JPH0961362A - Defect inspecting device for electrophotographic photoreceptor - Google Patents

Defect inspecting device for electrophotographic photoreceptor

Info

Publication number
JPH0961362A
JPH0961362A JP21694895A JP21694895A JPH0961362A JP H0961362 A JPH0961362 A JP H0961362A JP 21694895 A JP21694895 A JP 21694895A JP 21694895 A JP21694895 A JP 21694895A JP H0961362 A JPH0961362 A JP H0961362A
Authority
JP
Japan
Prior art keywords
defect
photoconductor
light source
light
photoreceptor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP21694895A
Other languages
Japanese (ja)
Inventor
Yuji Fukai
祐二 深井
Yukio Saito
幸雄 齋藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP21694895A priority Critical patent/JPH0961362A/en
Publication of JPH0961362A publication Critical patent/JPH0961362A/en
Pending legal-status Critical Current

Links

Landscapes

  • Length Measuring Devices By Optical Means (AREA)
  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a defect inspecting device in which the defect of a photoreceptor, even when it is a defect with little density difference or shallow flaw, can be detected with high sensitivity regardless of the kind of the photoreceptor. SOLUTION: In the defect inspecting device having a light source 2 for emitting a light along the axial direction of the peripheral surface of a cylindrical photoreceptor 1, a CCD camera (surface scanning line sensor) 3 for scanning the emitted surface, thereby receiving the reflected light of the emitted surface to detect the intensity of light, and a rotating motor 5 for rotating the photoreceptor 1 around the cylindrical axis, a light source having a peak wavelength within a range longer than the color wavelength of the peripheral surface of the photoreceptor which is a body to be inspected by 50nm-170nm is used as the light source 2.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】この発明は、電子写真応用製
品の複写機やプリンターなどに使用される電子写真用有
機感光体の欠陥検査装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a defect inspection apparatus for an electrophotographic organic photoconductor used in a copying machine or a printer for electrophotographic application products.

【0002】[0002]

【従来の技術】近年、電子写真応用装置に用いられる電
子写真感光体としては有機感光体が急速に普及してきて
いる。このような有機感光体は、通常、導電性の円筒状
の支持体の外周面上に有機材料からなる感光層を塗布法
で形成することにより製造される。さらに、必要に応じ
て、同様に塗布法で、支持体と感光層の間に下引き層を
設けたり,感光層表面に保護層を設けることも行われて
いる。
2. Description of the Related Art In recent years, organic photoconductors have rapidly become widespread as electrophotographic photoconductors used in electrophotographic application devices. Such an organic photoreceptor is usually manufactured by forming a photosensitive layer made of an organic material on the outer peripheral surface of a conductive cylindrical support by a coating method. Further, if necessary, a subbing layer may be provided between the support and the photosensitive layer or a protective layer may be provided on the surface of the photosensitive layer by a coating method.

【0003】このような感光体において、支持体の表面
に傷などの物理的欠陥や汚染,酸化物などの化学的欠陥
が存在したり、支持体の上に形成される感光層あるいは
下引き層や保護層などに傷,塗布ムラ,異物の混在など
の欠陥が存在すると、感光体としての画像処理機能が低
下し、得られる画像に欠陥が発生する。このために、感
光体の製造ラインでは最終の工程で前述のような欠陥の
有無が外観検査により検査される。すなわち、感光体外
周面に光を照射し反射光を観察したときに、反射光の強
度が感光体の正常部と欠陥部とで異なることに着目し、
感光体の外周面に光を照射し、その反射光を観察して欠
陥の有無を検査する。
In such a photoreceptor, there are physical defects such as scratches on the surface of the support, contamination, chemical defects such as oxides, and a photosensitive layer or an undercoat layer formed on the support. If there are defects such as scratches, coating unevenness, and the mixture of foreign matters on the protective layer and the like, the image processing function of the photoconductor is deteriorated, and defects occur in the obtained image. For this reason, in the final step of the photoconductor manufacturing line, the presence or absence of defects as described above is inspected by visual inspection. That is, when observing the reflected light by irradiating the outer peripheral surface of the photoconductor, the intensity of the reflected light is different between the normal part and the defective part of the photoconductor,
The outer peripheral surface of the photoconductor is irradiated with light and the reflected light is observed to inspect for defects.

