movement amount compensating mechanism of the X-ray tube device according to the present invention, the X-ray source movement amount detecting means is arranged to face the X-ray tube device with the object table interposed therebetween. X
An X-ray transmission limiting member having a slit narrower than the X-ray source width is provided in a part of the X-ray detector, and an X-ray source movement amount detector for detecting a change in dose distribution of X-rays incident through the slit. Is provided (Claim 7). In this configuration, the X-ray source movement amount detection means utilizes that the X-ray dose distribution transmitted through the slit changes according to the movement amount of the X-ray source, and is composed of a slit and an X-ray dosimeter.

【0016】本発明のX線管装置のX線源移動量補償機
構では更に、前記X線管の陽極部材の熱膨張によるX線
源の移動量を、X線管の陽極蓄積熱量に基づき算出した
ものである(請求項8)。この構成では、X線源の移動
量とX線管の陽極蓄積熱量との間に一定の関係のあるこ
とを利用して、X線源の移動量を実測することなく、代
わりにX線管の陽極蓄積熱量値を利用できるようにした
ものである。
In the X-ray source movement amount compensating mechanism of the X-ray tube apparatus of the present invention, the movement amount of the X-ray source due to thermal expansion of the anode member of the X-ray tube is further calculated based on the amount of heat accumulated in the anode of the X-ray tube. (Claim 8). In this configuration, by utilizing the fact that there is a fixed relationship between the amount of movement of the X-ray source and the amount of heat accumulated in the anode of the X-ray tube, the amount of movement of the X-ray source is not actually measured, but instead the X-ray tube The amount of heat stored in the anode can be used.

【0017】[0017]

【発明の実施の形態】以下、本発明の実施例を添付図面
に基づいて詳細に説明する。図1は本発明によるX線管
装置のX線源移動量補償機構の要部を示す拡大断面図で
ある。まず、本発明に係るX線管装置の全体構成は、図
9に示す従来例と同じであるので、以下に図9を参照し
てその構造を説明する。すなわち、本発明に係るX線管
装置は、図9に示すように、X線管4と管容器6とを有
して成る。
Embodiments of the present invention will be described below in detail with reference to the accompanying drawings. FIG. 1 is an enlarged sectional view showing a main part of an X-ray source movement amount compensation mechanism of an X-ray tube device according to the present invention. First, since the overall configuration of the X-ray tube device according to the present invention is the same as that of the conventional example shown in FIG. 9, its structure will be described below with reference to FIG. That is, the X-ray tube device according to the present invention comprises an X-ray tube 4 and a tube container 6, as shown in FIG.

【0018】X線管4は、X線管を発生して外部へ放射
するもので、外囲器1の内部に陰極部材2と陽極部材3
とを対向配置し、この外囲器1の内部を真空気密に保持
して、陰極部材2と陽極部材3とを封入して成る。そし
て、陰極部材2には図示してない外部の高電圧電源から
負電位が印加され、陽極部材3には正電位が印加される
ようになっている。陰極部材2と陽極部材3との間に高
電圧を印加すると、陰極部材2から発せられる熱電子7
が陽極部材3の陽極タ−ゲット10へ衝突することによ
って陽極部材3のX線源からX線9を放射するようにな
っている。
The X-ray tube 4 generates an X-ray tube and emits it to the outside, and the cathode member 2 and the anode member 3 are provided inside the envelope 1.
Are opposed to each other, the inside of the envelope 1 is kept vacuum-tight, and the cathode member 2 and the anode member 3 are enclosed. A negative potential is applied to the cathode member 2 from an external high voltage power source (not shown), and a positive potential is applied to the anode member 3. When a high voltage is applied between the cathode member 2 and the anode member 3, the thermoelectrons 7 emitted from the cathode member 2
Collide with the anode target 10 of the anode member 3 to emit X-rays 9 from the X-ray source of the anode member 3.

【0019】特に、図9は回転陽極型のX線管装置を示
しており、陽極部材3は、陰極部材2に対向配置されて
いる回転可能の陽極ターゲット10と、この陽極ターゲ
ット10の中心部を軸支するロータ11と、このロータ
11の内部に同軸に設けられた回転軸12と、この回転
軸12を軸受13を介して回転自在に支持すると共に陽
極支持部14に固定する固定部15とから成る。なお、
陽極部材3の固定部15の後端は、支持端板16及び固
定ネジ17を介して陽極支持部14の後端部に固定され
ている。また、X線管4の陰極部材2側の支持は、外囲
器1の先端部の外径部に設けられた絶縁材料から成る陰
極支持部18で管容器6の内壁面に結合固定されてい
る。そして、陽極部材3の陽極ターゲット10は、ロー
タ11の外周面よりやや外方にて陽極支持部14の中間
部又は前端部の内周面に設けられたコア19A及びステ
ータコイル19Bとから成るステ−タ19によってモ−
タの原理により発生される回転力で回転されるロータ1
1の回転により、回転されるようになっている。
In particular, FIG. 9 shows a rotary anode type X-ray tube device, in which the anode member 3 is a rotatable anode target 10 arranged facing the cathode member 2 and a central portion of the anode target 10. A rotor 11 that axially supports the rotor 11, a rotary shaft 12 that is provided coaxially inside the rotor 11, and a fixing portion 15 that rotatably supports the rotary shaft 12 via a bearing 13 and that is fixed to the anode support portion 14. It consists of and. In addition,
The rear end of the fixed portion 15 of the anode member 3 is fixed to the rear end of the anode support portion 14 via a support end plate 16 and a fixing screw 17. Further, the support of the X-ray tube 4 on the cathode member 2 side is connected and fixed to the inner wall surface of the tube container 6 by the cathode support portion 18 made of an insulating material provided on the outer diameter portion of the tip portion of the envelope 1. There is. The anode target 10 of the anode member 3 is composed of a core 19A and a stator coil 19B provided on the inner peripheral surface of the intermediate portion or the front end portion of the anode supporting portion 14 slightly outside the outer peripheral surface of the rotor 11. -Ta 19
Rotor 1 rotated by the rotational force generated by the principle of
It is adapted to be rotated by the rotation of 1.

【0020】また、管容器6は、X線管装置全体のケー
シングとなるもので、X線管4の周りにX線管4の冷却
と高電圧絶縁を行う絶縁油5を収容し、かつ、X線管4
の全体を包み込んで成る。
The tube container 6 serves as a casing of the entire X-ray tube apparatus, and contains the insulating oil 5 for cooling the X-ray tube 4 and performing high-voltage insulation around the X-ray tube 4, and X-ray tube 4
It consists of the whole of.

