JPH0961288A - Balance for wind tunnel - Google Patents

Balance for wind tunnel

Info

Publication number
JPH0961288A
JPH0961288A JP22019595A JP22019595A JPH0961288A JP H0961288 A JPH0961288 A JP H0961288A JP 22019595 A JP22019595 A JP 22019595A JP 22019595 A JP22019595 A JP 22019595A JP H0961288 A JPH0961288 A JP H0961288A
Authority
JP
Japan
Prior art keywords
wind tunnel
balance
sample
load
axis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP22019595A
Other languages
Japanese (ja)
Inventor
Miharu Tanahashi
美治 棚橋
Masao Arakawa
正夫 荒川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP22019595A priority Critical patent/JPH0961288A/en
Publication of JPH0961288A publication Critical patent/JPH0961288A/en
Withdrawn legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a wind tunnel balance wherein the response of a balance output can be secured, the balance is highly rigid, vibration output waveforms with multiple frequencies can be obtained, and highly accurate data can be obtained even with a wind tunnel test with short ventilation time. SOLUTION: A plurality 31, 32 of measuring parts 3 interposed between an outer cylinder 2 fitted over a sample to be integrated with the sample and a cylinder 1 fitted over a tip of a sting 04 for supporting the sample at a predetermined position in a wind tunnel and integrated with it for sensing deformation caused by load applied to the sample for detecting the aerodynamic load are provided separately from a center of a balance in an X-axis direction. This five-component force of the sample except a load Fx in the X-axis direction of the sample can be detected by tensile and compressive deformation caused on the front and rear measuring parts 31, 32, so that measurement accuracy of Fx with a small output can be improved, while balance rigidity can be increased thereby obtaining vibration outputs with multiple frequencies in a short time.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、通風時間の比較的
長い通常の風洞試験における空気力計測装置、若しくは
一般的な荷重、または衝撃力計測装置としても利用で
き、しかも、高温衝撃風洞等の通風時間が1〜2msec
程度の非常に短かい風洞試験の空気力計測装置への適用
が、好適な風洞用天秤に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention can be used as an aerodynamic force measuring device in a normal wind tunnel test with a relatively long ventilation time, or as a general load or impact force measuring device, and moreover, it can be used for a high temperature shock wind tunnel or the like. Ventilation time 1-2 msec
Application of a wind tunnel test of a very short degree to an aerodynamic force measuring device relates to a suitable wind tunnel balance.

【0002】[0002]

【従来の技術】風洞内に設置された供試体(風洞模型)
に作用する空気力を計測する風洞用天秤、特に衝撃風洞
等のように、通風時間の短かい風洞試験では、瞬時に供
試体に加わる空力荷重を計測する必要がある。また、こ
のような風洞試験においては、供試体、及びその支持装
置が、瞬時に加わる空力荷重のため振動を発生し、供試
体に加わる空力荷重を計測するための風洞用天秤は、図
4に示すような正弦的な振動の出力を発生する。このた
め、このような風洞試験では、風洞の利用可能な通風時
間内に、この正弦的な振動周期の出力を、出来るだけ多
く発生させ、その出力結果を平均化することにより、供
試体に定常的に加わる空気力を求めるようにしている。
2. Description of the Related Art Specimen installed in a wind tunnel (wind tunnel model)
In a wind tunnel balance that measures the aerodynamic force acting on the wind tunnel, especially in a wind tunnel test with a short ventilation time, such as an impact wind tunnel, it is necessary to measure the aerodynamic load applied to the specimen instantaneously. Further, in such a wind tunnel test, the specimen and its supporting device generate vibration due to an aerodynamic load applied instantaneously, and the wind tunnel balance for measuring the aerodynamic load applied to the specimen is shown in FIG. It produces a sinusoidal vibration output as shown. Therefore, in such a wind tunnel test, the output of this sinusoidal vibration period is generated as much as possible within the available ventilation time of the wind tunnel, and the output results are averaged to obtain a steady state on the test piece. I try to find the aerodynamic force to be applied.

【0003】図5は、このような風洞試験において、従
来使用されている風洞用天秤の一例としての多分力天秤
の構造を示す図である。図において、図5(A)は平面
図、図5(B)は図5(A)の矢視E−E横断面図、図
5(C)は図5(A)の矢視F−F側断面図、図5
(D)は計測部である図5(C)の矢視G−G横断面図
である。
FIG. 5 is a view showing the structure of a multi-force balance as an example of a wind tunnel balance that has been conventionally used in such a wind tunnel test. 5A is a plan view, FIG. 5B is a cross-sectional view taken along the line EE of FIG. 5A, and FIG. 5C is a view taken along the line FF of FIG. Side sectional view, FIG.
FIG. 6D is a cross-sectional view taken along the line GG of FIG. 5C, which is a measurement unit.