【0004】上述のような欠陥検査としては、従来、検
査員による目視検査が行われてきたが、目視検査は官能
検査であるため、検査レベルの変動,誤判定,見落とし
などがある程度発生することは避けられず、そのため
に、検査レベルを厳しくしたり、検査に充分時間をかけ
たりして、不良品が良品に混入することを防止しなけれ
ばならず、リスクの大きい,しかもコスト高の検査であ
った。また、検査員の目の疲労度が高く、健康障害上も
心配な検査方法であった。そのために、目視検査に代わ
る欠陥検査方式の導入が急がれていた。
As a defect inspection as described above, a visual inspection has been conventionally performed by an inspector. However, since the visual inspection is a sensory inspection, a change in inspection level, erroneous judgment, and oversight may occur to some extent. Inevitably, therefore, it is necessary to prevent the defective products from being mixed in with the good products by tightening the inspection level and taking sufficient time for the inspection, which is a risky and costly inspection. Met. In addition, the degree of eye fatigue of the inspector is high, which is a worrying method for health problems. Therefore, the introduction of a defect inspection method instead of visual inspection has been urgently needed.

【0005】このような欠陥検査方式として各種の光電
式の自動検査方式、例えば、レーザー光源方式,光ファ
イバー方式,CCDカメラ方式などが提案さている。レ
ーザー光源方式は光源が単一波長であるから表面傷のよ
うな光を散乱させる欠陥には効果的であるが、表面に凹
凸がなく濃淡差がある欠陥に対しては検出能力が弱い。
光照射と受光部をセットした光ファイバー方式は傷の検
出,濃淡差の検出ができるが、測定エリアがスポットで
あり、検査に時間がかかる。CCDカメラ方式は傷の検
出,濃淡差の検出ともに可能である。CCDカメラ方式
にはエリアセンサーとラインセンサーとがあり、エリア
センサーは被検査面が平面状で比較的小面積のものの欠
陥検査に適し、ラインセンサーは被検査面が平面状で大
きい面積のもの,円筒状のもので円筒軸の回りに回転可
能なものなどの欠陥検査に適している。
As such a defect inspection method, various photoelectric automatic inspection methods such as a laser light source method, an optical fiber method, and a CCD camera method have been proposed. The laser light source method is effective for defects such as surface scratches that scatter light because the light source has a single wavelength, but its detection capability is weak for defects that have no unevenness on the surface and have a light and shade difference.
The optical fiber method, which sets the light irradiation and light receiving parts, can detect scratches and detect differences in light and shade, but the measurement area is a spot and the inspection takes time. The CCD camera system can detect both scratches and grayscales. The CCD camera system includes an area sensor and a line sensor. The area sensor is suitable for defect inspection of an inspection surface having a flat surface and a relatively small area, and the line sensor has an inspection surface having a flat surface and a large area. It is suitable for defect inspection of cylindrical products that can be rotated around the cylinder axis.