【0021】このように構成されたX線管装置において
X線を放射するには、陰極部材2と陽極部材3の陽極タ
ーゲット10との間に百数十kVの高電圧を印加し、陰
極部材2から発せられる熱電子7が陽極ターゲット10
のX線源8に衝突することによってX線9が外部へ放射
される。
In order to emit X-rays in the X-ray tube device constructed as described above, a high voltage of several hundred tens kV is applied between the cathode member 2 and the anode target 10 of the anode member 3, and the cathode member is The thermoelectrons 7 emitted from 2 are anode targets 10
The X-ray 9 is radiated to the outside by colliding with the X-ray source 8.

【0022】ここで、本発明においては、上記X線管装
置に対しX線源移動量検出手段と、移動量相殺手段が設
けられている。上記X線源移動量検出手段は、X線管4
の陰極部材2と陽極部材3との間に高電圧を印加するこ
とによって生ずる陽極部材3の熱膨張によるX線源8の
移動量を検出するもので、例えば図2及び図3に示すX
線CT装置において、上記のように構成されたX線管装
置21に対し被検体22を寝載する被検体テーブル(図
示省略)を間にして対向配置されたX線検出器23の一
部に、X線9の線幅20より狭いスリット24(図3参
照)を有するX線透過制限部材25を設けると共に、上
記スリット24を介して入射するX線9の線量分布の変
化を検出するX線源移動量検出器26を設けたものであ
る。
Here, in the present invention, an X-ray source movement amount detecting means and a movement amount canceling means are provided for the X-ray tube device. The X-ray source movement amount detecting means is the X-ray tube 4.
The amount of movement of the X-ray source 8 due to the thermal expansion of the anode member 3 caused by applying a high voltage between the cathode member 2 and the anode member 3 is detected. For example, X shown in FIGS.
In the X-ray CT apparatus, a part of an X-ray detector 23 is arranged to face the X-ray tube device 21 configured as described above with a subject table (not shown) on which the subject 22 is placed. , An X-ray transmission limiting member 25 having a slit 24 (see FIG. 3) narrower than the line width 20 of the X-ray 9, and detecting the change in the dose distribution of the X-ray 9 incident through the slit 24. The source movement amount detector 26 is provided.

【0023】さらに詳しく説明すると、図2の実施例に
おいて、X線管装置21内の陽極ターゲット10のX線
源8から放射状にX線9が発生するが、このX線9をコ
リメータ27により被検体22を通過する線幅を絞り、
その後X線検出器23に入射したX線量から断層画像を
構成するようになっている。この実施例では、上記X線
検出器23の一端部にX線源移動量検出器26を設け、
このX線源移動量検出器26のX線入射側に、図3に示
すようにX線9の線幅20より狭いスリット24を形成
したX線透過制限部材25を設けている。X線管装置2
1の通常の動作状態において、上記X線源8から放射さ
れたX線9は、図3において、コリメータ27の絞りを
通過した後にX線透過制限部材25のスリット24を通
過してX線源移動量検出器26へ入射する。このとき、
X線9は、その線幅20の略全幅が上記スリット24に
かかっており、X線源移動量検出器26で検出するX線
の線量分布は所定値を示している。その後、図9に示す
陽極部材3が熱膨張して陽極ターゲット10が陰極部材
2側へ移動したとし、図3においてX線源8が符号8A
で示す位置へ移動したとする。すると、このX線源8A
から放射されるX線9Aは、コリメータ27の絞りを通
過して破線で示す経路で進み、スリット24を通過して
X線源移動量検出器26へ入射する。このときは、X線
9Aは、その線幅20の一部が上記スリット24にかか
るだけであり、X線源移動量検出器26で検出するX線
の線量分布が変化する。そして、このようにして検出し
たX線の線量分布の変化とそのときのX線源8の移動量
との関係を予め把握しておくことにより、上記X線源移
動量検出器26で検出したX線の線量分布の変化を知る
ことで、X線源8の移動量を知ることができる。
More specifically, in the embodiment shown in FIG. 2, X-rays 9 are radially generated from the X-ray source 8 of the anode target 10 in the X-ray tube device 21, and the X-rays 9 are covered by the collimator 27. Narrow the line width passing through the specimen 22,
After that, a tomographic image is constructed from the X-ray dose incident on the X-ray detector 23. In this embodiment, an X-ray source movement amount detector 26 is provided at one end of the X-ray detector 23,
As shown in FIG. 3, an X-ray transmission limiting member 25 having a slit 24 narrower than the line width 20 of the X-ray 9 is provided on the X-ray incident side of the X-ray source movement amount detector 26. X-ray tube device 2
3, the X-ray 9 emitted from the X-ray source 8 passes through the aperture of the collimator 27 and then the slit 24 of the X-ray transmission limiting member 25 in FIG. It is incident on the movement amount detector 26. At this time,
The X-ray 9 has substantially the entire width of the line width 20 extending over the slit 24, and the dose distribution of the X-ray detected by the X-ray source movement amount detector 26 shows a predetermined value. After that, it is assumed that the anode member 3 shown in FIG. 9 thermally expands and the anode target 10 moves to the cathode member 2 side, and in FIG.
Suppose you have moved to the position indicated by. Then, this X-ray source 8A
The X-ray 9A emitted from passes through the diaphragm of the collimator 27, travels along the path indicated by the broken line, passes through the slit 24, and enters the X-ray source movement amount detector 26. At this time, the X-ray 9A has only a part of the line width 20 of the X-ray that is applied to the slit 24, and the dose distribution of the X-ray detected by the X-ray source movement amount detector 26 changes. Then, the relationship between the change in the X-ray dose distribution detected in this way and the amount of movement of the X-ray source 8 at that time is grasped in advance, so that the X-ray source movement amount detector 26 detects it. By knowing the change in the X-ray dose distribution, the amount of movement of the X-ray source 8 can be known.

【0024】また、移動量相殺手段は、上記陽極部材3
の陽極支持部14に陽極部材3の熱膨張によるX線源8
の移動方向と反対方向に伸縮し、かつ、その伸縮を制御
可能とするもので、図1に示すように、上記X線管4の
陽極部材3を管容器6の内壁に支持する陽極支持部14
に、X線管4の管軸方向に伸びると共に内部にヒータ線
28を埋め込んだ熱膨張支持体29を設けると共に、そ
の熱膨張支持体29の伸縮を調整するため上記ヒータ線
28への通電を制御するヒータコントローラ30を設け
たものである。
The movement amount offsetting means is the anode member 3 described above.
The X-ray source 8 due to the thermal expansion of the anode member 3
The expansion and contraction of the anode member 3 of the X-ray tube 4 on the inner wall of the tube container 6, as shown in FIG. 14
Is provided with a thermal expansion support 29 extending in the tube axis direction of the X-ray tube 4 and having the heater wire 28 embedded therein, and the heater wire 28 is energized to adjust the expansion and contraction of the thermal expansion support 29. A heater controller 30 for controlling is provided.