【0004】図に示すように、このような風洞用天秤
は、風洞内の所定の計測位置に、本発明の実施の形態で
ある、図2に示すような供試体20を配置して、支持す
るためのスティング04の先端部に開口を設け、スティ
ング04内に同軸状に穿設された孔011に、後端部の
テーパ部が嵌挿され、スティング04と一体化される内
筒01、供試体20の後部に開口を設け、機体軸方向に
穿設された供試体20開孔に模型取付部05が嵌挿され
て、供試体20と一体化される外筒02、および内筒0
1と外筒02の間に介装され、X軸方向に1列だけ受感
部素子08を並設した計測部03から構成されている。
As shown in the figure, in such a wind tunnel balance, a test piece 20 as shown in FIG. 2, which is an embodiment of the present invention, is arranged and supported at a predetermined measurement position in the wind tunnel. An opening is provided at the front end of the sting 04, and a taper portion at the rear end is inserted into a hole 011 coaxially formed in the sting 04 to be integrated with the sting 04. An opening is provided in the rear part of the test piece 20, and a model mounting portion 05 is inserted into an opening of the test piece 20 formed in the axial direction of the machine body to form an outer cylinder 02 and an inner cylinder 0 integrated with the test piece 20.
The measuring unit 03 is interposed between the outer cylinder 1 and the outer cylinder 02, and the sensing unit elements 08 are arranged in parallel in only one row in the X-axis direction.

【0005】すなわち、この計測部03は、内筒01か
らY,Z軸方向にそれぞれ伸展され、十字形にされた受
感部06と、受感部06の外径端部を連結するととも
に、受感部06に対応する周方向の個所が切除され、外
筒02から後方へ延伸された、柔構造部09と前端が連
結された円環状の外枠部07とからなり、受感部06の
両側面には、天秤中心010から半径方向の等距離の位
置に、X軸方向に1列だけ設けられ、模型取付部05に
嵌挿された供試体20に作用する空気力で変形する受感
部06の変位を検出して、供試体20のX軸,Y軸,Z
軸方向の力Fx ,Fy ,Fz 、およびこれらの軸まわり
のモーメントMx ,My ,Mz 、すなわち供試体20に
加わる空力荷重の6分力を測定できるようにした受感部
素子08が貼着されている。
That is, the measuring portion 03 extends from the inner cylinder 01 in the Y and Z directions, and connects the cross-shaped sensing portion 06 and the outer diameter end portion of the sensing portion 06. A portion in the circumferential direction corresponding to the sensing portion 06 is cut off, and is composed of a flexible structure portion 09 that extends rearward from the outer cylinder 02 and an annular outer frame portion 07 whose front end is connected. On both side faces of the test piece 20, one row in the X-axis direction is provided at positions equidistant in the radial direction from the balance center 010 and is deformed by the aerodynamic force acting on the sample 20 fitted into the model mounting portion 05. The displacement of the sensitive part 06 is detected, and the X axis, Y axis, and Z of the sample 20 are detected.
Axial force Fx, Fy, Fz, and moments Mx, My, Mz about these axes, that is, the 6-component force of the aerodynamic load applied to the specimen 20 are attached to the sensing element 08. ing.

【0006】また、これらの受感部素子08は、受感部
06の半径方向の変位を検出することにより、6分力を
検出するために半径方向に配置されている。このように
構成される風洞用天秤は、上述したように、供試体20
をスティング04に固定するために、また風洞の利用可
能な通風時間内に、振動周期の出力を出来るだけ多く発
生させるために、剛性を高くして風洞用天秤の固有振動
数を高める必要があり、計測する供試体の空力荷重に応
じても異なるが、可能な範囲内で短く、かつ太くした剛
性の高いものにする必要がある。
The sensing element 08 is arranged in the radial direction to detect the 6-component force by detecting the displacement of the sensing section 06 in the radial direction. As described above, the wind tunnel balance configured as described above is used for the specimen 20.
In order to fix the sting 04 to the sting 04 and to generate as many vibration cycle outputs as possible within the available ventilation time of the wind tunnel, it is necessary to increase rigidity and increase the natural frequency of the wind tunnel balance. Depending on the aerodynamic load of the specimen to be measured, it is necessary to make it short, thick and highly rigid within the possible range.

【0007】しかしながら、風洞用天秤を上述したよう
に、構造上の剛性を高くすることは、供試体に加わる一
定量の空気力荷重により、受感部06に発生する変形量
(曲げ変形量)が小さくなることを意味しており、一定
量の空気力荷重が供試体に加わったときの受感部06の
変形に伴う受感部素子08の歪量が小さくなり、この歪
量により検出される風洞用天秤出力の空力荷重に対する
応答性、すなわち感度が低くなり、計測精度が劣化する
という欠点がある。
However, as described above, increasing the structural rigidity of the wind tunnel balance means that the amount of deformation (the amount of bending deformation) that occurs in the sensing portion 06 due to a certain amount of aerodynamic load applied to the specimen. Means that the strain amount of the sensing unit element 08 accompanying the deformation of the sensing unit 06 when a certain amount of aerodynamic load is applied to the sample becomes small, and is detected by this strain amount. There is a drawback in that the responsiveness of the output of the wind tunnel balance to the aerodynamic load, that is, the sensitivity is lowered, and the measurement accuracy is deteriorated.

