JPH0961707A - Standard lens system - Google Patents
Standard lens systemInfo
- Publication number
- JPH0961707A JPH0961707A JP23893995A JP23893995A JPH0961707A JP H0961707 A JPH0961707 A JP H0961707A JP 23893995 A JP23893995 A JP 23893995A JP 23893995 A JP23893995 A JP 23893995A JP H0961707 A JPH0961707 A JP H0961707A
- Authority
- JP
- Japan
- Prior art keywords
- lens
- lens group
- positive
- negative
- aberration
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
Landscapes
- Lenses (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は高い描写性能を有す
る大口径比の標準レンズに関するものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a large-aperture-ratio standard lens having high drawing performance.
【0002】[0002]
【従来の技術】画角が46°程度のいわゆる標準レンズ
において1眼レフレックスカメラ用の結像レンズは、ミ
ラー可動空間を設ける必要性から、屈折力配置からみた
時非対称型の変形ガウスタイプを採用してバックフォー
カスを確保していた。しかし、このような非対称性の屈
折力配置のレンズ系は、軸外諸収差の悪化を招く。特に
大口径比化に伴い倍率の色収差、像面湾曲あるいはサジ
タルコマ収差などが顕著になる傾向がある。更に硝子の
屈折率を高くしてコマ収差を補正しようとしても限界が
あり、又色収差や像面湾曲が問題となる。2. Description of the Related Art In a so-called standard lens having an angle of view of about 46 °, an image forming lens for a single-lens reflex camera is of a deformed Gauss type which is asymmetrical when viewed from the refractive power arrangement because of the necessity of providing a mirror movable space. It was adopted to secure the back focus. However, such a lens system having an asymmetrical refractive power arrangement causes deterioration of various off-axis aberrations. In particular, as the aperture ratio increases, chromatic aberration of magnification, field curvature, sagittal coma and the like tend to become more prominent. Furthermore, there is a limit in trying to correct coma by increasing the refractive index of glass, and chromatic aberration and field curvature become problems.
【0003】一方、レンジファインダーを有するカメラ
等は、バックフォーカスの制限が緩いが、これに用いる
レンズ系は実際には、接合面を多く有するガウスタイプ
が採用されている。On the other hand, a camera having a range finder has a loose back focus, but a lens system used for this is actually a Gaussian type having many cemented surfaces.
【0004】又、米国特許明細書第5299065号に
は、暗視装置用で、画角が40°、口径比1:1.2の
レンズ系が開示されている。しかし、このレンズ系は、
非対称のレンズ構成で、歪曲収差が極めて大きい。又ド
イツ特許第1286776号に記載されているレンズ系
も、暗視装置用光学系であり、後方に像側に凹面を向け
たメニスカスレンズを持つレンズ群を配置したレンズ系
である。これらのレンズ系は、光量不足を補うために大
口径にする必要性があり、又使用波長域も限定されてい
る。Further, US Pat. No. 5,299,065 discloses a lens system for a night vision device, which has an angle of view of 40 ° and an aperture ratio of 1: 1.2. However, this lens system
Distortion aberration is extremely large due to the asymmetric lens configuration. The lens system described in German Patent No. 1286776 is also an optical system for night-vision devices, in which a lens group having a meniscus lens with a concave surface facing the image side is arranged in the rear. These lens systems need to have a large diameter in order to compensate for the lack of light quantity, and the wavelength range used is also limited.
【0005】更に特公昭39−22079号公報や特公
昭45−14839号公報に記載されているレンズ系
は、有限距離撮影用の複写用レンズであって特定倍率で
使用するもので、一般の写真レンズとは異なっている。Further, the lens system described in Japanese Patent Publication No. 39-22079 and Japanese Patent Publication No. 45-14839 is a copying lens for finite distance photography and is used at a specific magnification. Different from a lens.
【0006】[0006]
【発明が解決しようとする課題】本発明は、可視域全体
を使用する一般の写真レンズや電子映像機器用光学系を
対象とした標準系のレンズにおいて大口径比化に対して
もサジタルコマ収差や像面湾曲の改善を行い高い描写性
能を有する光学系を提供することを目的とする。SUMMARY OF THE INVENTION The present invention is directed to a general photographic lens that uses the entire visible range and a standard lens for an optical system for electronic image equipment, and sagittal coma aberration and a sagittal coma aberration even when the aperture ratio is increased. It is an object of the present invention to provide an optical system which has improved field curvature and has high drawing performance.
【0007】[0007]
【課題を解決するための手段】本発明で対象とするレン
ズ系は、開口絞りを含む変形ガウスタイプの収斂系の後
方に屈折力が比較的小さく正レンズと負レンズにより構
成されているレンズ群を配置した構成になっている。こ
のような構成の本発明のレンズ系は、従来のレンズ系の
バックフォーカスの制限を除いただけではなく、軸外像
面の平坦化のために、本来空間である部分を利用してレ
ンズ系の性能の向上を図ったもので、これによって可視
域で使用するレンズ系では従来実現し得なかった独自の
光学配置にしたものである。A lens system to which the present invention is directed is a lens group composed of a positive lens and a negative lens having a relatively small refractive power behind a modified Gauss type converging system including an aperture stop. Is arranged. The lens system of the present invention having such a configuration not only removes the limitation of the back focus of the conventional lens system, but also utilizes the portion that is originally a space to flatten the off-axis image surface. This is an improvement in performance, which allows it to have a unique optical arrangement that could not be realized with a lens system used in the visible range.
【0008】画角が40°から52°程度のいわゆる標
準系といわれる領域のレンズ系は、一般に大口径である
ことが要求される。そのため、過去に実績のある変形ガ
ウスタイプが光束の通過状況から無理なくレンズ系を構
成できる点で望ましい。しかし、ガウスタイプのレンズ
系は、基本構成が対称形であるため、主点位置が中央の
開口絞り付近にあり、これを一眼レフレックス用に使用
する時には、結果として屈折力配置が非対称になり、こ
れにより開放性能に不満が残る。A lens system in a so-called standard system having an angle of view of about 40 ° to 52 ° is generally required to have a large aperture. Therefore, the modified Gaussian type, which has a proven record in the past, is desirable in that the lens system can be configured easily from the passing state of the light flux. However, since the Gauss type lens system has a symmetrical basic configuration, the principal point position is near the central aperture stop, and when this is used for a single-lens reflex, as a result, the refractive power arrangement becomes asymmetric. , This leaves some dissatisfaction with the opening performance.
【0009】本発明は、バックフォーカスの制限が緩い
場合を想定し、これにより屈折力配置をより対称性を持
たせるようにした。一方無限遠物点から有限物点まで収
差を良好に補正する必要のある写真レンズでは、屈折力
配置に厳密な対称性を持たせることは出来ないが、軸外
のコマ収差、倍率の色収差、歪曲収差の補正は極めて容
易である。一方従来の標準レンズは像面湾曲が比較的顕
著である。本発明は、この像面湾曲を補正することを狙
いとして次のような構成とした。In the present invention, it is assumed that the back focus is loosely restricted, and thereby the refracting power arrangement is made more symmetrical. On the other hand, with a photographic lens that requires good correction of aberrations from an object point at infinity to a finite object point, it is not possible to give strict symmetry to the refractive power arrangement, but off-axis coma aberration, chromatic aberration of magnification, Correction of distortion is extremely easy. On the other hand, the conventional standard lens has a relatively remarkable field curvature. The present invention has the following configuration aiming at correcting this field curvature.