【0025】さらに詳しく説明すると、熱膨張支持体2
9は、金属又は合成樹脂で円筒状に形成されたスペーサ
の内部に、螺旋状に巻かれたヒータ線28が埋め込まれ
て成り、ヒータコントローラ30によりヒータ線28に
通電することにより、ヒータ線28が発熱してスペーサ
を加熱し、熱膨張支持体29の全体がX線管4の管軸方
向にて陰極部材2から遠去かる方向に伸びるようになっ
ている。いま、例えば上記スペーサの材料をエポキシ樹
脂として長さ100mmの円筒状にすると、エポキシ樹
脂の線膨張率が約7×10-5程度であるので、ヒータ線
28でスペ−サの温度が約60℃上昇するように加熱す
ることにより、上記熱膨張支持体29は管軸方向に約4
00μm程度伸びる。このように、熱膨張支持体29が
X線管4の管軸方向に伸びることにより、陽極支持部1
4が陰極部材2から遠去かる方向に伸びるので、支持端
板16及び固定ネジ17を介して陽極ターゲット10を
前述のX線源8の移動方向と反対方向に移動させること
ができる。これにより、X線源8の移動量を相殺して、
動作中のX線源8の位置を一定位置に維持することがで
きる。
More specifically, the thermal expansion support 2
The heater wire 28 is formed by embedding a spirally wound heater wire 28 in a spacer formed of metal or synthetic resin in a cylindrical shape, and energizing the heater wire 28 by a heater controller 30. Generate heat to heat the spacer, and the entire thermal expansion support 29 extends in a direction away from the cathode member 2 in the tube axis direction of the X-ray tube 4. Now, for example, if the spacer material is made of epoxy resin and has a cylindrical shape with a length of 100 mm, the linear expansion coefficient of the epoxy resin is about 7 × 10 −5 , and therefore the temperature of the spacer in the heater wire 28 is about 60. By heating so that the temperature rises by 0 ° C., the thermal expansion support 29 is moved to about 4
It extends by about 00 μm. In this way, the thermal expansion support 29 extends in the tube axis direction of the X-ray tube 4, whereby the anode support 1
Since 4 extends away from the cathode member 2, the anode target 10 can be moved in the direction opposite to the moving direction of the X-ray source 8 via the support end plate 16 and the fixing screw 17. This offsets the movement amount of the X-ray source 8,
The position of the X-ray source 8 during operation can be maintained at a fixed position.

【0026】なお、上述のように陽極支持部14の熱膨
張支持体29の全体がX線管4の管軸方向にて陰極部材
2から遠去かる方向に伸びることによって、X線管4の
全体を管容器6内で移動させる力が働くが、外囲器1の
中央部分1aが金属で構成されると共にそのベース部分
1bが平板状に形成されていることから、この両端部が
固定された平板状のベース部分1bがその部材に垂直方
向に働く力や圧力に対して小さい応力で弾性変形して、
X線管4の陽極部材3側が移動可能とされている。実際
のX線管4では、外囲器1の内部を真空排気しただけで
陽極部材3側が既に約500μm程度陰極部材2の方へ
変形している。従って、熱膨張支持体29が伸びること
によって、X線管4の陽極部材3側が陰極部材2と反対
方向へ移動することとなる。また、外囲器1をすべてガ
ラスで構成した場合、又は上記のベース部材1bをカッ
プ状に形成して剛性を高めた場合は、X線管4をゴム等
の弾性係数の小さい物質を介して管容器6に支持するよ
うにすればよい。
As described above, the entire thermal expansion support 29 of the anode support portion 14 extends in the direction away from the cathode member 2 in the tube axis direction of the X-ray tube 4, so that the X-ray tube 4 is moved. Although a force to move the whole inside the tube container 6 acts, since the central portion 1a of the envelope 1 is made of metal and the base portion 1b is formed in a flat plate shape, both ends thereof are fixed. The flat plate-shaped base portion 1b elastically deforms with a small stress with respect to the force or pressure applied to the member in the vertical direction,
The anode member 3 side of the X-ray tube 4 is movable. In the actual X-ray tube 4, the anode member 3 side is already deformed to the extent of about 500 μm toward the cathode member 2 only by evacuating the inside of the envelope 1. Therefore, the expansion of the thermal expansion support 29 causes the X-ray tube 4 side of the anode member 3 to move in the direction opposite to the cathode member 2. When the envelope 1 is entirely made of glass, or when the base member 1b is formed in a cup shape to increase the rigidity, the X-ray tube 4 is made of a material such as rubber having a small elastic coefficient. It suffices to support the tube container 6.

【0027】さらに、上記陽極支持部14の伸縮を制御
するためには、陽極支持部14(図1においては熱膨張
支持体29)の温度を知り、その熱膨張の状態を把握す
る必要がある。そのために、例えば図1に示すように、
上記陽極支持部14の熱膨張支持体29の側面又は近傍
に熱電対などの温度センサ31を設け、この温度センサ
31からの信号を取り込んで温度計(図示せず。)で温
度を計測するようになっている。
Further, in order to control the expansion and contraction of the anode support portion 14, it is necessary to know the temperature of the anode support portion 14 (the thermal expansion support 29 in FIG. 1) and to grasp the thermal expansion state. . Therefore, for example, as shown in FIG.
A temperature sensor 31 such as a thermocouple is provided on the side surface or in the vicinity of the thermal expansion support 29 of the anode support portion 14, and a signal from the temperature sensor 31 is taken in to measure the temperature with a thermometer (not shown). It has become.

【0028】次に、上述のようなX線源移動量検出手段
及び移動量相殺手段により、X線管4内の陽極部材3の
熱膨張によって生ずる該陽極部材3のX線源8の移動量
を相殺する動作について、図4のフローチャートを参照
して説明する。まず、図3において、X線管装置21を
駆動してX線9を放射し、被検体22を透過したX線を
X線検出器23で検出しながら、X線透過制限部材25
とX線源移動量検出器26とから成るX線源移動量検出
手段でX線源8の移動量を検出する(ステップA)。こ
のとき、X線の放射動作による陽極部材3の熱膨張によ
ってX線源8が8Aの位置へ移動したのを、スリット2
4を介して入射するX線9,9AをX線源移動量検出器
26で検出する線量分布の変化によりその移動量を検出
する。
Next, the movement amount of the X-ray source 8 of the anode member 3 caused by the thermal expansion of the anode member 3 in the X-ray tube 4 by the X-ray source movement amount detecting means and the movement amount canceling means as described above. The operation of canceling the will be described with reference to the flowchart of FIG. First, in FIG. 3, while driving the X-ray tube device 21 to emit X-rays 9 and detect the X-rays transmitted through the subject 22 with the X-ray detector 23, the X-ray transmission limiting member 25
The movement amount of the X-ray source 8 is detected by the X-ray source movement amount detecting means including the X-ray source movement amount detector 26 and the X-ray source movement amount detector 26 (step A). At this time, the slit 2 indicates that the X-ray source 8 has moved to the position 8A due to the thermal expansion of the anode member 3 due to the radiation operation of X-rays.
The X-rays 9 and 9A that are incident through the laser beam 4 are detected by the X-ray source movement amount detector 26, and the movement amount is detected by the change in the dose distribution.