【0006】電子写真感光体は、通常、円筒状の支持体
の外周面に感光層などが形成されており、感光体の欠陥
検査装置としてはCCDカメラ方式でラインセンサーの
装置が好適であり、開発が進められている。図1は、こ
のような欠陥検査装置の一例の構成を示す図で、図1
(a)は側面図、図1(b)は正面図である。円筒状の
感光体1の外周面に対してその軸方向に沿って帯状に均
一に光を投射する光源2(例えば蛍光灯)が配置され、
感光体1の円筒軸から見て光源2との角αが90°の範
囲内で、感光体1の外周面における光源2の投光照射面
で直射光が当たるもっとも照度の高いところにピントが
合うように走査ラインセンサーとしてのCCDカメラ3
が配置されている。CCDカメラ3は感光体1の長さに
応じて一度に全長を検査できるように複数個配置される
(図では2個の場合を示す)。4はCCDカメラ3の出
力を受けてその信号を処理する信号処理部であり、5は
感光体1をその円筒軸を中心に回転させる駆動モーター
である。このような構成の装置で、光源2より感光体1
の外周面に軸方向に沿って光を帯状に照射し、その反射
光をCCDカメラ3に受けてその光強度を検出し、その
出力を信号処理部4で処理して欠陥を検出する。感光体
1を駆動モーター5により円筒軸の回りに一回転させる
ことにより感光体の周面全域が走査され、感光体全表面
を容易に検査することができる。
In the electrophotographic photosensitive member, a photosensitive layer or the like is usually formed on the outer peripheral surface of a cylindrical support, and as a defect inspection device for the photosensitive member, a CCD camera type line sensor device is suitable. Development is in progress. FIG. 1 is a diagram showing a configuration of an example of such a defect inspection apparatus.
1A is a side view, and FIG. 1B is a front view. A light source 2 (for example, a fluorescent lamp) that uniformly projects light in a strip shape along the axial direction on the outer peripheral surface of the cylindrical photoreceptor 1 is arranged,
When the angle α with the light source 2 as viewed from the cylindrical axis of the photoconductor 1 is within a range of 90 °, the focus is placed on the outer peripheral surface of the photoconductor 1 at the highest illuminance point where the direct light strikes the projection surface of the light source 2. CCD camera 3 as a scanning line sensor to match
Is arranged. A plurality of CCD cameras 3 are arranged so that the entire length can be inspected at one time according to the length of the photoconductor 1 (two cases are shown in the figure). Reference numeral 4 is a signal processing unit that receives the output of the CCD camera 3 and processes the signal, and reference numeral 5 is a drive motor that rotates the photoconductor 1 about its cylindrical axis. In the apparatus having such a structure, the light source 2 is connected to the photosensitive member 1
Light is irradiated in a band shape on the outer peripheral surface of the device along the axial direction, the reflected light is received by the CCD camera 3, the light intensity is detected, and the output is processed by the signal processing unit 4 to detect a defect. By rotating the photosensitive member 1 around the cylindrical axis by the drive motor 5, the entire peripheral surface of the photosensitive member is scanned and the entire surface of the photosensitive member can be easily inspected.

【0007】画像欠陥は、画像上正常部の濃度に比して
濃い(暗い)部分あるいは薄い(明るい)部分として現
れる。感光体に光を照射したとき、画像上濃度の濃い部
分として現れる感光体欠陥(以下、暗い欠陥と称する)
は正常部に比して光反射が少なくCCDカメラの出力は
低くなる。また、画像上濃度の薄い分として現れる感光
体欠陥(以下、明るい欠陥と称する)は正常部に比して
光反射が多くCCDカメラの出力は高くなる。従って、
CCDカメラの出力が感光体正常部の出力よりも高低い
ずれかに振れることにより感光体の欠陥を検出すること
ができる。
The image defect appears as a dark (dark) portion or a light (light) portion as compared with the density of a normal portion on the image. When a photoconductor is irradiated with light, a photoconductor defect (hereinafter referred to as a dark defect) that appears as a high density portion on an image
Has less light reflection than the normal part, and the output of the CCD camera is low. Further, a photoconductor defect (hereinafter referred to as a bright defect) that appears as a low density on the image has more light reflection than a normal portion, and the output of the CCD camera is high. Therefore,
The defect of the photoconductor can be detected by swinging the output of the CCD camera higher or lower than the output of the normal portion of the photoconductor.