【0008】特に、風洞用天秤の固有振動モードのう
ち、一般的にY軸回りのモーメント計測に対応するもの
は、短時間での計測を可能にするため、高剛性にする必
要があるにも拘わらず、Y軸回りのモーメントと同時に
計測する供試体20のX軸方向の、出力の小さい荷重
(抗力)を計測するために、高剛性にできず、剛性を最
も低くせざるを得ず、これを改善することが強く求めら
れている。
In particular, among the natural vibration modes of the wind tunnel balance, those that generally correspond to the measurement of the moment around the Y-axis need to have high rigidity in order to enable measurement in a short time. Regardless, in order to measure a load (drag) with a small output in the X-axis direction of the test piece 20 that is measured at the same time as the moment about the Y-axis, high rigidity cannot be achieved and the rigidity must be the lowest. There is a strong demand to improve this.

【0009】[0009]

【発明が解決しようとする課題】本発明は、上述した従
来の風洞用天秤の問題点を解消するため、風洞用天秤が
計測する、供試体に加わる空気力荷重成分のうち、図5
に示すY軸、及びZ軸回りのモーメント、My ,Mz 、
Y軸、及びZ軸方向の荷重、Fy ,Fz に対する高剛性
を維持しながら、しかも風洞用天秤の出力が比較的小さ
く、空力荷重に対する応答性が低くなる恐れのある、X
軸方向の荷重Fx 、及びX軸回りのモーメントMx に対
する天秤出力感度を広い範囲で調整でき、これらの計測
精度を劣化させることなく、すべての空気力荷重成分に
対する固有振動数を十分に高くし、非常に短かい計測時
間内においても、多周期の振動出力波形が得られ、供試
体に定常的に加わる空気力を計測できる風洞用天秤を提
供することを課題とする。
SUMMARY OF THE INVENTION In order to solve the above-mentioned problems of the conventional wind tunnel balance, the present invention is directed to FIG. 5 among the aerodynamic load components applied to the specimen measured by the wind tunnel balance.
Moments about Y-axis and Z-axis, My, Mz,
While maintaining high rigidity against Y-axis and Z-axis loads, Fy, and Fz, the output of the wind tunnel balance is relatively small, and the response to aerodynamic loads may decrease.
The balance output sensitivity with respect to the axial load Fx and the moment Mx about the X axis can be adjusted in a wide range, and the natural frequencies for all aerodynamic load components can be sufficiently increased without deteriorating the measurement accuracy of these. It is an object of the present invention to provide a wind tunnel balance that can obtain a multi-cycle vibration output waveform even within a very short measurement time and can measure the aerodynamic force constantly applied to a test piece.

【0010】[0010]

【課題を解決するための手段】このため、本発明の風洞
用天秤は、次の手段を採用した。風洞用天秤の内筒と外
筒の間に配置され、外筒と一体化された供試体に作用す
る空力荷重を検出する受感部素子を具えた計測部を、X
軸方向に、天秤中心から前後に離隔させて複数個設け
た。なお、計測部に設けられる受感部素子は、Y軸、お
よびZ軸を含む面の、半径方向に配置しても、円周方向
に配置しても良い。また、X軸方向に離隔して設けられ
る計測部は、本発明においては、2個以上の複数個設置
するようにしたが、構造、および計測を簡単にするため
には、2個の計測部を、天秤中心から等距離離隔して設
けるようにしても良い。
For this reason, the wind tunnel balance of the present invention employs the following means. A measuring unit provided with a sensing element for detecting an aerodynamic load acting on a specimen integrated with the outer cylinder, which is arranged between the inner cylinder and the outer cylinder of the wind tunnel balance,
A plurality of them were provided in the axial direction, spaced apart from the center of the balance in the front and back. The sensing element provided in the measuring section may be arranged in the radial direction or the circumferential direction of the surface including the Y axis and the Z axis. Further, in the present invention, two or more measuring units provided separately from each other in the X-axis direction are installed. However, in order to simplify the structure and the measurement, the two measuring units are provided. May be provided equidistantly from the balance center.