【0029】次に、図1において、熱膨張支持体29の
温度を検知する(ステップB)。すなわち、温度センサ
31及び31Aで熱膨張支持体29及びその周囲の絶縁
油5の温度を検知する。このとき、上記熱膨張支持体2
9の温度とその温度における熱膨張支持体29の伸びと
の関係は、図5のグラフに示すようにほぼ比例関係があ
る。これにより、熱膨張支持体29の現在の温度を知る
ことによりそのときの熱膨張支持体29の長さを知るこ
とができ、さらに熱膨張支持体29をあとどれ位伸ばす
ためにはどの程度温度を上げればよいかを知ることがで
きる。前記の温度センサ31、31Aからの計測信号
は、ヒ−タコントロ−ラ30又は操作卓で温度値に変換
している。
Next, in FIG. 1, the temperature of the thermal expansion support 29 is detected (step B). That is, the temperature sensors 31 and 31A detect the temperature of the thermal expansion support 29 and the insulating oil 5 around it. At this time, the thermal expansion support 2
The relationship between the temperature of 9 and the expansion of the thermal expansion support 29 at that temperature is approximately proportional as shown in the graph of FIG. Thus, by knowing the current temperature of the thermal expansion support 29, it is possible to know the length of the thermal expansion support 29 at that time, and how much temperature is required to further extend the thermal expansion support 29. You can know what to raise. The measurement signals from the temperature sensors 31 and 31A are converted into temperature values by the heater controller 30 or the console.

【0030】次に、上記ステップAで検出したX線源8
の移動量に対応させて、熱膨張支持体29の伸び量を決
定する(ステップC)。すなわち、ステップBで熱膨張支
持体29の現在の温度を検知し、その長さを知ったの
で、上記X線源8の移動量を相殺するために熱膨張支持
体29をあとどれ位伸ばせばよいかを計算で求める。こ
の計算は、ヒ−タコントロ−ラ30又は操作卓に計算処
理部を置いて行えばよい。
Next, the X-ray source 8 detected in step A above
The amount of expansion of the thermal expansion support 29 is determined according to the amount of movement (step C). That is, since the current temperature of the thermal expansion support 29 is detected in step B and the length thereof is known, how much further the thermal expansion support 29 should be extended to cancel the movement amount of the X-ray source 8. Calculate whether it is good. This calculation may be performed by placing a calculation processing unit on the heater controller 30 or the console.

【0031】次に、移動量相殺手段により上記熱膨張支
持体29を伸縮させる(ステップD)。すなわち、上記ス
テップCで熱膨張支持体29の伸び量を決定したので、
例えば図5に示すグラフを用いて、上記熱膨張支持体2
9の伸び量Δlに対応する熱膨張支持体29の温度差Δ
tを求め、このΔtを発生させるように図1に示すヒー
タコントローラ30を制御する。これにより、上記ヒー
タコントローラ30から上記の温度差Δtを発生させる
のに必要な電流がヒータ線28に供給され、ヒータ線2
8が発熱することにより、熱膨張支持体29を加熱す
る。すると、熱膨張支持体29の全体がX線管4の管軸
方向にて陰極部材2から遠去かる方向に伸びる。このと
き、図1に示す支持端板16及び固定ネジ17を介して
陽極ターゲット10を前述のX線源8の移動方向と反対
方向に移動させることができ、これにより、上記X線源
8の移動量を相殺して動作中のX線源の位置を一定位置
に維持することができる。以下、上記の動作を繰り返せ
ばよい。
Next, the thermal expansion support 29 is expanded / contracted by the movement offsetting means (step D). That is, since the expansion amount of the thermal expansion support 29 is determined in step C above,
For example, using the graph shown in FIG. 5, the thermal expansion support 2
9, the temperature difference Δ of the thermal expansion support 29 corresponding to the expansion amount Δl of 9
The heater controller 30 shown in FIG. 1 is controlled so as to obtain t and generate this Δt. As a result, the current required to generate the temperature difference Δt is supplied from the heater controller 30 to the heater wire 28, and the heater wire 2 is heated.
The heat generation of 8 heats the thermal expansion support 29. Then, the entire thermal expansion support 29 extends in a direction away from the cathode member 2 in the tube axis direction of the X-ray tube 4. At this time, the anode target 10 can be moved in the direction opposite to the moving direction of the X-ray source 8 via the support end plate 16 and the fixing screw 17 shown in FIG. The amount of movement can be offset to maintain the position of the operating X-ray source at a constant position. Hereinafter, the above operation may be repeated.

【0032】また、上記の動作において、ステップB、
Cで機能する温度センサ31、31A及びX線源8の移
動量の計算処理部については、移動量相殺手段を構成す
る独立の素子として説明したが、ヒ−タコントロ−ラ3
0に含ませて、ステップB〜Dを纏めてヒ−タコントロ
−ラ30に制御させることも可能である。
In the above operation, step B,
The temperature sensor 31, 31A functioning in C and the movement amount calculation processing unit of the X-ray source 8 have been described as independent elements that constitute movement amount canceling means, but the heater controller 3
It is also possible to control the heater controller 30 to control the heater controller 30 by including steps 0 to 0 together.

【0033】図6はX線源8の移動量を知る方法の他の
例を説明するためのグラフであり、陽極部材3の熱入力
状態に対応するX線源移動量を予め把握しておく方法を
示すものである。図6のグラフは、時間の経過と陽極蓄
積熱容量及びX線源移動量との関係を示したものであ
る。X線管4の負荷入力と共に陽極部材3が温度上昇し
X線源8は急激に移動を始め、陽極部材3の熱容量が平
衡状態に達すると、上記X線源8の移動量も平衡状態と
なる。冷却時には、高温状態の陽極部材3は輻射により
急激に温度が下がり、熱膨張量も同様に小さくなるた
め、X線源8の移動量も小さくなる。図6において、陽
極蓄積熱容量が小さくなると冷却は熱伝導が支配的にな
り、X線源移動量も徐々に小さくなっている。そして、
横軸の時間において負荷入力及び冷却の状態を把握し、
さらに縦軸の陽極蓄積熱容量を計算して把握しておき、
これらの値を予め記憶装置に格納しておくことにより、
陽極部材3の加熱状態に応じてその時のX線源8の移動
量を直ちに読み出して知ることができる。この場合は、
図2及び図3に示すような機械的な構成のX線源移動量
検出手段によることなく、容易かつ迅速にX線源8の移
動量を知ることができる。
FIG. 6 is a graph for explaining another example of the method of knowing the movement amount of the X-ray source 8, and the movement amount of the X-ray source corresponding to the heat input state of the anode member 3 is grasped in advance. It shows a method. The graph of FIG. 6 shows the relationship between the passage of time and the accumulated heat capacity of the anode and the movement amount of the X-ray source. When the temperature of the anode member 3 rises with the load input of the X-ray tube 4 and the X-ray source 8 starts to move rapidly, and the heat capacity of the anode member 3 reaches an equilibrium state, the movement amount of the X-ray source 8 also becomes equilibrium state. Become. During cooling, the temperature of the anode member 3 in a high temperature rapidly decreases due to radiation, and the amount of thermal expansion also decreases, so that the amount of movement of the X-ray source 8 also decreases. In FIG. 6, when the anode accumulated heat capacity becomes smaller, the heat conduction becomes dominant in the cooling, and the X-ray source movement amount gradually becomes smaller. And
Grasping the load input and cooling status on the horizontal axis,
Furthermore, calculate the anode accumulated heat capacity on the vertical axis and grasp it,
By storing these values in the storage device in advance,
The amount of movement of the X-ray source 8 at that time can be immediately read and known according to the heating state of the anode member 3. in this case,
The amount of movement of the X-ray source 8 can be easily and quickly detected without using the X-ray source movement amount detection means having a mechanical structure as shown in FIGS.