【0008】図2に、上述のような装置において、CC
Dカメラの出力を処理して得られる信号処理部からの欠
陥検出信号の一例を示す。図2において、横軸は時間
軸、縦軸は感光体正常部表面からの反射光を受けたとき
のCCDカメラの出力を処理して得られる信号を基準値
0とし、これに対して感光体表面各部からの反射光を受
けたときのCCDカメラの出力を処理して得られる信号
の(±)方向の変動(振幅)を示す。図における(+)
方向に振れた波形の各ピーク点a,bは明るい欠陥,
(−)方向に振れた波形の各ピーク点c,dは暗い欠陥
に対応し、このうち、a,dは正常部に比して濃淡差が
大きく小さな領域の欠陥を示し、b,cは正常部に比し
て濃淡差が小さく大きな領域の欠陥を示す。このよう
に、基準値0に対する(±)方向の変動により欠陥を検
出することから濃淡両方の欠陥を同等に感度良く検出す
ることが重要である。また、実測によれば、感光体表面
の欠陥のない正常部領域でも多少の信号変動が見られる
ことから、現実的には、基準値0に対して(±)方向の
閾値となる判定レベル(図に破線で示す)を設定し、そ
のレベルより大きく振れた場合に欠陥と判定することに
なる。
In FIG. 2, in the device as described above, CC
An example of the defect detection signal from the signal processing unit obtained by processing the output of the D camera is shown. In FIG. 2, the horizontal axis is the time axis, and the vertical axis is the signal obtained by processing the output of the CCD camera when it receives the reflected light from the surface of the normal portion of the photoconductor as the reference value 0. The fluctuation (amplitude) in the (±) direction of the signal obtained by processing the output of the CCD camera when receiving the reflected light from each part of the surface is shown. (+) In the figure
Each peak point a, b of the waveform swayed in the direction is a bright defect,
The peak points c and d of the waveform swayed in the (-) direction correspond to dark defects, of which a and d indicate defects in a region where the difference in shade is large and small compared to the normal portion, and b and c are It shows a defect in a large area with a small difference in light and shade compared to the normal area. As described above, since the defects are detected by the variation in the (±) direction with respect to the reference value 0, it is important to detect both the dark and light defects with equal sensitivity. Further, according to the actual measurement, some signal fluctuation is observed even in a normal portion region where there is no defect on the surface of the photoconductor, and therefore, in reality, the judgment level ((±) direction threshold value with respect to the reference value 0 ( (Indicated by a broken line in the figure) is set, and if it swings more than that level, it is determined as a defect.

【0009】[0009]

【発明が解決しようとする課題】ところで、上述のよう
に、目視検査に代わる様々のアイデアの自動検査装置が
考えられるが、いずれの装置においても膨大な確認実験
が必要である。また、有機感光体は搭載される複写機や
プリンターの性能に合わせて感光材料や感度が選択さ
れ、いろいろな種類の感光体がある。このような各種の
多数の有機感光体について、走査センサーとしてCCD
カメラを用いた自動検査装置による欠陥検査を行った結
果、濃淡差が小さくハッキリしない欠陥,浅い傷の検出
能力に問題のある場合があり、また、感光体の種類によ
って欠陥の検出能力が異なるという問題があることが判
ってきた。
By the way, as described above, an automatic inspection device of various ideas can be considered as an alternative to the visual inspection, but any of them requires enormous confirmation experiments. In addition, the photosensitive material and the sensitivity of the organic photoconductor are selected according to the performance of a copying machine or a printer to be mounted, and there are various types of photoconductors. CCDs are used as scanning sensors for various types of organic photoconductors.
As a result of performing a defect inspection by an automatic inspection device using a camera, there may be a problem in the detection ability of a defect that has a small density difference and is not clearly visible, or a shallow scratch, and that the detection ability of the defect varies depending on the type of the photoconductor. It turns out that there is a problem.

【0010】この発明は、上述のような問題点を解消し
て、感光体の種類によらず、濃淡差の小さい欠陥,浅い
傷も感度良く検出できる欠陥検査装置を提供することを
目的とする。
SUMMARY OF THE INVENTION It is an object of the present invention to solve the above-mentioned problems and to provide a defect inspection apparatus capable of sensitively detecting a defect having a small difference in density and a shallow defect regardless of the type of the photoconductor.

【0011】[0011]

【課題を解決するための手段】上記の課題は、この発明
によれば、円筒状感光体外周面の円筒軸方向に沿って光
を照射する光源と、照射面を走査することにより照射面
の反射光を受光してその光強度を検出する面走査ライン
センサーと、そのセンサーの出力を処理して感光体の表
面欠陥を検出する信号処理部と、前記感光体を円筒軸の
回りに回転駆動する手段とを有する電子写真感光体用欠
陥検査装置において、前記光源として、ピーク波長が被
検査体としての前記感光体の外周面の色波長より50n
mないし170nm長い範囲にある光源を用いる電子写
真感光体用欠陥検査装置によって解決される。
According to the present invention, the above-mentioned problems can be solved by: a light source for irradiating light along the cylindrical axial direction of the outer peripheral surface of a cylindrical photoconductor; and an irradiation surface for scanning the irradiation surface. A surface scanning line sensor that receives reflected light and detects the light intensity, a signal processing unit that processes the output of the sensor and detects surface defects of the photoconductor, and the photoconductor is rotationally driven around a cylindrical axis. In the defect inspection apparatus for an electrophotographic photosensitive member, the peak wavelength of the light source is 50 n from the color wavelength of the outer peripheral surface of the photosensitive member as the inspection object.
It is solved by a defect inspection apparatus for an electrophotographic photosensitive member using a light source having a long range of m to 170 nm.