【0010】すなわち、本発明のレンズ系は、物体側か
ら順に正の屈折力を有する第1レンズ群と開口絞りを挟
んで正の屈折力を有する第2レンズ群と負の屈折力を有
する第3レンズ群の3つの基本レンズ群によって構成し
たもので、更に第1レンズ群を少なくとも1枚の物体側
に凸面を向けた正のメニスカスレンズと正のメニスカス
レンズと負レンズよりなる少なくとも一組のダブレット
にて構成し、第2レンズ群を少なくとも一組の負レンズ
と正レンズの接合ダブレットと正レンズを有したものに
し、第3レンズ群を少なくとも1枚の正レンズと負レン
ズにて構成し、以下の条件(1)〜(4)を同時に満足
することを特徴とする標準レンズ系である。That is, the lens system of the present invention comprises, in order from the object side, a first lens group having a positive refractive power, a second lens group having a positive refractive power with an aperture stop interposed therebetween, and a second lens group having a negative refractive power. It is configured by three basic lens groups of three lens groups, and further, the first lens group includes at least one positive meniscus lens having a convex surface facing the object side, a positive meniscus lens, and at least one set of negative lenses. The second lens group has at least one set of a negative lens and a positive lens cemented with a doublet and a positive lens, and the third lens group has at least one positive lens and a negative lens. The standard lens system satisfies the following conditions (1) to (4) at the same time.
【0011】(1) 2.0<f1 /f<10 (2) 1.0<f1 /f2 <8 (3) 0.8<β3 <1.3 (4) 0.1<fb /f<0.5 ただし、f1は第1レンズ群の焦点距離、f2 は第2レ
ンズ群の焦点距離、fは全系の焦点距離、β3 は無限遠
時の第3レンズ群の結像倍率、fb は全系のバックフォ
ーカスである。(1) 2.0 <f 1 / f <10 (2) 1.0 <f 1 / f 2 <8 (3) 0.8 <β 3 <1.3 (4) 0.1 < f b /f<0.5 where f 1 is the focal length of the first lens group, f 2 is the focal length of the second lens group, f is the focal length of the entire system, and β 3 is the third lens at infinity. The image forming magnification of the group, f b, is the back focus of the entire system.
【0012】上記のような構成のレンズ系において、絞
りを挟んで配置した第1レンズ群と第2レンズ群とは、
本来収斂系であるので、両レンズ群共に正の屈折力を有
することが自然であり、レンズ構成の対称性の長所を活
かすためには上記のような屈折力配置のレンズ系にする
のが収差補正上望ましいことは原理上明らかである。ま
た軸外像面の平坦性を維持すること、つまり像面湾曲の
補正のためには、レンズ系の小型化をも含めて考えると
負の屈折力の第3レンズ群の屈折力を小さくすることが
好ましい。これらの点から、本発明は、上記のように物
体側より順に、正の屈折力の第1レンズ群と正の屈折力
の第2レンズ群と負の屈折力の第3レンズ群とよりな
り、第1レンズ群と第2レンズ群とを対称に近い構成に
して像面補正を実現するようにした。In the lens system having the above structure, the first lens group and the second lens group, which are arranged with the diaphragm interposed therebetween, are:
Since it is originally a convergent system, it is natural for both lens groups to have a positive refractive power, and in order to take advantage of the symmetry of the lens configuration, it is necessary to use a lens system with the above-mentioned refractive power arrangement for aberration. It is clear in principle that the correction is desirable. Further, in order to maintain the flatness of the off-axis image surface, that is, in order to correct the field curvature, in consideration of the downsizing of the lens system, the refractive power of the third lens group having a negative refractive power is reduced. It is preferable. From these points, the present invention comprises, in order from the object side as described above, the first lens group having a positive refractive power, the second lens group having a positive refractive power, and the third lens group having a negative refractive power. , The first lens group and the second lens group are configured to be nearly symmetrical to realize image plane correction.
【0013】条件(1)は、第1レンズ群の屈折力を規
定するもので、この条件は従来の一眼レフレックス用レ
ンズ系の屈折力配置とは異なって第1レンズ群を対称性
の屈折力配置に近いものにするために重要な条件であ
る。The condition (1) defines the refractive power of the first lens group. This condition differs from the refractive power arrangement of the conventional lens system for single-lens reflex lenses in that the first lens group has a symmetrical refractive power. This is an important condition for getting close to the force distribution.
【0014】この条件(1)の下限値の2.0を越える
とレンズ系の小型化を意図した時には好ましいが、第1
レンズ群の屈折力が大になり像面湾曲やコマ収差などの
補正が困難になる。なお特定の有限物点に対する収差補
正にとって有利になる場合もあるが使用する撮影距離範
囲では望ましいとは言えない。又上限値の10を越える
と収差補正面では有利になるが、レンズ系が大型化し好
ましくない。又条件(2)で規定している対称性が崩れ
一眼レフレックス用レンズ系の屈折力配置に近くなり非
対称性収差が大きくなる傾向が現われる。When the lower limit of 2.0 of the condition (1) is exceeded, it is preferable for the purpose of downsizing the lens system.
The refracting power of the lens group becomes large, making it difficult to correct field curvature and coma. Although it may be advantageous for aberration correction for a specific finite object point, it is not desirable in the shooting distance range used. On the other hand, when the upper limit of 10 is exceeded, it is advantageous in terms of aberration correction, but the lens system becomes large, which is not preferable. In addition, the symmetry defined by the condition (2) collapses and the refractive power arrangement of the single-lens reflex lens system is approached, which tends to increase the asymmetrical aberration.
【0015】条件(2)は、正の屈折力の第1レンズ群
と第2レンズ群との焦点距離の比を規定している。これ
は、対称性のファクターを表わすもので、第1レンズ群
の屈折力が決まった時に第2レンズ群の屈折力を決定す
るためのものである。The condition (2) defines the ratio of the focal lengths of the first lens group and the second lens group having a positive refractive power. This represents a symmetry factor, and is for determining the refractive power of the second lens group when the refractive power of the first lens group is determined.
【0016】条件(2)の下限値の1.0を越えると、
屈折力の開口絞りに対する対称性が強くなる一方、無限
遠付近では必ずしも適当な収差補正が得られない。つま
り写真レンズのように広い範囲でフォーカシングを行な
って使用するレンズ系の場合、必ずしも完全な対称性を
有することが良いとは言えないことを意味している。条
件(2)の上限値の8を越えると、非対称性が強くな
り、コマ収差、非点収差、倍率の色収差などの残留程度
が大きくなる。When the lower limit of 1.0 of the condition (2) is exceeded,
While the symmetry of the refractive power with respect to the aperture stop becomes strong, appropriate aberration correction cannot always be obtained near infinity. That is, it means that it is not always good to have perfect symmetry in the case of a lens system such as a photographic lens that is used by focusing in a wide range. When the upper limit of 8 of the condition (2) is exceeded, asymmetry becomes strong, and coma aberration, astigmatism, chromatic aberration of magnification, etc. remain large.
【0017】条件(3)は、第3レンズ群の有する結像
倍率を規定するもので、下限値の0.8を越えると収差
補正上有利であるが、大口径化のもとではレンズ系が大
型化し望ましい結果が得られない。上限値の1.3を越
えると第1レンズ群と第2レンズ群の合成焦点距離が大
になり、収差補正が困難になると同時に、この第3レン
ズ群の倍率β3 の自乗に比例して縦収差が変化すること
があり、大口径化と小型化とのバランスをとるのが難し
くなる。The condition (3) defines the image forming magnification of the third lens group. When the lower limit value of 0.8 is exceeded, it is advantageous for aberration correction, but when the aperture is increased, the lens system is enlarged. However, the desired results cannot be obtained due to the large size. When the upper limit of 1.3 is exceeded, the combined focal length of the first lens group and the second lens group becomes large, making it difficult to correct aberrations, and at the same time, in proportion to the square of the magnification β 3 of the third lens group. The longitudinal aberration may change, and it becomes difficult to balance the large aperture and the small size.