【0011】本発明の風洞用天秤は、上述の手段の採用
により、計測部がX軸方向に離隔した位置に複数列直列
に配置され、Y軸、及びZ軸回りのモーメントを、単一
の受感部の曲げ変形を検出する受感部素子の曲げ歪によ
り検出する、従来の検出から、X軸方向に離隔して設け
た、複数個の計測部に設けた受感部素子に生じる引張、
圧縮方向の歪によって、検出することができるようにな
る。一般的に、固有振動数が低い、Y軸、及びZ軸回り
のモーメントを、上述したように受感部素子の引張、圧
縮による歪で検出するようにしたことにより、その固有
振動数を高くできる。
In the wind tunnel balance of the present invention, by adopting the above-mentioned means, the measuring units are arranged in series in a plurality of rows at positions separated in the X-axis direction, and the moments about the Y-axis and the Z-axis are set to a single value. Detects the bending deformation of the sensing unit. The tension generated in the sensing unit elements provided in the plurality of measuring units, which are separated from the conventional detection by the bending strain of the sensing unit element, and are separated from the conventional detection. ,
The distortion in the compression direction enables detection. Generally, the moment around the Y-axis and the Z-axis, which has a low natural frequency, is detected by the strain due to the tension and compression of the sensing element as described above, so that the natural frequency is increased. it can.

【0012】また、受感部素子が設けられる受感部は、
曲げ方向の荷重よりも、引張・圧縮方向の荷重に対して
より強いため、Y軸、及びZ軸回りのモーメント、My
,Mz と、Y軸、及びZ軸方向の荷重、Fy ,Fz に
対する天秤容量を大きく設定できる。さらに、Y軸、及
びZ軸回りのモーメント、My ,Mz に対する天秤の最
大測定能力である容量は、複数の測定部の設置位置の間
の距離を変えることによって、自由に設定可能となる。
The sensing section provided with the sensing element is
Since it is stronger against the load in the tensile / compression direction than the load in the bending direction, the moment around the Y-axis and Z-axis, My
, Mz, the load in the Y-axis and Z-axis directions, and the balance capacity for Fy, Fz can be set to a large value. Further, the capacity, which is the maximum measuring capacity of the balance with respect to the moments about the Y axis and the Z axis and My and Mz, can be freely set by changing the distance between the installation positions of the plurality of measuring units.

【0013】また、Y軸回りのモーメント、Fy の固有
振動数を低くする原因となっていた、出力の小さいX軸
方向荷重に対しては、独立に、受感部の構造体として
の、幅、及び長さを小さく調整することができ、必要な
感度を確保出来るようになり、これによってX軸方向荷
重、Fx を測定する曲げ歪と、高剛性を必要とするY軸
回りのモーメントFy との分離が可能となった。さら
に、受感部素子は、受感部の曲げ変形を検出するため、
従来、半径方向にだけ配置していたものを、前後の計測
部の引張、圧縮で計測するようにした本発明の風洞用天
秤の受感部素子では、円周方向にも配置できるようにな
り、これにより風洞用天秤を構成する内筒の径が、従来
のものに比べ、大きくできるようになり、これにより、
風洞用天秤全体の高剛性化をはかることもできる。
Further, with respect to the small load in the X-axis direction, which has caused the moment around the Y-axis and the natural frequency of Fy to be low, the width as the structure of the sensing section is independent. , And the length can be adjusted to a small value, and the necessary sensitivity can be secured. As a result, the bending strain for measuring the load in the X-axis direction, Fx, and the moment Fy around the Y-axis, which requires high rigidity, can be obtained. Became possible. Furthermore, since the sensing element detects the bending deformation of the sensing portion,
Conventionally, the sensing element element of the wind tunnel balance of the present invention, which is arranged only in the radial direction, is measured by pulling and compressing the front and rear measuring parts, so that it can be arranged also in the circumferential direction. , By this, the diameter of the inner cylinder that constitutes the balance for the wind tunnel can be made larger than that of the conventional one.
It is also possible to increase the rigidity of the entire wind tunnel balance.

【0014】また、本発明の風洞用天秤は、上述した手
段の採用により、高剛性化ができる削り出し一体化構造
とすることができるようになり、この一体削り出し構造
の採用により、従来の分割、組み合わせ構造の風洞用天
秤よりも、固有振動数を高くすることができるようにな
る。
Further, the wind tunnel balance of the present invention can be made into a machined and integrated structure capable of achieving high rigidity by adopting the above-mentioned means. The natural frequency can be made higher than that of the wind tunnel balance having a divided and combined structure.

【0015】[0015]

【発明の実施の形態】以下、本発明の風洞用天秤の実施
の一形態を、図面にもとづき説明する。なお、本発明の
実施の形態を示す図面において、図5に示す符番と同一
符番のものは、同一、若しくは類似の部材につき説明は
省略する。
BEST MODE FOR CARRYING OUT THE INVENTION An embodiment of a wind tunnel balance of the present invention will be described below with reference to the drawings. In the drawings showing the embodiment of the present invention, the same reference numerals as those shown in FIG. 5 denote the same or similar members, and the description thereof will be omitted.