【0034】図7は移動量相殺手段の他の実施例を示す
拡大断面図である。この実施例は、移動量相殺手段とし
て、図に示す陽極支持部14にリニアアクチュエータ3
2とアクチュエータロッド33とアクチュエータコント
ローラ34とを設けたものである。上記リニアアクチュ
エータ32は、アクチュエータロッド33を支持し、上
記X線管4の管軸方向に直線的に伸縮駆動するモータ部
から成る。アクチュエータロッド33は、実際に陽極支
持部14に相当する部材を伸縮させるもので、上記リニ
アアクチュエータ32と支持端板16とを数個所で連絡
して、支持端板16を支持するように設けられ、リニア
アクチュエータ32の駆動により直線的に伸縮して上記
支持端板16を管軸方向に移動させるようになってい
る。また、アクチュエータコントローラ34は、上記ア
クチュエータロッド33の伸縮を調整するためリニアア
クチュエータ32へ駆動制御の信号を送るものである。
FIG. 7 is an enlarged sectional view showing another embodiment of the movement amount canceling means. In this embodiment, the linear actuator 3 is attached to the anode support portion 14 shown in the figure as a movement amount canceling means.
2, an actuator rod 33 and an actuator controller 34 are provided. The linear actuator 32 is composed of a motor unit that supports the actuator rod 33 and linearly expands and contracts in the tube axis direction of the X-ray tube 4. The actuator rod 33 actually expands and contracts a member corresponding to the anode support portion 14, and is provided so as to support the support end plate 16 by connecting the linear actuator 32 and the support end plate 16 at several points. The linear actuator 32 is driven to linearly expand and contract to move the support end plate 16 in the tube axis direction. Further, the actuator controller 34 sends a drive control signal to the linear actuator 32 in order to adjust the expansion and contraction of the actuator rod 33.

【0035】このような構成により、図1の実施例の場
合と同様に、陽極部材3の熱膨張によるX線源8の移動
量を検出した状態で、この移動量に対応する長さだけア
クチュエータロッド33を伸ばすような制御信号をアク
チュエータコントローラ34が発生し、この制御信号を
受けてリニアアクチュエータ32が駆動し、これにより
上記アクチュエータロッド33がX線管4の管軸方向に
て陰極部材2から遠去かる方向に伸びる。このとき、図
1に示す支持端板16及び固定ネジ17を介して陽極タ
ーゲット10を前述のX線源8の移動方向と反対方向に
移動させることができ、これにより、上記X線源8の移
動量を相殺して動作中のX線源の位置を一定位置に維持
することができる。
With this structure, as in the case of the embodiment shown in FIG. 1, the amount of movement of the X-ray source 8 due to the thermal expansion of the anode member 3 is detected, and the actuator is moved by the length corresponding to this amount of movement. An actuator controller 34 generates a control signal for extending the rod 33, and the linear actuator 32 is driven in response to this control signal, whereby the actuator rod 33 is moved from the cathode member 2 in the tube axis direction of the X-ray tube 4. Stretches away. At this time, the anode target 10 can be moved in the direction opposite to the moving direction of the X-ray source 8 via the support end plate 16 and the fixing screw 17 shown in FIG. The amount of movement can be offset to maintain the position of the operating X-ray source at a constant position.

【0036】図8は、移動量相殺手段の第3の実施例を
示す拡大断面図である。この実施例は、図1の実施例に
類似したもので、熱膨張支持体29及びヒ−タ線28の
構造を変えたものである。図8において、陽極支持部1
4に熱膨張支持体29Aとヒ−タ28Aが含まれている
のは図1の場合と同様であるが、熱膨張支持体29Aは
円筒形でエポキシ樹脂から成り、ヒ−タ28Aの内周側
に配置されていること、ヒ−タ28Aはシ−ト状ヒ−タ
で、熱膨張支持体29Aの外周に巻きつけて配置されて
いる点で相違する。熱膨張支持体29Aの材料として
は、線膨張率が6×10-5程度以上の電気絶縁性の良い
エポキシ樹脂が適当であるが、これに限定されることは
なく、これと同等の電気絶縁性、耐熱性、耐油性を持
ち、線膨張率の大きい材料であればよい。
FIG. 8 is an enlarged sectional view showing a third embodiment of the movement amount canceling means. This embodiment is similar to the embodiment of FIG. 1 except that the structures of the thermal expansion support 29 and the heater wire 28 are changed. In FIG. 8, the anode support 1
4 includes a thermal expansion support 29A and a heater 28A, which is similar to the case of FIG. 1, but the thermal expansion support 29A is cylindrical and made of epoxy resin, and the inner circumference of the heater 28A is It is different in that the heater 28A is a sheet-shaped heater and is wound around the outer circumference of the thermal expansion support 29A. As a material for the thermal expansion support 29A, an epoxy resin having a linear expansion coefficient of about 6 × 10 −5 or more and good electric insulation is suitable, but the material is not limited to this and an electric insulation equivalent to this is used. Any material can be used as long as it has heat resistance, heat resistance, oil resistance and a large linear expansion coefficient.

【0037】ヒ−タ28Aはシ−ト状ヒ−タが適当であ
るが、熱膨張支持体29Aの外周全面にわたって耐熱性
絶縁物を介して(又は直接に)ヒ−タ線を巻きつけても
良い。これによって、熱膨張支持体29A全体を均一に
加熱することができる。また、シ−ト状ヒ−タは絶縁油
5中で使用するので耐油性が必要である。
A sheet-shaped heater is suitable as the heater 28A, but a heater wire is wound (or directly) around the entire outer circumference of the thermal expansion support 29A through a heat resistant insulator. Is also good. As a result, the entire thermal expansion support 29A can be heated uniformly. Also, since the sheet-shaped heater is used in the insulating oil 5, oil resistance is required.

