JPH0961143A - Displacement detection apparatus - Google Patents

Displacement detection apparatus

Info

Publication number
JPH0961143A
JPH0961143A JP23605695A JP23605695A JPH0961143A JP H0961143 A JPH0961143 A JP H0961143A JP 23605695 A JP23605695 A JP 23605695A JP 23605695 A JP23605695 A JP 23605695A JP H0961143 A JPH0961143 A JP H0961143A
Authority
JP
Japan
Prior art keywords
permanent magnet
receiver
torsional elastic
elastic wave
magnetostrictive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP23605695A
Other languages
Japanese (ja)
Inventor
Kozo Kyoizumi
宏三 京和泉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SAN TESUTO KK
Original Assignee
SAN TESUTO KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SAN TESUTO KK filed Critical SAN TESUTO KK
Priority to JP23605695A priority Critical patent/JPH0961143A/en
Publication of JPH0961143A publication Critical patent/JPH0961143A/en
Pending legal-status Critical Current

Links

Landscapes

  • Length Measuring Devices Characterised By Use Of Acoustic Means (AREA)
  • Transmission And Conversion Of Sensor Element Output (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a displacement detection apparatus whose resolution is high and whose accuracy is high. SOLUTION: Current pulses are made to flow from the side of the starting end part of a magnetostrictive wire 1 to its axial-line direction. Torsional elastic waves are generated in the part of the magnetostrictive wire 1 to which a permanent magnet 12 movable along the magnetostrictive wire 1 is brought close. The torsional elastic waves are received by a receiver 10 which is arranged on the side of the starting end part of the magnetostrictive wire 1. Thereby, a mechanical displacement which is given to the permanent magnet 12 is detected. A reflection member 9 which reflects the torsional elastic waves is installed in a specific position on the side of the termination part of the magnetostrictive wire 1. The receiver 10 receives first torsional elastic waves which are generated by the permanent magnet 12 so as to reach the receiver 10 as they are and second torsional elastic waves which are generated by the permanent magnet 12 and which are reflected by the reflection member 9 so as to reach the receiver 10. A detection circuit 14 detects the mechanical displacement, given to the permanent magnet 12, on the basis of the difference in the arrival time between the first torsional elastic waves and the second torsional elastic waves.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は磁歪現象を用いて物
体の機械的変位や液面の変位などを検出する変位検出装
置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a displacement detecting device for detecting a mechanical displacement of an object or a displacement of a liquid surface by using a magnetostriction phenomenon.

【0002】[0002]

【従来の技術】従来、変位検出装置として、図1に示す
ように、磁歪線50にパルス発生回路51から電流パル
スを流すことにより、磁歪線50に沿って移動可能な永
久磁石52の近接する磁歪線の部位で捩り弾性波(超音
波)を発生させ、磁歪線50の始端側に設けた受信器5
3までの捩り弾性波の伝播時間を計測することにより、
永久磁石52に与えられる機械的変位を検出するものが
知られている(特開昭61−112923号公報)。磁
歪線50の両端部は、捩り弾性波の反射を抑制するゴム
等のダンピング材54,55で保持されている。
2. Description of the Related Art Conventionally, as a displacement detection device, as shown in FIG. 1, a permanent magnet 52 movable along a magnetostrictive line 50 is brought close to a magnetostrictive line 50 by passing a current pulse from a pulse generating circuit 51. A receiver 5 provided on the starting end side of the magnetostrictive line 50 by generating a torsional elastic wave (ultrasonic wave) at the site of the magnetostrictive line.
By measuring the propagation time of the torsional elastic wave up to 3,
A device that detects a mechanical displacement applied to the permanent magnet 52 is known (Japanese Patent Laid-Open No. 61-112923). Both ends of the magnetostrictive wire 50 are held by damping materials 54 and 55 such as rubber that suppress reflection of torsional elastic waves.