【0018】条件(4)は、本発明のレンズ系が使用さ
れる範囲を直接バックフォーカスによって規定したもの
である。条件(4)の上限値の0.5を越えると一眼レ
フレックス用レンズ系に近づき本発明の趣旨から逸脱す
ることになる。また屈折力配置も非対称性を帯びること
になり好ましくない。又下限値の0.1を越えるとバッ
クフォーカスが極めて短くなり、迷光による結像が増大
し又、レンズ外径が大きくなり機構上又駆動上望ましく
ない。The condition (4) defines the range in which the lens system of the present invention is used, by direct back focus. When the upper limit of 0.5 of the condition (4) is exceeded, the lens system approaches a single-lens reflex lens system and deviates from the spirit of the present invention. Further, the refractive power arrangement also becomes asymmetrical, which is not preferable. On the other hand, when the lower limit of 0.1 is exceeded, the back focus becomes extremely short, the image formation by stray light increases, and the lens outer diameter increases, which is not desirable in terms of mechanism and driving.
【0019】次に本発明のレンズ系について具体的に説
明する。図1には後に示す実施例1の断面図と光路とを
描いてある。この図に示すように、本発明のレンズ系
は、三つのレンズ群G1,G2,G3よりなり、そのう
ち開口絞りを挟んで前側が第1レンズ群G1、後ろ側が
第2レンズ群G2、その後方に特定の間隔を隔てて第3
レンズ群G3が配置されている。これらレンズ群のう
ち、主レンズ系である第1,第2レンズ群G1,G2は
収斂系を構成し、第3レンズ群G3は像面補正のための
光学系である。Next, the lens system of the present invention will be specifically described. In FIG. 1, a cross-sectional view and an optical path of Example 1 shown later are drawn. As shown in this figure, the lens system of the present invention comprises three lens groups G1, G2, G3, of which the front side is the first lens group G1, the back side is the second lens group G2, and the rear side thereof is behind the aperture stop. At a specific interval to the third
The lens group G3 is arranged. Of these lens groups, the first and second lens groups G1 and G2, which are main lens systems, form a converging system, and the third lens group G3 is an optical system for image plane correction.
【0020】下記の表1は、後に示す実施例1のレンズ
系の無限遠における収差係数である。Table 1 below shows aberration coefficients at infinity of the lens system of Example 1 described later.
【0021】 表1 SA3 SA5 CM3 CM5 AS3 AS5 G1 0.61592 0.27272 -0.63433 0.1169 0.12398 0.05623 G2 -0.53235 -0.18676 -0.18712 -0.35025 -0.50777 -0.16709 G3 -0.12537 -0.04311 0.75385 0.29389 0.40822 0.11745 Σ -0.0418 0.04286 -0.0676 0.06054 0.02443 0.00659 DT3 PT3 G1 1.11833 0.18114 G2 -1.76827 -0.65002 G3 0.89593 0.34986 Σ 0.24599 -0.11902 上記表1より明らかなように、球面収差は、入射あるい
は射出傾角の大きい面で大きな収差係数を有し、上記レ
ンズ系では第1レンズ群G1で補正過剰になりこれを第
2レンズ群G2の補正不足によりバランスし、更に第3
レンズ群G3で補償している。この作用は高次収差係数
においても同様である。Table 1 SA 3 SA 5 CM 3 CM 5 AS 3 AS 5 G1 0.61592 0.27272 -0.63433 0.1169 0.12398 0.05623 G2 -0.53235 -0.18676 -0.18712 -0.35025 -0.50777 -0.16709 G3 -0.12537 -0.04311 0.75385 0.29389 0.40822 0.11745 Σ 0.04286 -0.0676 0.06054 0.02443 0.00659 DT 3 PT 3 G1 1.11833 0.18114 G2 -1.76827 -0.65002 G3 0.89593 0.34986 Σ 0.24599 -0.11902 As is clear from Table 1 above, spherical aberration has a large aberration coefficient on a surface with a large entrance or exit tilt angle. In the above lens system, the first lens group G1 is overcorrected, which is balanced due to the undercorrection of the second lens group G2.
The lens group G3 is used for compensation. This effect is the same for the higher-order aberration coefficient.
【0022】一方、軸外収差であるコマ収差、非点収
差、歪曲収差は第1レンズ群G1内の空気レンズ面が収
差発生面となり、これら面での収差を互いに打ち消し合
っている。非点収差および歪曲収差においては、第1レ
ンズ群G1にて球面収差におけると同様の作用にてレン
ズ群相互に補正し、高次収差係数についても同様の作用
を有している。On the other hand, with respect to off-axis aberrations such as coma, astigmatism, and distortion, the air lens surface in the first lens group G1 serves as an aberration generating surface, and the aberrations on these surfaces cancel each other out. With respect to astigmatism and distortion, the first lens group G1 mutually corrects the lens groups by the same action as with spherical aberration, and the higher-order aberration coefficient also has the same action.
【0023】一方、コマ収差は3次収差係数と高次収差
係数の作用が、幾分異なる作用を持つことが特徴であ
る。On the other hand, coma is characterized in that the action of the third-order aberration coefficient and the action of the higher-order aberration coefficient have somewhat different actions.
【0024】3次コマ収差係数の範囲では、第1レンズ
群、第2レンズ群ともに補正不足の状態であり、これを
第3レンズ群にて補償している。一方、5次コマ収差係
数においては、第1レンズ群は補正過剰の作用を持つ点
で異なっている。前記のように、全体として第3レンズ
群は、軸外諸収差を補正過剰に作用することにより補償
している。Within the range of the third-order coma aberration coefficient, the first lens group and the second lens group are undercorrected, and this is compensated for by the third lens group. On the other hand, the fifth-order coma aberration coefficient is different in that the first lens group has an effect of overcorrection. As described above, the third lens group as a whole compensates for off-axis aberrations by overcorrecting.
【0025】又本発明は、前記の通りの第1レンズ群、
第2レンズ群、第3レンズ群の三つの基本レンズ群にて
構成し、各レンズ群が既に述べた構成であって、フォー
カシングの際には三つのレンズ群を物体側へ移動させる
と共に少なくとも第2レンズ群中の間隔と第3レンズ群
中の間隔を変化させて収差変動を補正するようにしたレ
ンズ系を実現することにもある。The present invention also relates to the first lens group as described above,
It is composed of three basic lens groups, that is, a second lens group and a third lens group, and each lens group has the structure already described. At the time of focusing, the three lens groups are moved to the object side and at least Another purpose is to realize a lens system in which the variation in aberration is corrected by changing the spacing in the second lens group and the spacing in the third lens group.
【0026】即ち、本発明は、物体側から順に正の屈折
力を有する第1レンズ群と開口絞りを挟んで正の屈折力
を有する第2レンズ群と負の屈折力を有する第3レンズ
群にて構成され、第1レンズ群は、少なくとも1枚の物
体側に凸面を向けた正のメニスカスレンズと少なくとも
一組のメニスカスレンズと負レンズのダブレットにて構
成され、第2レンズ群は少なくとも一組の負レンズと正
レンズの接合ダブレットと正レンズを有し、第3レンズ
群は少なくとも1枚の正レンズと負レンズにて構成され
ており、無限遠物点から有限遠物点へフォーカシングす
る際には、無限遠物点位置を基準として第1レンズ群,
第2レンズ群および第3レンズ群が物体側に移動し、少
なくとも第2レンズ群中と第3レンズ群中の間隔を同時
に可変とすることを特徴とする標準レンズ系である。That is, according to the present invention, in order from the object side, the first lens group having a positive refractive power, the second lens group having a positive refractive power across the aperture stop, and the third lens group having a negative refractive power. The first lens group includes at least one positive meniscus lens having a convex surface directed toward the object side, at least one set of meniscus lenses and a doublet including a negative lens, and the second lens group includes at least one. It has a doublet and a positive lens cemented with a set of a negative lens and a positive lens, and the third lens group is composed of at least one positive lens and a negative lens, and focuses from an infinite object point to a finite object point. At that time, the first lens group based on the object point position at infinity,
The standard lens system is characterized in that the second lens group and the third lens group move to the object side, and at least the distance between the second lens group and the third lens group is variable at the same time.