【0038】図8においては、熱膨張支持体29Aとヒ
−タ28との間に弾性体35が配置されている。この弾
性体35はシ−ト状のヒ−タ28を包む形で、ヒ−タ2
8Aの内外層に配置されている。この弾性体35は、ヒ
−タ28Aにて熱膨張支持体29Aを直接加熱した場合
熱膨張のレスポンスは向上するが、熱膨張支持体29A
が局部的な熱変形等により部材に欠陥を生じさせること
があるので、これを緩衝する役割を果たすものである。
弾性体35の材料としては、耐熱性、耐油性、適当な伸
び率の材料、例えばシリコンゴムや弗素系ゴム等が良
く、これをシ−ト状にしたものを使用する。
In FIG. 8, an elastic body 35 is arranged between the thermal expansion support 29A and the heater 28. This elastic body 35 is wrapped around the sheet-shaped heater 28,
It is arranged in the inner and outer layers of 8A. This elastic body 35 improves the thermal expansion response when the thermal expansion support 29A is directly heated by the heater 28A, but the thermal expansion support 29A is improved.
May cause defects in the member due to local thermal deformation, etc., and serves to buffer this.
As the material of the elastic body 35, a material having heat resistance, oil resistance and an appropriate elongation, such as silicone rubber or fluorine rubber, is preferable, and a sheet-like material is used.

【0039】熱膨張支持体29Aとヒ−タ28Aと弾性
体35とは、熱膨張支持体29Aの外周に、弾性体3
5、ヒ−タ28A、弾性体35の順に配置して接着剤に
て接着し、固定される。場合によっては、最外周の弾性
体35は削除しても機能的には差しつかえない。
The thermal expansion support 29A, the heater 28A, and the elastic body 35 are provided on the outer circumference of the thermal expansion support 29A.
5, the heater 28A, and the elastic body 35 are arranged in this order and adhered and fixed by an adhesive. In some cases, even if the outermost elastic body 35 is deleted, it is functionally acceptable.

【0040】ヒ−タコントロ−ラ30はヒ−タ28Aに
接続され、ヒ−タ28Aに流れる電流を制御する。ま
た、熱膨張支持体29Aの外周面に温度センサ31を取
り付けて温度の計測を行う。
The heater controller 30 is connected to the heater 28A and controls the current flowing through the heater 28A. A temperature sensor 31 is attached to the outer peripheral surface of the thermal expansion support 29A to measure the temperature.

【0041】本実施例での移動量相殺手段としての動作
は、図1の実施例と同様で、図4で説明したとおりであ
る。また、図1の実施例と同様、温度センサ31及びX
線源の移動量の計算処理部をヒ−タコントロ−ラ30に
含ませることも可能である。また、図8に示した構造に
おいて、熱膨張支持体29Aとヒ−タ28Aとの配置は
これに限定されず、ヒ−タ28Aを熱膨張支持体29A
の内周に配置しても良い。
The operation as the movement amount canceling means in this embodiment is the same as that of the embodiment of FIG. 1, and is as described in FIG. Further, similar to the embodiment of FIG. 1, the temperature sensor 31 and the X
It is also possible to include a calculation processing unit for the movement amount of the radiation source in the heater controller 30. Further, in the structure shown in FIG. 8, the arrangement of the thermal expansion support 29A and the heater 28A is not limited to this, and the heater 28A can be replaced by the thermal expansion support 29A.
It may be arranged on the inner circumference of.

【0042】なお、X線源移動量検出手段は、図2及び
図3に示す構成のものに限られず、陽極部材3の熱膨張
によるX線源8の移動量を検出できるものならばどのよ
うな構成のものであってもよい。また、移動量相殺手段
も、図1、図7及び図8に示す構成のものに限られず、
陽極部材3の熱膨張によるX線源8の移動方向と反対方
向に伸縮し且つその伸縮を制御可能なものならばどのよ
うな構成のものであってもよい。さらに、図1、図7及
び図8においては、回転陽極型のX線管装置を示した
が、本発明はこれに限らず、固定陽極型のX線管装置に
も同様に適用できる。
The X-ray source movement amount detecting means is not limited to the structure shown in FIG. 2 and FIG. 3, and any means can be used as long as it can detect the movement amount of the X-ray source 8 due to thermal expansion of the anode member 3. It may have any configuration. Further, the movement amount canceling means is not limited to the one shown in FIGS. 1, 7 and 8.
Any structure may be used as long as it expands and contracts in the direction opposite to the moving direction of the X-ray source 8 due to thermal expansion of the anode member 3 and its expansion and contraction can be controlled. Further, although the rotary anode type X-ray tube device is shown in FIGS. 1, 7, and 8, the present invention is not limited to this, and is similarly applicable to a fixed anode type X-ray tube device.

【0043】[0043]

【発明の効果】本発明は以上のように構成されたので、
X線源移動量検出手段により、X線管の陰極部材と陽極
部材との間の高電圧印加で生ずる陽極部材の熱膨張によ
るX線源の移動量を検出し、上記陽極部材の支持部に設
けられた移動量相殺手段により、該陽極部材の熱膨張に
よるX線源の移動方向と反対方向に伸縮させると共にそ
の伸縮を上記検出した移動量に対応させて制御し、上記
X線源の移動量を相殺することができる。これにより、
動作中のX線管内のX線源の位置を一定位置に維持する
ことができる。従って、被検体に対するX線照射の線量
分布が変動することなく、X線管装置で放射されたX線
で収集するX線画像の画質を向上することができる。
Since the present invention is constructed as described above,
The X-ray source movement amount detecting means detects the movement amount of the X-ray source due to the thermal expansion of the anode member caused by the high voltage application between the cathode member and the anode member of the X-ray tube, and the X-ray source movement amount detecting means detects the movement amount of the X-ray source. The movement amount offsetting means provided expands and contracts in a direction opposite to the moving direction of the X-ray source due to thermal expansion of the anode member, and controls the expansion and contraction in accordance with the detected moving amount to move the X-ray source. The amount can be offset. This allows
The position of the X-ray source in the operating X-ray tube can be maintained at a fixed position. Therefore, the image quality of the X-ray image collected by the X-rays emitted by the X-ray tube device can be improved without changing the dose distribution of the X-ray irradiation on the subject.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明によるX線管装置のX線源移動量補償機
構の要部を示す拡大断面図。
FIG. 1 is an enlarged cross-sectional view showing a main part of an X-ray source movement amount compensation mechanism of an X-ray tube device according to the present invention.

【図2】X線CT装置におけるX線源移動量検出手段の
構成例を示す正面説明図。
FIG. 2 is a front explanatory view showing a configuration example of X-ray source movement amount detection means in an X-ray CT apparatus.