【0003】図2は変位を検出する方法を示す波形図で
ある。Aは電流パルス、Bは受信器4で受信された波
形、Cは波形Bを成形した波形である。電流パルスAの
供給から波形Cの到達までの時間tを計測すれば、次式
により、永久磁石52に与えられる変位xを計測でき
る。 x=v・t なお、vは捩り弾性波の伝播速度である。
FIG. 2 is a waveform diagram showing a method for detecting displacement. A is a current pulse, B is a waveform received by the receiver 4, and C is a waveform obtained by shaping the waveform B. If the time t from the supply of the current pulse A to the arrival of the waveform C is measured, the displacement x given to the permanent magnet 52 can be measured by the following equation. x = v · t Note that v is the propagation velocity of the torsional elastic wave.

【0004】時間tの計測方法としては種々の方法があ
るが、例えば図2のDのように、水晶発振器から電流パ
ルスAの供給によってスタートするクロックを発生さ
せ、波形Cの到達によってクロックをセットすれば、時
間tをデジタル信号として検出できる。
There are various methods for measuring the time t. For example, as shown in D of FIG. 2, a clock that starts by supplying a current pulse A from a crystal oscillator is generated, and a clock is set when the waveform C arrives. Then, the time t can be detected as a digital signal.

【0005】[0005]

【発明が解決しようとする課題】周知のように、捩り弾
性波の伝播速度は、磁歪線の材質によっても多少異なる
が、約2.75mm/μsecである。ここで、永久磁
石52で発生した捩り弾性波が受信器53に到達するま
での伝播時間を、50MHzの水晶発振器で計測する
と、1クロックは 1/(50×106 )=0.02μsec であるから、1クロックで検出できる分解能は、 2.75mm/μsec×0.02μsec=0.05
5mm となり、高精度の変位検出には十分とは言えない。この
分解能を上げるには、水晶発振器の周波数を高くする方
法があるが、技術的, 経済的に困難を生じる。
As is well known, the propagation velocity of a torsional elastic wave is about 2.75 mm / μsec, although it varies somewhat depending on the material of the magnetostrictive wire. Here, when the propagation time until the torsional elastic wave generated in the permanent magnet 52 reaches the receiver 53 is measured by a 50 MHz crystal oscillator, one clock is 1 / (50 × 10 6 ) = 0.02 μsec. Therefore, the resolution that can be detected in one clock is 2.75 mm / μsec × 0.02 μsec = 0.05.
It is 5 mm, which is not sufficient for highly accurate displacement detection. To increase this resolution, there is a method to raise the frequency of the crystal oscillator, but this causes technical and economic difficulties.

【0006】また、上記のような変位検出装置をガソリ
ンの液面計測に用いる場合には、検出装置を防爆構造
(例えば本質安全防爆構造などが最適)にする必要があ
る。そのためには、検出装置の電気回路の消費電流を少
なくする必要があり、水晶発振器の発振周波数をできる
だけ低くしたい。しかしながら、水晶発振器の発振周波
数を低くすれば、それだけ分解能が低下するので、発振
周波数を低くできなかった。
Further, when the displacement detecting device as described above is used for measuring the liquid level of gasoline, the detecting device needs to have an explosion-proof structure (for example, an intrinsically safe explosion-proof structure is optimal). For that purpose, it is necessary to reduce the current consumption of the electric circuit of the detection device, and it is desired to lower the oscillation frequency of the crystal oscillator as much as possible. However, the lower the oscillation frequency of the crystal oscillator, the lower the resolution, and therefore the oscillation frequency cannot be lowered.

【0007】そこで、本発明の目的は、従前の変位検出
装置に比べて、構造を変更せずに分解能を格段に高める
ことができる変位検出装置を提供することにある。ま
た、他の目的は、発振器を用いて伝播時間を計測する場
合に、その発振周波数を高くせずに分解能を高めること
ができ、かつ消費電流を少なくできる変位検出装置を提
供することにある。さらに他の目的は、液面と計測結果
とが一対一に対応でき、計測回路を簡素化できる液面検
出に適した変位検出装置を提供することにある。
Therefore, an object of the present invention is to provide a displacement detecting device capable of remarkably increasing the resolution without changing the structure, as compared with the conventional displacement detecting device. Another object of the present invention is to provide a displacement detection device capable of increasing the resolution without increasing the oscillation frequency and reducing the current consumption when measuring the propagation time using an oscillator. Still another object is to provide a displacement detection device suitable for liquid level detection, in which the liquid level and the measurement result can correspond one-to-one and the measurement circuit can be simplified.