【0027】次に、本発明のレンズ系において、無限遠
から有限距離までの性能を保証するための手段について
説明する。Next, the means for ensuring the performance from the infinity to the finite distance in the lens system of the present invention will be described.
【0028】前述のように本発明のレンズ系は、物体側
から順に、正の屈折力を有する第1レンズ群G1と開口
絞りSを挟んで正の屈折力を有する第2レンズ群G2と
負の屈折力を有する第3レンズ群G3の三つの基本レン
ズ群によって構成されており、そのうち第1レンズ群G
1は少なくとも1枚の物体側に凸面を向けた正のメニス
カスレンズと少なくとも一組のメニスカスレンズと負レ
ンズとのダブレットにて構成し、第2レンズ群G2は少
なくとも一組の負レンズと正レンズとの接合ダブレット
と正レンズとを有し、第3レンズ群G3は少なくとも1
枚の正レンズと負レンズとにて構成し、無限遠物点から
有限物点へフォーカシングする際には、無限遠物点を基
準として、第1レンズ群G1、第2レンズ群G2および
第3レンズ群G3を物体側へ移動し又収差の変動を抑制
するために各々のレンズ群中の間隔を同時に可変にする
ことを特徴にしている。As described above, the lens system of the present invention has, in order from the object side, the first lens group G1 having a positive refractive power and the second lens group G2 having a positive refractive power sandwiching the aperture stop S and a negative lens group. It is composed of three basic lens groups of a third lens group G3 having a refractive power of
Reference numeral 1 denotes a doublet including at least one positive meniscus lens having a convex surface directed toward the object side, at least one set of meniscus lens and negative lens, and the second lens group G2 includes at least one set of negative lens and positive lens. Has a doublet and a positive lens, and the third lens group G3 has at least 1
When focusing from an object point at infinity to a finite object point, the first lens group G1, the second lens group G2, and the third lens group G3 are composed of a positive lens and a negative lens. It is characterized in that the lens group G3 is moved to the object side and the distance in each lens group is made variable at the same time in order to suppress variation in aberration.
【0029】従来の変形ガウスタイプのレンズ系におけ
るフォーカシング方法は、一眼レフレックスタイプのレ
ンズ系に限定するものが殆んどである。Most conventional focusing methods in the modified Gauss type lens system are limited to the single-lens reflex type lens system.
【0030】これに対して本発明のレンズ系は、バック
フォーカスが短く、カメラボディーのハウジング内に第
3レンズ群が収納される。そのため駆動機構までを考え
た先駆的発明は見当たらない。On the other hand, in the lens system of the present invention, the back focus is short, and the third lens group is housed in the housing of the camera body. Therefore, there is no pioneering invention that even considers the drive mechanism.
【0031】本発明においては、前述のように各レンズ
群の間隔を可変として収差の変動を補正している。例え
ば、後に述べる実施例1[図2の(A),(B)]のよ
うに、無限遠物点から0.5mの近距離の物点までフォ
ーカシングする時第2レンズ群G2を群G2A,G2B
および第3レンズ群G3を群G3A,G3Bに分割して
別々に移動させることによりレンズ群の間隔を変化させ
て収差変動を補償している。In the present invention, as described above, the variation of aberration is corrected by changing the distance between the lens groups. For example, when focusing from an object point at infinity to an object point at a short distance of 0.5 m from the object point at infinity as in Example 1 [(A) and (B) of FIG. 2] described later, the second lens group G2 is moved to the group G2A, G2B
And the third lens group G3 is divided into groups G3A and G3B and moved separately to change the distance between the lens groups to compensate for aberration fluctuations.
【0032】ここで、収差係数をもとに、本発明のフォ
ーカシング時における収差変動補正手段を述べる。下記
表2は、前述の実施例1における0.5mの物点へフォ
ーカシングした時の各収差係数を示す。尚表2にはコマ
収差、非点収差の5次収差係数CM5 ,AS5 は示して
いない。Here, the means for correcting aberration variation during focusing according to the present invention will be described based on the aberration coefficient. Table 2 below shows each aberration coefficient when focusing on the object point of 0.5 m in Example 1 described above. Table 2 does not show the fifth-order aberration coefficients CM 5 and AS 5 of coma and astigmatism.
【0033】 表2 SA3 SA5 CM3 AS3 DT3 PT3 G1 0.47814 0.23646 -0.26586 0.14264 0.58126 0.11484 G2 -0.56862 -0.20729 -0.67773 -0.47282 -1.13698 -0.41208 G3 0.04934 0.01514 0.94362 0.35256 0.61238 0.2218 Σ -0.04112 0.04431 0.00003 0.02237 0.05666 -0.07545 この表2と前記の同じ実施例1における無限遠時の収差
係数を示す表1とを比較すれば明らかなようにコマ収差
は若干変動するが、それ以外の収差は安定していること
がわかる。つまり本発明の収差変動抑制手段である第2
レンズ群の部分系による移動と第3レンズ群の部分系に
よる移動によりフォーカシング時の収差変動が抑制され
ることがわかる。Table 2 SA 3 SA 5 CM 3 AS 3 DT 3 PT 3 G1 0.47814 0.23646 -0.26586 0.14264 0.58126 0.11484 G2 -0.56862 -0.20729 -0.67773 -0.47282 -1.13698 -0.41208 G3 0.04934 0.01514 0.94362 0.35256 0.61238 0.2218 Σ -0.44 0.02237 0.05666 -0.07545 As is clear from comparison between Table 2 and Table 1 showing the aberration coefficient at infinity in the same Example 1 described above, the coma aberration slightly fluctuates, but other aberrations are stable. You can see that That is, the second aspect which is the aberration fluctuation suppressing means of the present invention
It can be seen that the aberration variation during focusing is suppressed by the movement of the lens group sub-system and the movement of the third lens group sub-system.
【0034】この実施例では、第2レンズ群を接合ダブ
レットと両凸正レンズとにて構成し、無限遠より倍率が
高くなるにつれて、両成分の軸上間隔が広くなる方向に
移動するのが好ましい。又第3レンズ群は物体側の正レ
ンズと像側の負レンズの軸上間隔は倍率が高くなるにつ
れて狭くなるように両成分を移動するのが望ましい。In this embodiment, the second lens group is composed of a cemented doublet and a biconvex positive lens, and as the magnification becomes higher than infinity, the axial distance between both components becomes wider. preferable. Further, in the third lens group, it is desirable to move both components so that the axial distance between the positive lens on the object side and the negative lens on the image side becomes narrower as the magnification increases.