【図3】同じくX線源移動量検出手段の構成例を示す側
面説明図。
FIG. 3 is an explanatory side view showing a configuration example of X-ray source movement amount detection means.

【図4】X線源移動検出手段及び移動量相殺手段により
陽極部材のX線源の移動を相殺する動作を説明するため
のフローチャート。
FIG. 4 is a flow chart for explaining an operation of canceling the movement of the X-ray source of the anode member by the X-ray source movement detecting means and the movement amount canceling means.

【図5】陽極支持部の温度とその温度における陽極支持
部の伸びとの関係を示すグラフ。
FIG. 5 is a graph showing the relationship between the temperature of the anode support and the elongation of the anode support at that temperature.

【図6】X線源の移動量を知る方法の他の例を説明する
ためのグラフ。
FIG. 6 is a graph for explaining another example of the method of knowing the movement amount of the X-ray source.

【図7】移動量相殺手段の他の実施例を示す拡大断面
図。
FIG. 7 is an enlarged cross-sectional view showing another embodiment of the movement amount canceling means.

【図8】移動量相殺手段の第3の実施例を示す拡大断面
図。
FIG. 8 is an enlarged cross-sectional view showing a third embodiment of the movement amount canceling means.

【図9】本発明及び従来例に係るX線管装置の全体構成
を示す断面図。
FIG. 9 is a cross-sectional view showing an overall configuration of an X-ray tube device according to the present invention and a conventional example.

【符号の説明】[Explanation of symbols]

1 外囲器 2 陰極部材 3 陽極部材 4 X線管 5 絶縁油 6 管容器 7 熱電子 8 X線源 9 X線 14 陽極支持部 18 陰極支持部 21 X線管装置 22 被検体 23 X線検出器 24 スリット 25 X線透過制限部材 26 X線源移動検出器 28 ヒータ線 28A ヒ−タ 29、29A 熱膨張支持体 30 ヒータコントローラ 31、31A 温度センサ 32 リニアアクチュエータ 33 アクチュエータロッド 34 アクチュエータコントローラ 35 弾性体。 1 Enclosure 2 Cathode member 3 Anode member 4 X-ray tube 5 Insulating oil 6 Insulating container 6 Thermoelectron 8 X-ray source 9 X-ray 14 Anode support 18 Cathode support 21 X-ray tube device 22 Subject 23 X-ray detection Device 24 Slit 25 X-ray transmission limiting member 26 X-ray source movement detector 28 Heater wire 28A Heater 29, 29A Thermal expansion support 30 Heater controller 31, 31A Temperature sensor 32 Linear actuator 33 Actuator rod 34 Actuator controller 35 Elastic body .

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】外囲器の内部に陰極部材と陽極部材とを対
向配置し、該外囲器の内部を真空気密に保持して前記陰
極部材と陽極部材とを封入したX線管と、該X線管の周
りに該X線管の冷却と高電圧絶縁を行う絶縁油を収容
し、かつ、前記X線管の全体を包み込んだ管容器と、前
記X線管の陽極部材の端部を支持し、かつ、前記管容器
の内壁に固定された陽極支持部とを有し、前記X線管の
陰極部材と陽極部材との間に高電圧を印加し、前記陰極
部材から発せられる熱電子が陽極部材へ衝突することに
よって前記陽極部材のX線源からX線を放射するX線管
装置において、前記X線管の陰極部材と陽極部材との間
の高電圧印加で生ずる陽極部材の熱膨張によるX線源の
移動量に対応して、該X線源の移動方向と反対方向に伸
縮し、かつ、その伸縮量の制御が可能なX線源移動量相
殺手段を、前記陽極部材を支持する陽極支持部に設けた
ことを特徴とするX線管装置のX線源移動量補償機構。
1. An X-ray tube in which a cathode member and an anode member are arranged inside an envelope so as to face each other, and the inside of the envelope is vacuum-tightly sealed to enclose the cathode member and the anode member. A tube container accommodating insulating oil for cooling the X-ray tube and performing high-voltage insulation around the X-ray tube and enclosing the entire X-ray tube, and an end portion of an anode member of the X-ray tube. Having a positive electrode supporting portion fixed to the inner wall of the tube container, applying a high voltage between the negative electrode member and the positive electrode member of the X-ray tube, and generating heat from the negative electrode member. In an X-ray tube device that emits X-rays from an X-ray source of the anode member when electrons collide with the anode member, an anode member generated by high voltage application between the cathode member and the anode member of the X-ray tube. Corresponding to the amount of movement of the X-ray source due to thermal expansion, it expands and contracts in the direction opposite to the moving direction of the X-ray source, and its extension The X-ray source moving amount canceling means capable of controlling the amount, X-rays source moving amount compensating mechanism of the X-ray tube apparatus characterized by comprising the anode support portion for supporting the anode member.
【請求項2】請求項1記載のX線管装置のX線源移動量
補償機構において、前記X線源移動量相殺手段は、一端
が前記陽極部材を固定・支持する陽極支持体に接続さ
れ、他端が前記管容器の内壁に固定され、円筒状の熱膨
張支持体と、該熱膨張支持体に装着されて該熱膨張支持
体を加熱するヒ−タと、前記熱膨張支持体の温度を検知
して、該熱膨張支持体の伸びが前記X線源の移動量を相
殺できるように前記ヒ−タによる熱膨張支持体の加熱を
制御するヒ−タコントロ−ラとを具備することを特徴と
するX線管装置のX線源移動量補償機構。
2. An X-ray source movement amount compensating mechanism for an X-ray tube device according to claim 1, wherein the X-ray source movement amount canceling means has one end connected to an anode support for fixing and supporting the anode member. , The other end is fixed to the inner wall of the tube container, a cylindrical thermal expansion support, a heater attached to the thermal expansion support to heat the thermal expansion support, and the thermal expansion support of the thermal expansion support. A heater controller for detecting the temperature and controlling the heating of the thermal expansion support by the heater so that the expansion of the thermal expansion support can offset the amount of movement of the X-ray source. An X-ray source movement amount compensating mechanism for an X-ray tube device.
【請求項3】請求項2記載のX線管装置のX線源移動量
補償機構において、前記ヒ−タコントロ−ラは、前記熱
膨張支持体の温度を検知する温度センサ部と、前記X線
源の移動量に基づき前記熱膨張支持体の上昇又は降下す
べき温度を求める計算処理部と、前記熱膨張支持体の温
度を上昇する場合には前記ヒ−タに加熱電流を流し、前
記熱膨張支持体の温度を降下する場合には前記ヒ−タの
加熱電流を止める制御を行うヒ−タ電流制御部とを具備
することを特徴とするX線管装置のX線源移動量補償機
構。
3. The X-ray source movement compensating mechanism for an X-ray tube device according to claim 2, wherein the heater controller includes a temperature sensor section for detecting the temperature of the thermal expansion support, and the X-ray. A calculation processing unit that determines the temperature at which the thermal expansion support should rise or fall based on the amount of movement of the source, and a heating current is passed through the heater to increase the temperature of the thermal expansion support, An X-ray source movement compensating mechanism for an X-ray tube device, comprising: a heater current control unit for controlling to stop the heating current of the heater when the temperature of the expansion support is lowered. .
【請求項4】請求項2及び3記載のX線管装置のX線源
移動量補償機構において、前記X線源移動量相殺手段
は、前記熱膨張支持体と前記ヒ−タの間に弾性体の層を
挿入したことを特徴とするX線管装置のX線源移動量補
償機構。
4. An X-ray source movement amount compensating mechanism for an X-ray tube device according to claim 2 or 3, wherein said X-ray source movement amount offsetting means is elastic between said thermal expansion support and said heater. An X-ray source movement amount compensating mechanism for an X-ray tube device, characterized in that a body layer is inserted.
【請求項5】請求項2及至4記載のX線管装置のX線源
移動量補償機構において、前記ヒ−タがシ−ト状ヒ−タ
であることを特徴とするX線管装置のX線源移動量補償
機構。
5. An X-ray source movement amount compensating mechanism for an X-ray tube device according to any one of claims 2 to 4, wherein the heater is a sheet-shaped heater. X-ray source movement compensation mechanism.
【請求項6】請求項1及至5記載のX線管装置のX線源
移動量補償機構において、前記X線管の陽極部材の熱膨
張によるX線源の移動量を検出するX線源移動量検出手
段を設けたことを特徴とするX線管装置のX線源移動量
補償機構。
6. An X-ray source movement amount compensating mechanism for an X-ray tube device according to any one of claims 1 to 5, wherein the X-ray source movement detects an X-ray source movement amount due to thermal expansion of an anode member of the X-ray tube. An X-ray source movement amount compensating mechanism for an X-ray tube device, comprising an amount detecting means.
【請求項7】請求項6記載のX線管装置のX線源移動量
補償機構において、前記X線源移動量検出手段は、前記
X線管装置に対し被検体テ−ブルを間にして対向配置さ
れたX線検出器の一部に、X線源幅より狭いスリットを
有するX線透過制限部材を設けると共に、上記スリット
を介して入射するX線の線量分布の変化を検出するX線
源移動量検出器を設けたものであることを特徴とするX
線管装置のX線源移動量補償機構。
7. An X-ray source movement amount compensating mechanism for an X-ray tube device according to claim 6, wherein said X-ray source movement amount detecting means has an object table interposed between said X-ray tube device and said X-ray tube movement device. An X-ray detecting member having a slit narrower than the width of the X-ray source is provided in a part of the X-ray detectors facing each other, and an X-ray detecting a change in dose distribution of X-rays incident through the slit. X provided with a source movement amount detector
X-ray source movement amount compensation mechanism of the X-ray tube device.
【請求項8】請求項1及至5記載のX線管装置のX線源
移動量補償機構において、前記X線管の陽極部材の熱膨
張によるX線源の移動量を、X線管の陽極蓄積熱量に基
づき算出したことを特徴とするX線管装置のX線源移動
量補償機構。
8. An X-ray source movement amount compensating mechanism for an X-ray tube device according to any one of claims 1 to 5, wherein the movement amount of the X-ray source due to thermal expansion of an anode member of the X-ray tube is determined by the anode of the X-ray tube. An X-ray source movement amount compensation mechanism for an X-ray tube device, which is calculated based on an accumulated heat amount.
JP16531896A 1995-06-12 1996-06-05 X-ray source movement compensation mechanism for x-ray tube device Pending JPH0963522A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16531896A JPH0963522A (en) 1995-06-12 1996-06-05 X-ray source movement compensation mechanism for x-ray tube device