【0016】図1は、本発明の風洞用天秤の実施の第1
形態を示す図で、図1(A)は、風洞用天秤の正面図、
図1(B)は図1(A)の平面図、図1(C)は図1
(A)の矢視A−A断面図、図1(D)は図1(B)の
矢視B−B縦断面図、図2は図1に示す実施の形態の風
洞用天秤を装着した供試体、および支持装置の一部を示
す縦断面図である。
FIG. 1 shows a first embodiment of the wind tunnel balance of the present invention.
1A is a front view of a wind tunnel balance, FIG.
1B is a plan view of FIG. 1A, and FIG. 1C is FIG.
1A is a vertical sectional view taken along the line BB of FIG. 1B, and FIG. 2 is equipped with the wind tunnel balance of the embodiment shown in FIG. It is a longitudinal cross-sectional view which shows a test piece and a part of support device.

【0017】これらの図に示すように、風洞用天秤30
は、供試体20の軸心に沿ってあけられた開孔21に、
その外周面が嵌挿され、供試体20と一体化される外筒
2、供試体20を風洞内の所定位置で支持する、スティ
ング04の先端部に設けられた孔011に、その後部に
設けたテーパ部9が嵌入され、スティング04先端と螺
合するナット5で締付けられて、スティング04と一体
化される内筒1、スリットが切られて、分離された内筒
1と外筒2の間に介装されて、供試体20に作用する空
気力により変形して、その変形量により供試体20に加
わる空力荷重を検出する計測部3とからなる。
As shown in these figures, the wind tunnel balance 30
Is in an opening 21 formed along the axis of the test piece 20,
The outer cylinder 2 into which the outer peripheral surface is fitted and which is integrated with the test piece 20, and the test piece 20 are supported at a predetermined position in the wind tunnel. The tapered portion 9 is fitted and is tightened with the nut 5 that is screwed to the tip of the sting 04, and the inner cylinder 1 integrated with the sting 04 and the slit are cut to separate the inner cylinder 1 and the outer cylinder 2. The measuring unit 3 is interposed between the two and is deformed by the aerodynamic force acting on the test piece 20, and the aerodynamic load applied to the test piece 20 is detected by the deformation amount.

【0018】計測部3は、X軸方向に天秤中心10から
等距離離隔して2個所に配設された、前方計測部31、
後方計測部32からなり、両計測部3ともに、内筒1と
外筒2とに、その両端が連結され、内筒1、外筒2の外
周縁部の周方向に4個配置された受感部6と、受感部6
に周方向に貼着され、受感部6の周方向の変形を検出し
て、供試体20に加わる、X軸方向の荷重(抗力)、F
x 、Y軸方向の荷重(横力)、Fy 、Z軸方向の荷重
(揚力)、Fz 、および天秤中心10における、X軸回
りのモーメント(ローリングモーメント)、Mx 、Y軸
回りのモーメント(ピッチングモーメント)、My 、Z
軸回りのモーメント(ヨーイングモーメント)、Mz の
6分力を、それぞれ検出する受感部素子8からなる。
The measuring unit 3 is arranged at two positions equidistant from the balance center 10 in the X-axis direction.
The rear measuring unit 32 is provided, and both measuring units 3 have both ends connected to the inner cylinder 1 and the outer cylinder 2, and four receiving units are arranged in the circumferential direction of the outer peripheral edge portions of the inner cylinder 1 and the outer cylinder 2. Sensing part 6 and sensing part 6
Is attached in the circumferential direction to the test piece 20, detects the circumferential deformation of the sensing portion 6, and applies the load (reaction force) in the X-axis direction, F, to the sample 20.
x, Y-axis direction load (lateral force), Fy, Z-axis direction load (lift force), Fz, and the balance center 10 around the X axis (rolling moment), Mx, around the Y axis (pitching) Moment), My, Z
The sensing unit element 8 detects the moment around the axis (yaw moment) and the 6-component force of Mz.

【0019】このように、構成された本形態の風洞用天
秤30は、受感部素子8の歪出力を確保するとともに、
風洞用天秤30の高剛性化を図ることを主目的としてい
るため、受感部素子8を貼着する受感部6を可能な限
り、内筒1、および外筒2の外周縁側に配置して、内筒
1の径の極大化をはかっている。さらに、外筒2から受
感部6に入る供試体20に加わる空力荷重は、X軸方向
荷重、Fx を受感部6の曲げ変形で検出するようにした
外は、他の5分力、Fy ,Fz ,Mx ,My ,Mz は、
全て前,後計測部31,32に発生する引張、圧縮荷重
により検出するようにした。これにより、受感部6の変
形量を小さくして、高剛性化をはかることができる。従
って、受感部6に貼付けられる受感部素子8は、Fx は
受感部6の曲げ変形によって生ずる歪の検出、他の5分
力は、前,後計測部31,32に、それぞれ設けられた
受感部6に引張、圧縮変形によって生ずる歪変形の検出
で行なうようにしている。
The thus configured wind tunnel balance 30 of the present embodiment ensures the strain output of the sensing section element 8 and
Since the main purpose is to increase the rigidity of the wind tunnel balance 30, the sensing unit 6 to which the sensing unit element 8 is attached is arranged as close to the outer peripheral edge side of the inner cylinder 1 and the outer cylinder 2 as possible. Thus, the diameter of the inner cylinder 1 is maximized. Further, the aerodynamic load applied from the outer cylinder 2 to the sample 20 entering the sensing section 6 is the load in the X-axis direction, and the other 5 component force, except that Fx is detected by the bending deformation of the sensing section 6, Fy, Fz, Mx, My, Mz are
All of them were detected by the tensile and compressive loads generated in the front and rear measuring units 31 and 32. As a result, the amount of deformation of the sensitive portion 6 can be reduced, and high rigidity can be achieved. Therefore, in the sensing unit element 8 attached to the sensing unit 6, Fx is for detecting the strain caused by the bending deformation of the sensing unit 6, and the other 5 component forces are provided in the front and rear measuring units 31, 32, respectively. Strain deformation caused by tensile and compression deformation is detected in the sensed portion 6 thus formed.