【0035】開口絞りが配置される空間を可変にして像
面を制御する方法は知られているが、ここへは絞り装置
が入る関係から間隔精度を高く維持する技術が不可欠で
あるのでこの間隔は変化させない方がより好ましい。ま
た第3レンズ群を固定群にすればこのレンズ群をハウジ
ング内に収納する上では好ましいので、収差変動の補償
上から光学性能を保持出来れば、第3レンズ群を固定す
ることが好ましい。A method for controlling the image plane by changing the space in which the aperture stop is arranged is known. However, since a technique for maintaining a high interval precision is indispensable because the aperture device is inserted in this space, this space is required. Is more preferably not changed. Further, it is preferable to make the third lens group a fixed group in order to store this lens group in the housing. Therefore, if the optical performance can be maintained from the viewpoint of compensating for aberration variation, it is preferable to fix the third lens group.
【0036】本発明のレンズ系における第2レンズ群内
の接合ダブレットと正レンズを分離しての移動は収差補
正上非常に有効である。Moving the cemented doublet and the positive lens in the second lens group in the lens system of the present invention by separating them is very effective for aberration correction.
【0037】尚、前述のフォーカシング時の収差変動補
正機構を備えた本発明のレンズ系において、前掲の条件
(1)〜(4)を満足することが望ましい。In the lens system of the present invention equipped with the above-mentioned aberration variation correcting mechanism during focusing, it is desirable that the above-mentioned conditions (1) to (4) are satisfied.
【0038】[0038]
【発明の実施の形態】次に本発明の実施の形態を実施例
にもとづいて説明する。BEST MODE FOR CARRYING OUT THE INVENTION Next, embodiments of the present invention will be described based on examples.
【0039】次に示すデーターは本発明の標準レンズの
実施例1乃至実施例4である。 実施例1 f=54.999,F/1.43,2ω=59.0° r1 =45.7600 d1 =5.4470 n1 =1.80400 ν1 =46.58 r2 =121.9316 d2 =0.1000 r3 =29.3923 d3 =5.7784 n2 =1.74100 ν2 =52.65 r4 =58.6074 d4 =1.3992 r5 =129.0872 d5 =2.7831 n3 =1.68893 ν3 =31.08 r6 =20.7811 d6 =7.0996 r7 =∞(絞り) d7 =5.2572 r8 =-29.0337 d8 =2.0000 n4 =1.60323 ν4 =42.32 r9 =-174.2021 d9 =4.2529 n5 =1.69680 ν5 =55.53 r10=-39.7244 d10=0.1546 r11=34.7750 d11=7.5774 n6 =1.49700 ν6 =81.61 r12=-71.6423 d12=5.5579 r13=119.0206 d13=11.6665 n7 =1.49700 ν7 =81.61 r14=-184.8317 d14=12.9261 r15=-21.3238 d15=2.0000 n8 =1.56883 ν8 =56.34 r16=-57.5286 (物点距離0.5m) d10=2.412 ,d12=8.605 ,d14=10.628 f1 /f=4.362 ,f1 /f2 =4.815 ,β3 =0.9558,fb /f=0.128 The following data are Examples 1 to 4 of the standard lens of the present invention. Example 1 f = 54.999, F / 1.43, 2ω = 59.0 ° r 1 = 45.7600 d 1 = 5.4470 n 1 = 1.80400 ν 1 = 46.58 r 2 = 121.9316 d 2 = 0.1000 r 3 = 29.3923 d 3 = 5.7784 n 2 = 1.74100 ν 2 = 52.65 r 4 = 58.6074 d 4 = 1.3992 r 5 = 129.0872 d 5 = 2.7831 n 3 = 1.68893 ν 3 = 31.08 r 6 = 20.7811 d 6 = 7.0996 r 7 = ∞ (diaphragm) d 7 = 5.2572 r 8 = -29.0337 d 8 = 2.0000 n 4 = 1.60323 ν 4 = 42.32 r 9 = -174.2021 d 9 = 4.2529 n 5 = 1.69680 ν 5 = 55.53 r 10 = -39.7244 d 10 = 0.1546 r 11 = 34.7750 d 11 = 7.5774 n 6 = 1.49700 ν 6 = 81.61 r 12 = -71.6423 d 12 = 5.5579 r 13 = 119.0206 d 13 = 11.6665 n 7 = 1.49700 ν 7 = 81.61 r 14 = -184.8317 d 14 = 12.9261 r 15 = -21.3238 d 15 = 2.0000 n 8 = 1.56883 ν 8 = 56.34 r 16 = -57.5286 ( object distance 0.5m) d 10 = 2.412, d 12 = 8.605, d 14 = 10.628 f 1 /f=4.362, f 1 / f 2 = 4.815, β 3 = 0.95 58, f b /f=0.128
【0040】実施例2 f=55.0,F/1.43,2ω=59.1° r1 =47.5290 d1 =5.5642 n1 =1.80400 ν1 =46.58 r2 =166.0697 d2 =0.1000 r3 =29.1493 d3 =5.5747 n2 =1.78650 ν2 =50.00 r4 =54.6427 d4 =1.2922 r5 =100.0344 d5 =1.9000 n3 =1.68893 ν3 =31.08 r6 =19.9050 d6 =1.9000 n4 =1.78590 ν4 =44.19 r7 =19.7377 d7 =7.4732 r8 =∞(絞り) d8 =4.2625 r9 =-38.0892 d9 =6.1567 n5 =1.70154 ν5 =41.24 r10=-17.2836 d10=1.9000 n6 =1.74950 ν6 =35.27 r11=-51.9093 d11=0.1000 r12=36.0019 d12=7.6754 n7 =1.49700 ν7 =81.61 r13=-60.5726 d13=7.3838 r14=159.3934 d14=9.1431 n8 =1.77250 ν8 =49.60 r15=-168.6921 d15=11.6742 r16=-22.1595 d16=1.9000 n9 =1.51602 ν9 =56.80 r17=-86.6002 (物点距離0.5m) d11=1.727 ,d13=10.727,d15=9.691 f1 /f=2.857 ,f1 /f2 =2.823 ,β3 =0.9194,fb /f=0.128 Example 2 f = 55.0, F / 1.43, 2ω = 59.1 ° r 1 = 47.5290 d 1 = 5.5642 n 1 = 1.80400 ν 1 = 46.58 r 2 = 166.0697 d 2 = 0.1000 r 3 = 29.1493 d 3 = 5.5747 n 2 = 1.78650 ν 2 = 50.00 r 4 = 54.6427 d 4 = 1.2922 r 5 = 100.0344 d 5 = 1.9000 n 3 = 1.68893 ν 3 = 31.08 r 6 = 19.9050 d 6 = 1.9000 n 4 = 1.78590 ν 4 = 44.19 r 7 = 19.7377 d 7 = 7.4732 r 8 = ∞ ( stop) d 8 = 4.2625 r 9 = -38.0892 d 9 = 6.1567 n 5 = 1.70154 ν 5 = 41.24 r 10 = -17.2836 d 10 = 1.9000 n 6 = 1.74950 ν 6 = 35.27 r 11 = -51.9093 d 11 = 0.1000 r 12 = 36.0019 d 12 = 7.6754 n 7 = 1.49700 ν 7 = 81.61 r 13 = -60.5726 d 13 = 7.3838 r 14 = 159.3934 d 14 = 9.1431 n 8 = 1.77250 ν 8 = 49.60 r 15 = -168.6921 d 15 = 11.6742 r 16 = -22.1595 d 16 = 1.9000 n 9 = 1.51602 ν 9 = 56.80 r 17 = -86.6002 (object distance 0.5 m) d 11 = 1.727, d 13 = 10.727, d 15 = 9.691 f 1 / f = 2.857, f 1 / f 2 = 2.823, β 3 = 0.9194, f b /f=0.128