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP7-167875 1995-06-12
JP16787595 1995-06-12
JP16531896A JPH0963522A (en) 1995-06-12 1996-06-05 X-ray source movement compensation mechanism for x-ray tube device

Publications (1)

Publication Number Publication Date
JPH0963522A true JPH0963522A (en) 1997-03-07

Family

ID=26490100

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16531896A Pending JPH0963522A (en) 1995-06-12 1996-06-05 X-ray source movement compensation mechanism for x-ray tube device

Country Status (1)

Country Link
JP (1) JPH0963522A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002009140A1 (en) * 2000-07-21 2002-01-31 Hitachi Medical Corporation Rotation anode x-ray tube and x-ray ct device using the x-ray tube
JP2014232579A (en) * 2013-05-28 2014-12-11 株式会社日立メディコ X-ray tube device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002009140A1 (en) * 2000-07-21 2002-01-31 Hitachi Medical Corporation Rotation anode x-ray tube and x-ray ct device using the x-ray tube
JP2014232579A (en) * 2013-05-28 2014-12-11 株式会社日立メディコ X-ray tube device

Similar Documents

Publication Publication Date Title
US7257193B2 (en) X-ray source assembly having enhanced output stability using tube power adjustments and remote calibration
US9247914B2 (en) X-ray imaging apparatus and X-ray focus position control method of X-ray imaging apparatus
US10361057B2 (en) X-ray generating apparatus and radiography system
JP2005056843A (en) Focal spot position adjusting device for imaging tube
JPH06188092A (en) X-ray generating target, x-ray source, and x-ray image pickup device
JPH09293598A (en) X-ray apparatus
JP2007165236A (en) Microfocus x-ray tube and x-ray apparatus using the same
US20150023472A1 (en) X-Ray Testing Device for Material Testing and Method for the Generation of High-Resolution Projections of a Test Object by means of X-Ray Beams
JPH0963522A (en) X-ray source movement compensation mechanism for x-ray tube device
WO2006009053A1 (en) Fixed anode x-ray tube, x-ray inspection device using the same, and x-ray irradiation device
WO2013081179A1 (en) Radiation generating apparatus and radiographing system using the same
JP5106789B2 (en) X-ray tube apparatus and X-ray CT apparatus
JP2007141595A (en) X-ray tube and x-ray device using it
JP4526113B2 (en) Microfocus X-ray tube and X-ray apparatus using the same
JP6153314B2 (en) X-ray transmission type target and manufacturing method thereof
JP2001326095A (en) Detecting system for x-ray tube
JP4237301B2 (en) X-ray tube device
JP6253299B2 (en) X-ray tube apparatus and X-ray imaging apparatus
JP2024118762A (en) X-ray thickness measuring device
JP2003151795A (en) Surface focus x-ray tube and homogeneous x-ray equipment using poly-capillary
JP5574672B2 (en) X-ray tube device and X-ray device
JP3628749B2 (en) X-ray tube controller
JPH08273567A (en) Rotary anode x-ray tube and device
JP6213986B2 (en) Absolute light intensity measuring device and measuring method
JP2015076213A (en) Radiation tube, radiation generating device and radiographic system