【0020】なお、本実施例では、前,後計測部31,
32は天秤中心10から等間隔離して、2個配設したも
のを示したが、本発明は、このような形態に限定される
ものではなく、計測目的によっては、天秤中心10から
異なる距離を離すようにしても良く、また、計測部3の
数も、2個以上にすることができるものである。
In this embodiment, the front and rear measuring units 31,
Although 32 is shown as being equidistantly separated from the balance center 10 and provided with two pieces, the present invention is not limited to such a form, and a different distance from the balance center 10 may be set depending on the measurement purpose. They may be separated from each other, and the number of measuring units 3 can be two or more.

【0021】次に、図3は本発明の実施の第2形態を示
す図で、図3(A)は風洞用天秤の正面図、図3(B)
は図3(A)の平面図、図3(C)は図3(A)の矢視
C−C断面図、図3(D)は図3(B)の矢視D−D縦
断面図である。この形態の風洞用天秤では、図5に示し
た従来型の風洞用天秤と同様の計測部3を、前後に2個
設けた構造としている。但し、内筒1’の断面形は、第
1形態のものと同様に円形にしている。
Next, FIG. 3 is a view showing a second embodiment of the present invention. FIG. 3 (A) is a front view of a wind tunnel balance and FIG. 3 (B).
3A is a plan view, FIG. 3C is a sectional view taken along the line CC of FIG. 3A, and FIG. 3D is a longitudinal sectional view taken along the line D-D of FIG. 3B. Is. The wind tunnel balance of this form has a structure in which two measuring units 3 similar to those of the conventional wind tunnel balance shown in FIG. However, the cross-sectional shape of the inner cylinder 1'is circular like the first embodiment.

【0022】従って、内筒1’と外筒2との間に設けら
れた十字型の受感部6は、天秤中心10から等距離の位
置に、前後に各1列設けられており、外筒2に入った荷
重は8個の受感部6を通って円筒1に伝達される。この
ように、受感部6を配置した計測部を前後に設けること
によって、6分力荷重に対して受感部6に設ける受感部
素子8の歪出力量の設計が容易になる。また、本形態の
風洞用天秤30は、実施の第1形態の風洞用天秤30に
比較して内筒1’の剛性低下の可能性があるため、内、
外筒間切り離し用スリット7を受感部6の中央部に設け
これを防いでいる。
Therefore, the cross-shaped sensing portions 6 provided between the inner cylinder 1'and the outer cylinder 2 are provided at the positions equidistant from the balance center 10 in the front and rear rows, respectively. The load that has entered the cylinder 2 is transmitted to the cylinder 1 through the eight sensing units 6. As described above, by providing the measuring unit in which the sensing unit 6 is arranged in the front and rear, it becomes easy to design the strain output amount of the sensing unit element 8 provided in the sensing unit 6 with respect to the 6-component force load. Further, since the wind tunnel balance 30 of the present embodiment has a possibility of lowering the rigidity of the inner cylinder 1 ′ as compared with the wind tunnel balance 30 of the first embodiment,
A slit 7 for separating the outer cylinders is provided in the central portion of the sensitive portion 6 to prevent this.

【0023】[0023]

【発明の効果】以上、説明したように、本発明の風洞用
天秤によれば、特許請求の範囲に示す構成により、 (1)従来の風洞用天秤では困難であった、Y,Z軸回
りのモーメント、Y,Z軸方向の荷重に対する剛性を低
下させることなしに、X軸回りのモーメント、X軸方向
の荷重に対する計測容量を相対的に小さくでき、若しく
は感度を上げることが可能となり、これらの計測精度を
向上させることができる。また、Y,Z軸回りのモーメ
ントについては、大容量のモーメント荷重を必要とする
ものについても、比較的小型の天秤製作が可能となる。
As described above, according to the wind tunnel balance of the present invention, due to the constitutions set forth in the claims, (1) around the Y and Z axes, which is difficult with the conventional wind tunnel balance. It is possible to relatively reduce the measurement capacity for the moment around the X-axis and the load for the X-axis direction or to increase the sensitivity without lowering the rigidity for the moment and the load in the Y- and Z-axis directions. The measurement accuracy of can be improved. Further, with respect to the moments about the Y and Z axes, it is possible to manufacture a relatively small scale even for those requiring a large moment load.