【0012】感光体の外周面の色波長が500nmない
し520nmの場合には、前記光源のピーク波長を57
0nmないし670nmとするとよい。感光体は、上述
のように、搭載される複写機やプリンターの性能に合わ
せて感光材料や感度が選択されるが、それに対応して、
感光体表面の色波長が変る。この感光体表面の色波長に
対応して感光体表面を照射する光源の波長を変えること
により欠陥の検出能力が変動する。感光体表面の色波長
より50nmないし170nm長いピーク波長を有する
光源を用いることにより欠陥検出能力を高めることがで
きる。
When the color wavelength of the outer peripheral surface of the photosensitive member is 500 nm to 520 nm, the peak wavelength of the light source is 57 nm.
It may be 0 nm to 670 nm. As described above, the photosensitive material is selected according to the performance of the copier or printer to be mounted, and the photosensitive material and sensitivity are selected.
The color wavelength on the surface of the photoconductor changes. By changing the wavelength of the light source that irradiates the surface of the photoconductor in accordance with the color wavelength of the surface of the photoconductor, the detectability of defects varies. The defect detection capability can be enhanced by using a light source having a peak wavelength longer by 50 nm to 170 nm than the color wavelength of the surface of the photoconductor.

【0013】[0013]

【発明の実施の形態】図1に一例を示したような構成の
欠陥検査装置を用いて、光源の波長と欠陥検出能力との
関係を調べた。表面の色波長が500nm〜520nm
(緑色)の感光体を用い、光源の波長を変えて同一欠陥
部からの出力信号を検出した。その結果を図3に示す。
図3において縦軸は正常部からの出力信号を基準値0と
して欠陥部からの信号の(±)方向の変動(振幅)のピ
ーク値を示し、横軸は光源の波長を示す。図3に見られ
るように、欠陥のうち、出力信号が(+)方向に振れる
明るいムラは光源の波長が感光体表面の色波長より長く
なるにつれてそのピーク値が大きくなり検出し易くなる
が、ピーク値のばらつきが大きくなる。白点も同様にそ
のピーク値が大きくなり検出し易くなるが、670nm
程度以上では変わらなくなる。出力信号が(−)方向に
振れる暗い線状ムラは光源の波長が550nmと感光体
表面の色波長より50nm程度長くなる範囲では光源の
波長が長くなるにつれてそのピーク値が大きくなるが、
それ以上では変わらなく、光源の波長が660nm程度
以上になると逆にピーク値が小さくなる傾向が現れる。
これらの欠陥については、ピーク波長が570nm〜6
70nmの範囲内,すなわち,感光体表面の色温度より
50nm〜170nmの範囲内にある光源を用いること
により高い欠陥検出能力が得られることが判る。色温度
を650nm〜660nmとすると最高の検出能力が得
られる。
BEST MODE FOR CARRYING OUT THE INVENTION The relationship between the wavelength of a light source and the defect detection capability was examined by using a defect inspection apparatus having a structure as shown in FIG. Surface color wavelength is 500nm-520nm
An output signal from the same defective portion was detected by changing the wavelength of the light source using a (green) photoconductor. The result is shown in FIG.
In FIG. 3, the vertical axis represents the peak value of the fluctuation (amplitude) of the signal from the defective portion in the (±) direction with the output signal from the normal portion as the reference value 0, and the horizontal axis represents the wavelength of the light source. As shown in FIG. 3, among the defects, the bright unevenness in which the output signal swings in the (+) direction has a larger peak value as the wavelength of the light source becomes longer than the color wavelength of the surface of the photoconductor and is easy to detect. Variation in peak value becomes large. Similarly, the peak value of the white spot becomes large and it becomes easy to detect, but 670 nm
It does not change above a certain level. The dark linear unevenness in which the output signal swings in the (-) direction has a peak value that increases as the wavelength of the light source increases in a range where the wavelength of the light source is 550 nm, which is approximately 50 nm longer than the color wavelength of the surface of the photoconductor.
When the wavelength of the light source is about 660 nm or more, the peak value tends to decrease.
For these defects, the peak wavelength is 570 nm to 6
It can be seen that high defect detection capability can be obtained by using a light source within the range of 70 nm, that is, within the range of 50 nm to 170 nm from the color temperature of the surface of the photoconductor. The highest detection ability is obtained when the color temperature is 650 nm to 660 nm.