【0041】実施例3 f=55.0,F/1.43,2ω=57.4° r1 =49.4345 d1 =5.2541 n1 =1.80400 ν1 =46.58 r2 =144.4196 d2 =0.1000 r3 =29.9959 d3 =6.0063 n2 =1.74100 ν2 =52.65 r4 =65.0048 d4 =1.2966 r5 =140.2035 d5 =2.0000 n3 =1.74000 ν3 =31.71 r6 =21.2642 d6 =2.0000 n4 =1.74077 ν4 =27.79 r7 =21.5858 d7 =6.7796 r8 =∞(絞り) d8 =4.9813 r9 =-31.1827 d9 =2.0000 n5 =1.60717 ν5 =40.26 r10=659.8383 d10=4.8846 n6 =1.67000 ν6 =57.33 r11=-41.5361 d11=0.5896 r12=33.3443 d12=7.3606 n7 =1.49700 ν7 =81.61 r13=-93.5696 d13=7.7202 r14=116.0042 d14=6.8116 n8 =1.63854 ν8 =55.38 r15=-222.5918 d15=14.2155 r16=-21.3304 d16=2.0000 n9 =1.56965 ν9 =49.33 r17=-57.8521 (物点距離0.5m) d11=2.857 ,d13=10.566,d15=12.367 f1 /f=4.469 ,f1 /f2 =4.809 ,β3 =0.9198,fb /f=0.128 Example 3 f = 55.0, F / 1.43, 2ω = 57.4 ° r 1 = 49.4345 d 1 = 5.2541 n 1 = 1.80400 ν 1 = 46.58 r 2 = 144.4196 d 2 = 0.1000 r 3 = 29.9959 d 3 = 6.0063 n 2 = 1.74100 ν 2 = 52.65 r 4 = 65.0048 d 4 = 1.2966 r 5 = 140.2035 d 5 = 2.0000 n 3 = 1.74000 ν 3 = 31.71 r 6 = 21.2642 d 6 = 2.0000 n 4 = 1.74077 ν 4 = 27.79 r 7 = 21.5858 d 7 = 6.7796 r 8 = ∞ ( stop) d 8 = 4.9813 r 9 = -31.1827 d 9 = 2.0000 n 5 = 1.60717 ν 5 = 40.26 r 10 = 659.8383 d 10 = 4.8846 n 6 = 1.67000 ν 6 = 57.33 r 11 = -41.5361 d 11 = 0.5896 r 12 = 33.3443 d 12 = 7.3606 n 7 = 1.49700 ν 7 = 81.61 r 13 = -93.5696 d 13 = 7.7202 r 14 = 116.0042 d 14 = 6.8116 n 8 = 1.63854 ν 8 = 55.38 r 15 = -222.5918 d 15 = 14.2155 r 16 = -21.3304 d 16 = 2.0000 n 9 = 1.56965 ν 9 = 49.33 r 17 = -57.8521 ( object distance 0.5m) d 11 = 2.857, d 13 = 10.566, d 15 = 12.367 f 1 / f = 4.469, f 1 / f 2 = 4.809, β 3 = 0.9198, f b /f=0.128
【0042】実施例4 f=54.999,F/1.43,2ω=57.1° r1 =44.6506 d1 =5.7896 n1 =1.78650 ν1 =50.00 r2 =140.5434 d2 =0.1705 r3 =28.9105 d3 =5.4255 n2 =1.72916 ν2 =54.68 r4 =51.5275 d4 =1.8949 r5 =111.5667 d5 =2.0000 n3 =1.68893 ν3 =31.08 r6 =20.9459 d6 =7.0373 r7 =∞(絞り) d7 =5.0799 r8 =-30.2712 d8 =2.5730 n4 =1.60323 ν4 =42.32 r9 =-290.1994 d9 =4.9666 n5 =1.71300 ν5 =53.84 r10=-42.2289 d10=0.84527 r11=33.6138 d11=7.6346 n6 =1.49700 ν6 =81.61 r12=-83.5858 d12=9.7135 r13=97.2164 d13=7.3950 n7 =1.51633 ν7 =64.15 r14=-287.1247 d14=11.4744 r15=-21.7685 d15=2.0000 n8 =1.58267 ν8 =46.33 r16=-62.2163 (物点距離0.5m) d10=3.414 ,d12=12.731,d14=9.238 f1 /f=3.942 ,f1 /f2 =4.405 ,β3 =0.9725,fb /f=0.128 ただしr1 ,r2 ,・・・ は各レンズ面の曲率半径、d
1 ,d2 ,・・・ は各レンズの肉厚およびレンズ間隔、n
1 ,n2 ,・・・ は各レンズの屈折率、ν1 ,ν2 ,・・・
は各レンズのアッベ数である。尚上記データー中焦点距
離f等の長さの単位はmmである。Example 4 f = 54.999, F / 1.43, 2ω = 57.1 ° r 1 = 44.6506 d 1 = 5.7896 n 1 = 1.78650 ν 1 = 50.00 r 2 = 140.5434 d 2 = 0.1705 r 3 = 28.9105 d 3 = 5.4255 n 2 = 1.72916 ν 2 = 54.68 r 4 = 51.5275 d 4 = 1.8949 r 5 = 111.5667 d 5 = 2.0000 n 3 = 1.68893 ν 3 = 31.08 r 6 = 20.9459 d 6 = 7.0373 r 7 = ∞ (Aperture) d 7 = 5.0799 r 8 = -30.2712 d 8 = 2.5730 n 4 = 1.60323 ν 4 = 42.32 r 9 = -290.1994 d 9 = 4.9666 n 5 = 1.71300 ν 5 = 53.84 r 10 = -42.2289 d 10 = 0.84527 r 11 = 33.6138 d 11 = 7.6346 n 6 = 1.49700 ν 6 = 81.61 r 12 = -83.5858 d 12 = 9.7135 r 13 = 97.2164 d 13 = 7.3950 n 7 = 1.51633 ν 7 = 64.15 r 14 = -287.1247 d 14 = 11.4744 r 15 = -21.7685 d 15 = 2.0000 n 8 = 1.58267 ν 8 = 46.33 r 16 = -62.2163 ( object distance 0.5m) d 10 = 3.414, d 12 = 12.731, d 14 = 9.238 f 1 /f=3.942, f 1 / f 2 = 4.405 , Β 3 = 0.9725, f b /f=0.128, where r 1 , r 2 , ... Are the radii of curvature of the respective lens surfaces, d
1 , d 2 , ... Is the thickness of each lens and the lens interval, n
1 , n 2 ,... Are the refractive indices of each lens, ν 1 , ν 2 ,.
Is the Abbe number of each lens. The unit of the length of the focal length f in the above data is mm.
【0043】実施例1は図2に示すレンズ系で、(A)
が無限遠物点、(B)が物点距離0.5mの時を夫々示
してある。この実施例は、焦点距離が55mm、画角が4
2.94°のいわゆる標準レンズで、口径比が1:1.
43である。Example 1 is a lens system shown in FIG.
Is an object point at infinity, and (B) is an object point distance of 0.5 m. In this embodiment, the focal length is 55 mm and the angle of view is 4
A so-called standard lens of 2.94 ° and an aperture ratio of 1: 1.
43.
【0044】このレンズ系は、開口絞りを第1レンズ群
G1と第2レンズ群G2との間に配置し、第3レンズ群
G3は両凸正レンズと負のメニスカスレンズとを配置し
た。又第1レンズ群は物体側より順に物体側に凸面を向
けた正のメニスカスレンズと一組の物体側に凸面を向け
た正のメニスカスレンズと像側に強い凹面を向けた負の
メニスカスレンズとを空気間隔を設けたダブレットとよ
りなり、第2レンズ群は、像側に強い凹面を向けた負の
メニスカスレンズと物体側に凸面を向けた正のメニスカ
スとを接合した接合ダブレットと両凸正レンズとで構成
されている。In this lens system, an aperture stop is arranged between the first lens group G1 and the second lens group G2, and the third lens group G3 is composed of a biconvex positive lens and a negative meniscus lens. The first lens group includes a positive meniscus lens having a convex surface directed toward the object side in order from the object side, a positive meniscus lens having a convex surface directed toward the object side, and a negative meniscus lens having a strong concave surface directed toward the image side. The second lens group is a cemented doublet in which a negative meniscus lens having a strong concave surface facing the image side and a positive meniscus having a convex surface facing the object side are cemented, and a biconvex positive lens. It is composed of a lens.