【0024】(2)風洞用天秤の固有振動数を高くする
ことが可能となり、計測時間の非常に短かい高温衝撃風
洞等での高精度計測が達成できる。すなわち、図4に示
すように、通風開始時の衝撃力による天秤出力の振動成
分に対して、計測時間内での高振動出力が可能により、
この振動出力の単純平均化により、定常的な平均出力の
算出が可能となり、供試体に加わる定常的な空力荷重を
精度良く測定できるようになる。
(2) The natural frequency of the wind tunnel balance can be increased, and high-accuracy measurement can be achieved in a high-temperature shock wind tunnel or the like with a very short measurement time. That is, as shown in FIG. 4, a high vibration output within the measurement time is possible for the vibration component of the balance output due to the impact force at the start of ventilation,
By simply averaging the vibration output, it becomes possible to calculate a steady average output, and it becomes possible to accurately measure a steady aerodynamic load applied to the specimen.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の風洞用天秤の実施の第1形態を示す図
で、図1(A)は風洞用天秤の正面図、図1(B)は図
1(A)の平面図、図1(C)は図1(A)の矢視A−
A断面図、図1(D)は図1(B)の矢視B−B縦断面
図、
FIG. 1 is a view showing a first embodiment of a wind tunnel balance of the present invention, FIG. 1 (A) is a front view of the wind tunnel balance, and FIG. 1 (B) is a plan view of FIG. 1 (A). 1 (C) is the arrow A- in FIG.
1A is a sectional view, and FIG. 1D is a vertical sectional view taken along the line BB in FIG.

【図2】図1に示す形態の風洞用天秤を装着した供試
体、および支持装置の縦断面図、
FIG. 2 is a vertical cross-sectional view of a specimen equipped with the wind tunnel balance of the form shown in FIG. 1 and a supporting device;

【図3】本発明の実施の第2形態を示す図で、図3
(A)は風洞用天秤の正面図、図3(B)は図3(A)
の平面図、図3(C)は図3(B)の矢視C−C断面
図、図3(D)は図3(C)の矢視D−D縦断面図、
FIG. 3 is a view showing a second embodiment of the present invention, and FIG.
(A) is a front view of the wind tunnel balance, and FIG. 3 (B) is FIG. 3 (A).
3C is a cross-sectional view taken along the line CC of FIG. 3B, and FIG. 3D is a vertical cross-sectional view taken along the line D-D of FIG. 3C.

【図4】通風時間の非常に短い風洞試験における受感部
素子の出力を示す図、
FIG. 4 is a diagram showing the output of a sensing element in a wind tunnel test with a very short ventilation time;

【図5】従来の風洞用天秤の一例を示す図で、図5
(A)は平面図、図5(B)は図5(A)の矢視E−E
横断面図、図5(C)は図5(A)の矢視F−F側断面
図、図5(D)は図5(C)の矢視G−G横断面図であ
る。
5 is a diagram showing an example of a conventional wind tunnel balance, and FIG.
5A is a plan view and FIG. 5B is a view EE in FIG. 5A.
5C is a cross-sectional view taken along the line FF of FIG. 5A, and FIG. 5D is a cross-sectional view taken along the line GG of FIG. 5C.

【符号の説明】[Explanation of symbols]

1,1’,01 内筒 2,02 外筒 3,03 計測部 31 前方計測部 32 後方計測部 04 スティング 5 ナット 6,06 受感部 7 スリット 8,08 受感部素子 9 テーパ部 10,010 天秤中心 011 (スティングの)孔 20 供試体 21 (供試体の)開孔 30,30’ 風洞用天秤 1, 1 ', 01 Inner cylinder 2,02 Outer cylinder 3,03 Measuring part 31 Front measuring part 32 Rear measuring part 04 Sting 5 Nut 6,06 Sensing part 7 Slit 8,08 Sensing part element 9 Tapered part 10, 010 Balance center 011 (Sting's) hole 20 Specimen 21 (Specimen's) open hole 30,30 'Wind tunnel balance