【0014】以上、一般的に多く発生する3種類の欠陥
について述べたが、他の欠陥についてもほぼ同等の結果
が得られる。また、表面の色温度が異なる他の種類の感
光体についても、感光体表面の色温度よりも50nm〜
170nm長いピーク波長を有する光源を用いるとこと
により、上述と同様に、欠陥検出能力が向上する。
While the three types of defects that generally occur frequently have been described above, almost the same results can be obtained for other defects. For other types of photoconductors having different surface color temperatures, the range of 50 nm to
By using a light source having a peak wavelength that is 170 nm longer, the defect detection capability is improved as described above.

【0015】[0015]

【発明の効果】この発明によれば、円筒状感光体外周面
の円筒軸方向に沿って光を照射する光源と、照射面を走
査することにより照射面の反射光を受光してその光強度
を検出する面走査センサーと、そのセンサーの出力を処
理して感光体の表面欠陥を検出する信号処理部と、前記
感光体を円筒軸の回りに回転駆動する手段とを有する電
子写真感光体用欠陥検査装置において、前記光源とし
て、ピーク波長が被検査体としての前記感光体の外周面
の色波長より50nmないし170nm長い範囲にある
光源を用いることにより、濃淡差の少ない欠陥や浅い傷
を感度良く検出することができる。また、感光体の種類
によりその表面の色温度が異なる場合でも同等に感度良
く検出することが可能となる。
According to the present invention, a light source for irradiating light on the outer peripheral surface of a cylindrical photosensitive member along the cylindrical axis direction, and a light reflected by the irradiating surface are received by scanning the irradiating surface and the light intensity thereof is obtained. For an electrophotographic photosensitive member having a surface scanning sensor for detecting a signal, a signal processing unit for processing an output of the sensor to detect a surface defect of the photosensitive member, and a unit for rotationally driving the photosensitive member around a cylindrical axis. In the defect inspection apparatus, by using, as the light source, a light source having a peak wavelength in the range of 50 nm to 170 nm longer than the color wavelength of the outer peripheral surface of the photoconductor as the object to be inspected, defects and shallow scratches with little difference in density are sensitive. It can be detected well. Further, even when the color temperature of the surface of the photoconductor differs depending on the type of the photoconductor, it is possible to detect with equal sensitivity.

【図面の簡単な説明】[Brief description of drawings]

【図1】この発明に係わる欠陥検査装置の一例の構成を
示す図で、図1(a)は側面図,図1(b)は正面図
FIG. 1 is a diagram showing a configuration of an example of a defect inspection apparatus according to the present invention, FIG. 1 (a) is a side view, and FIG. 1 (b) is a front view.

【図2】図1に例示した欠陥検査装置より出力される欠
陥検出信号の一例の波形図
FIG. 2 is a waveform diagram of an example of a defect detection signal output from the defect inspection apparatus illustrated in FIG.

【図3】欠陥検査装置の光源の波長と欠陥検出能力との
関係を示す線図
FIG. 3 is a diagram showing the relationship between the wavelength of the light source of the defect inspection apparatus and the defect detection capability.