【0045】この実施例1の収差状況は、図6に示す通
りで、一眼レフレックス用標準レンズでは、比較的大き
な負の歪曲収差が発生するがこの実施例は歪曲収差は極
めて小さくなっている。又倍率の色収差も、高次収差の
発生による曲がりが小さい。The aberration situation of the first embodiment is as shown in FIG. 6, and in the standard lens for single-lens reflex, a relatively large negative distortion aberration occurs, but the distortion aberration is extremely small in this embodiment. . The chromatic aberration of magnification is also small in bending due to the occurrence of high-order aberrations.
【0046】実施例2は、第3図に示すレンズ系で、焦
点距離が55mm、画角が42.94°、口径比が1:
1.43である。この実施例2の特徴は、第1レンズ群
の第3成分に負のメニスカスレンズと正のメニスカスレ
ンズの接合レンズを用い、第2レンズ群の第1成分が像
側に凸面を向けた正のメニスカスレンズと負のメニスカ
スレンズとの接合レンズを用いたことである。Example 2 is the lens system shown in FIG. 3, in which the focal length is 55 mm, the angle of view is 42.94 °, and the aperture ratio is 1 :.
It is 1.43. The feature of the second embodiment is that a cemented lens of a negative meniscus lens and a positive meniscus lens is used as the third component of the first lens group, and the first component of the second lens group has a positive surface with a convex surface facing the image side. That is, a cemented lens of a meniscus lens and a negative meniscus lens is used.
【0047】この実施例2の収差状況は、図7に示す通
りで、収差の傾向は実施例1と同じである。The aberration situation of the second embodiment is as shown in FIG. 7, and the aberration tendency is the same as that of the first embodiment.
【0048】実施例3は、図4に示す通りのレンズ構成
で、焦点距離が55mm、画角が42.94°、口径比が
1:1.43である。この実施例3は、第2レンズ群の
第1成分である接合レンズが物体側に強い凹面を向けた
負レンズと像側に強い凸面を向けた正レンズの接合レン
ズにて構成した点で実施例2と相違している。The third embodiment has a lens configuration as shown in FIG. 4, has a focal length of 55 mm, an angle of view of 42.94 °, and an aperture ratio of 1: 1.43. Example 3 is carried out in that the cemented lens as the first component of the second lens group is composed of a cemented lens of a negative lens having a strong concave surface facing the object side and a positive lens having a strong convex surface facing the image side. It differs from Example 2.
【0049】この実施例3の収差状況は、図8に示す通
りである。The aberrations of the third embodiment are as shown in FIG.
【0050】実施例4は図5に示すレンズ系で、実施例
1のバリエーションで非点隔差が一層小になるようにし
た実施例である。Example 4 is an example in which the astigmatic difference is further reduced by the variation of Example 1 in the lens system shown in FIG.
【0051】この実施例4の収差状況は図9に示す通り
で、非点収差と倍率の色収差が良好に補正されている。The aberration situation of the fourth embodiment is as shown in FIG. 9, and the astigmatism and the chromatic aberration of magnification are satisfactorily corrected.
【0052】尚各実施例に関する図面中、(A),
(B)は夫々無限遠物点および物点距離0.5mの時の
ものである。In the drawings relating to each embodiment, (A),
(B) is an object at infinity and an object distance of 0.5 m.
【0053】特許請求の範囲に記載されているレンズ系
のほか、次の各項に記載するレンズ系も本発明の目的を
達成し得る。In addition to the lens systems described in the claims, the lens systems described in the following items can also achieve the object of the present invention.
【0054】(1)特許請求の範囲の請求項2に記載さ
れているレンズ系で下記条件(1)〜(4)を満足する
ことを特徴とする標準レンズ系。 (1) 2.0<f1 /f<10 (2) 1.0<f1 /f2 <8 (3) 0.8<β3 <1.3 (4) 0.1<fb /f<0.5(1) A standard lens system characterized by satisfying the following conditions (1) to (4) in the lens system according to claim 2 of the claims. (1) 2.0 <f 1 / f <10 (2) 1.0 <f 1 / f 2 <8 (3) 0.8 <β 3 <1.3 (4) 0.1 <f b / f <0.5
【0055】(2)特許請求の範囲の請求項2又は前記
(1)の項に記載されているレンズ系で、第2レンズ群
を構成する接合ダブレットと正レンズ成分の間隔がフォ
ーカシング時に可変である標準レンズ系。(2) In the lens system described in claim 2 or (1), the distance between the cemented doublet and the positive lens component constituting the second lens group is variable during focusing. A standard lens system.
【0056】(3)特許請求の範囲の請求項2又は前記
(1)の項に記載されているレンズ系で、第3レンズ群
を構成する正レンズ成分と負レンズ成分の間隔がフォー
カシング時に可変である標準レンズ系。(3) In the lens system according to claim 2 or claim (1), the distance between the positive lens component and the negative lens component constituting the third lens group is variable during focusing. Is a standard lens system.
【0057】(4)特許請求の範囲の請求項2又は前記
(1)の項に記載されているレンズ系で、第2レンズ群
を構成する接合ダブレットと正レンズ成分の間隔および
第3レンズ群を構成する正レンズ成分と負レンズ成分の
間隔がフォーカシング時に可変である標準レンズ系。(4) In the lens system described in claim 2 or (1), the distance between the cemented doublet and the positive lens component constituting the second lens group, and the third lens group. A standard lens system in which the distance between the positive lens component and the negative lens component constituting the lens is variable during focusing.
【0058】[0058]
【発明の効果】本発明によれば物体側から順に正屈折力
を有する第1レンズ群と開口絞りを挟んで正屈折力を有
する第2レンズ群と負屈折力を有する第3レンズ群の3
つの基本レンズ群によって構成し屈折力配置に於ける対
称性を考慮して、従来は困難とされた歪曲収差の十分な
補正、サジタルコマ収差の補正あるいは像面湾曲収差の
補正を容易に行うことが可能となった。また適用範囲が
可視域全般におよぶ一般の撮像光学系として使用するこ
とにより、標準レンズを大口径であっても開放絞りより
使用して十分なる光学性能を得ることを意図することが
できた。また無限遠物点から有限遠物点までの広い範囲
に渡るフォーカシング範囲で高い描写性能と安定性を得
ることが可能となった。According to the present invention, the first lens group having a positive refracting power, the second lens group having a positive refracting power and the third lens group having a negative refracting power sandwiching the aperture stop are arranged in order from the object side.
Considering the symmetry in the refractive power arrangement, which is composed of two basic lens groups, it is possible to easily perform sufficient correction of distortion aberration, sagittal coma aberration, or field curvature aberration, which were conventionally difficult. It has become possible. In addition, by using it as a general imaging optical system whose application range covers the entire visible range, it was possible to obtain sufficient optical performance by using a standard lens with a larger aperture than an open aperture. In addition, it has become possible to obtain high depiction performance and stability in a wide focusing range from an object point at infinity to an object point at finite distance.
【図1】本発明のレンズ系の構成並びに光束の状況を示
す図FIG. 1 is a diagram showing a configuration of a lens system of the present invention and a state of a light beam.