【0008】[0008]

【課題を解決するための手段】上記目的を達成するため
に、本発明は、磁歪線の始端部側よりその軸線方向に電
流パルスを流し、磁歪線に沿って移動可能な永久磁石の
近接する磁歪線の部位で捩り弾性波を発生させ、磁歪線
の始端部側に配置した受信器で捩り弾性波を受信するこ
とにより、永久磁石に与えられる機械的変位を検出する
装置において、上記磁歪線の終端部側の特定位置に捩り
弾性波を反射する反射部材を設け、上記受信器は、永久
磁石で発生し、そのまま受信器に到達した第1の捩り弾
性波と、永久磁石で発生し、反射部材で反射した後、受
信器に到達した第2の捩り弾性波とを受信し、第1の捩
り弾性波と第2の捩り弾性波との到達時間差から、永久
磁石に与えられる機械的変位を検出する検出回路を設け
たものである。上記変位検出装置において、永久磁石と
して、軸方向の両側面に異極を着磁した軸方向着磁磁石
を用いるのが望ましい。また、磁歪線にそって個別に移
動可能な複数の永久磁石を設けてもよい。
In order to achieve the above object, the present invention provides a current pulse in the axial direction from the starting end side of a magnetostrictive wire to bring a permanent magnet movable along the magnetostrictive wire into proximity. A device for detecting a mechanical displacement applied to a permanent magnet by generating a torsional elastic wave at a site of a magnetostrictive line and receiving the torsional elastic wave by a receiver arranged on the starting end side of the magnetostrictive line, A reflecting member that reflects a torsional elastic wave is provided at a specific position on the terminal end side of the receiver, and the receiver generates the first torsional elastic wave generated by the permanent magnet and reaches the receiver as it is, and the permanent magnet generates the permanent elastic magnet. The second torsional elastic wave that has reached the receiver after being reflected by the reflecting member is received, and the mechanical displacement given to the permanent magnet is obtained from the arrival time difference between the first torsional elastic wave and the second torsional elastic wave. Is provided with a detection circuit for detecting. In the above displacement detecting device, it is desirable to use, as the permanent magnet, an axially magnetized magnet having opposite poles magnetized on both side surfaces in the axial direction. Moreover, you may provide the some permanent magnet which can be moved individually along a magnetostriction line.

【0009】磁歪線の永久磁石の近接する部位で発生し
た捩り弾性波(超音波) は受信器側(始端側) へ伝播す
ると同時に、その反対側(終端側) へも伝播する。始端
側へ伝播した超音波は受信器で受信され、終端側へ伝播
した超音波は反射部材で反射した後、磁歪線を始端側へ
伝播して受信器で受信される。これら2つの捩り弾性波
の到達時間差は永久磁石と反射部材との距離の2倍に比
例する。したがって、この時間差を検出すれば、従来の
ように第1の捩り弾性波のみの到達時間を検出する場合
に比べて、分解能は1/2倍となり、格段に検出精度が
向上する。
The torsional elastic wave (ultrasonic wave) generated in the portion of the magnetostrictive wire near the permanent magnet propagates to the receiver side (start end side) and at the same time to the opposite side (end side). The ultrasonic wave propagating to the starting end side is received by the receiver, and the ultrasonic wave propagating to the terminal end side is reflected by the reflecting member, then propagates the magnetostrictive line to the starting end side and is received by the receiver. The arrival time difference between these two torsional elastic waves is proportional to twice the distance between the permanent magnet and the reflecting member. Therefore, if this time difference is detected, the resolution is halved and the detection accuracy is remarkably improved, as compared with the case where the arrival time of only the first torsion elastic wave is detected as in the conventional case.