【符号の説明】[Explanation of symbols]

1 感光体 2 光源 3 CCDカメラ 4 信号処理部 5 駆動モーター 1 photoconductor 2 light source 3 CCD camera 4 signal processing unit 5 drive motor

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】円筒状感光体外周面の円筒軸方向に沿って
光を照射する光源と、照射面を走査することにより照射
面の反射光を受光してその光強度を検出する面走査セン
サーと、そのセンサーの出力を処理して感光体の欠陥を
検出する信号処理部と、前記感光体を円筒軸の回りに回
転駆動する手段とを有する電子写真感光体用欠陥検査装
置において、前記光源として、ピーク波長が被検査体と
しての前記感光体の外周面の色波長より50nmないし
170nm長い範囲にある光源を用いることを特徴とす
る電子写真感光体用欠陥検査装置。
1. A light source for irradiating light along a cylindrical axis of an outer peripheral surface of a cylindrical photoreceptor, and a surface scanning sensor for detecting reflected light of the irradiating surface by scanning the irradiating surface and detecting the light intensity thereof. In the defect inspection apparatus for an electrophotographic photoconductor, which comprises: a signal processing unit that processes an output of the sensor to detect a defect of the photoconductor; and a unit that rotationally drives the photoconductor around a cylindrical axis, As a defect inspection apparatus for an electrophotographic photosensitive member, a light source having a peak wavelength in the range of 50 nm to 170 nm longer than the color wavelength of the outer peripheral surface of the photosensitive member as the inspection object is used.
【請求項2】被検査体としての感光体の外周面の色波長
が500nmないし520nmであり、検査装置の光源
のピーク波長が570nmないし670nmであること
を特徴とする請求項1記載の電子写真感光体用欠陥検査
装置。
2. The electrophotographic apparatus according to claim 1, wherein the color wavelength of the outer peripheral surface of the photoconductor as the inspection object is 500 nm to 520 nm, and the peak wavelength of the light source of the inspection device is 570 nm to 670 nm. Defect inspection device for photoconductor.
JP21694895A 1995-08-25 1995-08-25 Defect inspecting device for electrophotographic photoreceptor Pending JPH0961362A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21694895A JPH0961362A (en) 1995-08-25 1995-08-25 Defect inspecting device for electrophotographic photoreceptor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21694895A JPH0961362A (en) 1995-08-25 1995-08-25 Defect inspecting device for electrophotographic photoreceptor

Publications (1)

Publication Number Publication Date
JPH0961362A true JPH0961362A (en) 1997-03-07

Family

ID=16696442

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21694895A Pending JPH0961362A (en) 1995-08-25 1995-08-25 Defect inspecting device for electrophotographic photoreceptor

Country Status (1)

Country Link
JP (1) JPH0961362A (en)

Similar Documents

Publication Publication Date Title
JP2003075363A (en) Device and method for inspecting defect
JP2000097873A (en) Surface defect inspecting device
JPH10206335A (en) Surface defect inspecting device and inspecting method
JPH07128240A (en) Inspection device of electrophotographic photoreceptor defect
JPH0961362A (en) Defect inspecting device for electrophotographic photoreceptor
JP2001124538A (en) Method and device for detecting defect in surface of object
JPH0755710A (en) Defect inspecting device for drum of photoreceptor
JPH07239304A (en) Detector for detecting defect of surface layer
JPH04216445A (en) Device for inspecting bottle
JP3267062B2 (en) Surface layer defect detector
JP3810599B2 (en) Defect detection device
JPH11326236A (en) Surface layer defect-detection device
JP2858194B2 (en) O-ring inspection method
JPH09113465A (en) Detection apparatus for surface fault for galvanized steel plate
JP3469714B2 (en) Photoconductor surface inspection method and photoconductor surface inspection device
JPH07128241A (en) Inspection device of electrophotographic photoreceptor defect
JP2003240728A (en) Method and apparatus for examining outer periphery of object to be examined
JPH08304291A (en) Method and system for inspecting defect in electrophotographic photosensitive body
JP2000009451A (en) Apparatus for inspecting appearance of photosensitive drum for electrophotography, and appearance inspecting method using the same
JPH06123707A (en) Method for inspecting surface defect and its device
JP3442199B2 (en) Surface inspection equipment
JP2002005845A (en) Defect inspecting apparatus
JPH11183391A (en) Automatic appearance inspecting device
JP3287526B2 (en) Surface inspection method for photoconductor drum for electrophotography
JP3054243B2 (en) Surface inspection equipment