【図2】本発明の実施例1の構成を示す図FIG. 2 is a diagram showing a configuration of a first embodiment of the present invention.
【図3】本発明の実施例2の構成を示す図FIG. 3 is a diagram showing a configuration of a second embodiment of the present invention.
【図4】本発明の実施例3の構成を示す図FIG. 4 is a diagram showing a configuration of a third embodiment of the present invention.
【図5】本発明の実施例4の構成を示す図FIG. 5 is a diagram showing a configuration of a fourth embodiment of the present invention.
【図6】本発明の実施例1の収差曲線図FIG. 6 is an aberration curve diagram according to the first embodiment of the present invention.
【図7】本発明の実施例2の収差曲線図FIG. 7 is an aberration curve diagram according to the second embodiment of the present invention.
【図8】本発明の実施例3の収差曲線図FIG. 8 is an aberration curve diagram of Example 3 of the present invention.
【図9】本発明の実施例4の収差曲線図FIG. 9 is an aberration curve diagram of Example 4 of the present invention.
Claims (2)
ンズ群と開口絞りを挟んで正の屈折力を有する第2レン
ズ群と負の屈折力を有する第3レンズ群によって構成さ
れ、第1レンズ群は、少なくとも1枚の物体側に凸面を
向けた正のメニスカスレンズと少なくとも一組の正のメ
ニスカスレンズと負レンズのダブレットにて構成され、
第2レンズ群は少なくとも一組の負レンズと正レンズの
接合ダブレットと正レンズを有し、第3レンズ群は少な
くとも1枚の正レンズと負レンズにて構成されており、
以下の条件(1),(2),(3),(4)を同時に満
足することを特徴とする標準レンズ系。 (1) 2.0<f1 /f<10 (2) 1.0<f1 /f2 <8 (3) 0.8<β3 <1.3 (4) 0.1<fb /f<0.5 ただし、f1は第1レンズ群の焦点距離、f2 は第2レ
ンズ群の焦点距離、fは全系の焦点距離、β3 は無限遠
時の第3レンズ群の結像倍率、fb は全系のバックフォ
ーカスである。1. A first lens unit having a positive refracting power, a second lens unit having a positive refracting power, and a third lens unit having a negative refracting power sandwiching an aperture stop from the object side. The first lens group includes at least one positive meniscus lens having a convex surface directed toward the object side, at least one set of positive meniscus lens and doublet of negative lens,
The second lens group has at least one set of a doublet and a positive lens cemented with a negative lens and a positive lens, and the third lens group includes at least one positive lens and a negative lens.
A standard lens system which satisfies the following conditions (1), (2), (3), and (4) at the same time. (1) 2.0 <f 1 / f <10 (2) 1.0 <f 1 / f 2 <8 (3) 0.8 <β 3 <1.3 (4) 0.1 <f b / f <0.5 where f 1 is the focal length of the first lens group, f 2 is the focal length of the second lens group, f is the focal length of the entire system, and β 3 is the result of the third lens group at infinity. The image magnification, f b, is the back focus of the entire system.
ンズ群と開口絞りを挟んで正の屈折力を有する第2レン
ズ群と負の屈折力を有する第3レンズ群にて構成され、
第1レンズ群は、少なくとも1枚の物体側に凸面を向け
た正のメニスカスレンズと少なくとも一組のメニスカス
レンズと負レンズのダブレットにて構成され、第2レン
ズ群は少なくとも一組の負レンズと正レンズの接合ダブ
レットと正レンズを有し、第3レンズ群は少なくとも1
枚の正レンズと負レンズにて構成されており、無限遠物
点から有限遠物点へフォーカシングする際には、無限遠
物点位置を基準として第1レンズ群,第2レンズ群およ
び第3レンズ群が物体側に移動し、少なくとも第2レン
ズ群中と第3レンズ群中の間隔を同時に可変とすること
を特徴とする標準レンズ系。2. A first lens unit having a positive refracting power, a second lens unit having a positive refracting power, and a third lens unit having a negative refracting power sandwiching an aperture stop. ,
The first lens group includes at least one positive meniscus lens having a convex surface directed toward the object side, at least one set of meniscus lenses and a doublet of negative lenses, and the second lens group includes at least one set of negative lenses. It has a cemented doublet and a positive lens, and the third lens group has at least one
It is composed of a positive lens and a negative lens, and when focusing from an infinite object point to a finite object point, the first lens group, the second lens group, and the third lens group based on the infinite object point position. A standard lens system characterized in that the lens unit moves to the object side and at least the distance between the second lens unit and the third lens unit is variable at the same time.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP23893995A JPH0961707A (en) | 1995-08-25 | 1995-08-25 | Standard lens system |
US08/701,882 US5835286A (en) | 1995-08-25 | 1996-08-23 | Standard lens system having a large aperture ratio |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP23893995A JPH0961707A (en) | 1995-08-25 | 1995-08-25 | Standard lens system |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH0961707A true JPH0961707A (en) | 1997-03-07 |
Family
ID=17037535
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP23893995A Withdrawn JPH0961707A (en) | 1995-08-25 | 1995-08-25 | Standard lens system |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0961707A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009069369A (en) * | 2007-09-12 | 2009-04-02 | Fujinon Corp | Imaging lens and imaging apparatus |
JP2013156459A (en) * | 2012-01-31 | 2013-08-15 | Sigma Corp | Image-forming optical system |
JP2023177009A (en) * | 2022-06-01 | 2023-12-13 | 株式会社目白67 | imaging lens |
-
1995
- 1995-08-25 JP JP23893995A patent/JPH0961707A/en not_active Withdrawn
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009069369A (en) * | 2007-09-12 | 2009-04-02 | Fujinon Corp | Imaging lens and imaging apparatus |
JP2013156459A (en) * | 2012-01-31 | 2013-08-15 | Sigma Corp | Image-forming optical system |
JP2023177009A (en) * | 2022-06-01 | 2023-12-13 | 株式会社目白67 | imaging lens |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3541983B2 (en) | Wide-angle lens | |
JP3251041B2 (en) | Rear converter lens | |
JP3486532B2 (en) | Zoom lens having vibration compensation function and camera having the same | |
JP3810106B2 (en) | Wide angle lens | |
JP3302072B2 (en) | High-performance shooting lens | |
JPH08313802A (en) | Wide angle lens | |
JP3306129B2 (en) | Standard lens | |
JPH11305124A (en) | Zoom lens and optical instrument using the zoom lens | |
JPH0961708A (en) | Standard lens system | |
JPH0812326B2 (en) | Reverse telephoto wide-angle lens | |
JPH07140388A (en) | Zoom lens | |
JP3331011B2 (en) | Small two-group zoom lens | |
JP3352264B2 (en) | Retrofocus type lens and camera having the same | |
JPH09184981A (en) | Zoom lens | |
JP3258375B2 (en) | Small two-group zoom lens | |
JP3268824B2 (en) | Small two-group zoom lens | |
JP2546293B2 (en) | Small zoom lens | |
JP3234618B2 (en) | Large aperture medium telephoto lens | |
JPH11211978A (en) | Retro-focus type lens | |
JPH07318798A (en) | Photographic lens | |
JPH07270679A (en) | High performance wide angle lens | |
JPH0694997A (en) | High variable power and wide angle zoom lens | |
JP2000267005A (en) | Zoom lens | |
JPH0961707A (en) | Standard lens system | |
JPH1068880A (en) | Aberration variable optical system having macro mechanism |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A300 | Withdrawal of application because of no request for examination |
Free format text: JAPANESE INTERMEDIATE CODE: A300 Effective date: 20021105 |