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 風洞試験を行う供試体に設けられた開孔
に嵌挿され、前記供試体と一体化される外筒、前記供試
体を風洞内で支持するスティングの先端部に設けられた
開孔に嵌挿され、前記スティングと一体化される内筒、
および前記外筒と前記内筒との間に介装され、前記供試
体に作用する空気力で変形して、前記供試体の空力荷重
を検知する受感部素子が、X軸方向に1列配設された計
測部からなる風洞用天秤において、前記計測部が天秤中
心から前後方向に離隔されて、複数個設けられているこ
とを特徴とする風洞用天秤。
1. An outer cylinder fitted into an opening provided in a specimen to be subjected to a wind tunnel test and integrated with the specimen, and provided at a tip of a sting for supporting the specimen in the wind tunnel. An inner cylinder fitted into the opening and integrated with the sting,
Also, the sensing element, which is interposed between the outer cylinder and the inner cylinder and is deformed by the aerodynamic force acting on the sample to detect the aerodynamic load of the sample, has one row in the X-axis direction. A wind tunnel balance comprising a measurement unit provided, wherein a plurality of the measurement units are provided apart from the center of the balance in the front-back direction.
JP22019595A 1995-08-29 1995-08-29 Balance for wind tunnel Withdrawn JPH0961288A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22019595A JPH0961288A (en) 1995-08-29 1995-08-29 Balance for wind tunnel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22019595A JPH0961288A (en) 1995-08-29 1995-08-29 Balance for wind tunnel

Publications (1)

Publication Number Publication Date
JPH0961288A true JPH0961288A (en) 1997-03-07

Family

ID=16747384

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22019595A Withdrawn JPH0961288A (en) 1995-08-29 1995-08-29 Balance for wind tunnel

Country Status (1)

Country Link
JP (1) JPH0961288A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101865759A (en) * 2010-06-02 2010-10-20 中国航天空气动力技术研究院 Device for hypersonic rolling dynamic test
CN103616154A (en) * 2013-11-29 2014-03-05 北京航空航天大学 Vacuum plume aerodynamic force measuring system and method
CN104458201A (en) * 2014-12-12 2015-03-25 中国航天空气动力技术研究院 Stage separation wind tunnel free flight test device
CN114323546A (en) * 2022-03-07 2022-04-12 中国空气动力研究与发展中心高速空气动力研究所 High-sensitivity rod-type six-component wind tunnel test balance inlaid with different materials
CN115931280A (en) * 2023-03-09 2023-04-07 中国空气动力研究与发展中心低速空气动力研究所 Hinge moment wind tunnel test balance dynamic load real-time monitoring and early warning method and system

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101865759A (en) * 2010-06-02 2010-10-20 中国航天空气动力技术研究院 Device for hypersonic rolling dynamic test
CN103616154A (en) * 2013-11-29 2014-03-05 北京航空航天大学 Vacuum plume aerodynamic force measuring system and method
CN104458201A (en) * 2014-12-12 2015-03-25 中国航天空气动力技术研究院 Stage separation wind tunnel free flight test device
CN114323546A (en) * 2022-03-07 2022-04-12 中国空气动力研究与发展中心高速空气动力研究所 High-sensitivity rod-type six-component wind tunnel test balance inlaid with different materials
CN115931280A (en) * 2023-03-09 2023-04-07 中国空气动力研究与发展中心低速空气动力研究所 Hinge moment wind tunnel test balance dynamic load real-time monitoring and early warning method and system
CN115931280B (en) * 2023-03-09 2023-05-09 中国空气动力研究与发展中心低速空气动力研究所 Real-time monitoring and early warning method and system for astronomical translation dynamic load of hinge moment wind tunnel test

Similar Documents

Publication Publication Date Title
US5663497A (en) Six component wind tunnel balance
CN105588669B (en) Axle pin type three-way force cell sensor
KR101335432B1 (en) Force-torque sensor, force-torque sensor frame and force-torque measuring method
US6250863B1 (en) Washer having stressed and unstressed strain gauges
EP1707934B1 (en) Six-axis force sensor
US7788984B2 (en) Platform balance
CN108195554B (en) Six-component optical fiber aerodynamic force measurement balance and output signal combination method
US5201218A (en) Flexure two shell with separate axial, six component balance
CN108254153B (en) Temperature compensation method for optical fiber aerodynamic force measurement balance
CA1311626C (en) Monopiece strain gauge sting mounted wind tunnel balance
CN108507753B (en) Output signal combination method of three-component optical fiber balance
JPH02163627A (en) Measuring instrument
CN105973455A (en) Combined piezoelectric strain vibration measurement device
JP2699096B2 (en) measuring device
JPH0961288A (en) Balance for wind tunnel
JPS6095331A (en) Force and moment sensor
JP2013032916A (en) Multi-axial force detector
US6536292B1 (en) Triaxial force pin sensor array
JPH05149811A (en) Axial force sensor for six components
JP2007513353A (en) Platform scale
EP3295141B1 (en) Multi axis load cell body
US10330545B2 (en) Transducer sensor body
KR20080016995A (en) Platform balance
JPH09236498A (en) Load detector
JPH04305139A (en) Balance apparatus for wind tunnel test

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20021105