【0010】従来の場合は、磁歪線の始端側に配置した
受信器から永久磁石までの距離を計測していたので、変
位検出装置の終端側を液中に浸漬すれば、液面が高い時
には短い時間を計測し、液面が低い時には長い時間を計
測するというように、液面と計測結果とが逆になり、減
算処理など余計な回路が必要であった。これに対し、本
発明の場合、磁歪線の終端側に配置した反射部材から永
久磁石までの距離の2倍を検出しているので、液面が高
い時には長い時間を計測し、液面が低い時には短い時間
を計測することになる。つまり、液面と計測結果とが一
対一に対応し、減算処理回路などが不要となり、回路が
簡素化される。
In the conventional case, since the distance from the receiver arranged on the starting end side of the magnetostrictive line to the permanent magnet is measured, if the terminal end side of the displacement detecting device is immersed in the liquid, when the liquid surface is high. The liquid level and the measurement result are reversed, such as measuring a short time and measuring a long time when the liquid level is low, and an extra circuit such as subtraction processing is required. On the other hand, in the case of the present invention, twice the distance from the reflecting member arranged on the terminal side of the magnetostrictive line to the permanent magnet is detected, so that when the liquid level is high, a long time is measured and the liquid level is low. Sometimes it will be a short time. That is, the liquid level and the measurement result have a one-to-one correspondence, and a subtraction processing circuit or the like is unnecessary, and the circuit is simplified.

【0011】永久磁石として軸方向着磁磁石を用いた場
合には、永久磁石の部位から磁歪線の始端側へ伝播した
第1の捩り弾性波と終端側へ伝播した第2の捩り弾性波
とは位相が互いに逆転しているが、第2の捩り弾性波が
反射部材で反射した時に再度位相が逆転するので、受信
器で検出される2つの波形は同相となる。そのため、各
波形をトリガーし易くなり、誤検出の虞が少なくなる。
When an axially magnetized magnet is used as the permanent magnet, the first torsional elastic wave propagated from the permanent magnet portion to the beginning side of the magnetostrictive line and the second torsional elastic wave propagated to the terminal side. Have mutually reversed phases, but when the second torsional elastic wave is reflected by the reflecting member, the phases are reversed again, so that the two waveforms detected by the receiver have the same phase. Therefore, each waveform is easily triggered, and the risk of false detection is reduced.

【0012】タンク内のガソリンの液面を検出する場
合、タンクの底には水が溜まっている場合がある。ガソ
リンの液面を正確に検出するには、水の液面とガソリン
の液面の両方を検出する必要がある。このような場合、
磁歪線にそって個別に移動可能な永久磁石を複数個設け
れば、その1つで水面を検出し、他方でガソリン面を検
出することが可能である。
When detecting the liquid level of gasoline in the tank, water may be accumulated at the bottom of the tank. In order to accurately detect the liquid level of gasoline, it is necessary to detect both the liquid level of water and the liquid level of gasoline. In such a case,
If a plurality of permanent magnets that can be individually moved along the magnetostrictive line are provided, it is possible to detect the water surface with one of them and the gasoline surface with the other.

【0013】反射部材としては、磁歪線を伝播する捩り
弾性波をできるだけ全反射させるため、例えば金属材料
を磁歪線に固着するのが望ましい。固着方法としては、
圧着、半田付け、ロー付、溶接、ネジ止めなど、あらゆ
る方法を用いることができる。反射部材として半田を用
いた場合、捩り弾性波を全反射させやすいこと、磁歪線
に歪みが生じないので不要な超音波が発生しにくいこ
と、半田溶融温度(約190 ℃)が磁歪線の再結晶温度よ
り低いので、磁歪効果を劣化させないこと等の利点があ
る。
As the reflecting member, for example, a metal material is preferably fixed to the magnetostrictive line in order to totally reflect the torsional elastic wave propagating through the magnetostrictive line. As a fixing method,
Any method such as crimping, soldering, brazing, welding, and screwing can be used. When solder is used as the reflection member, it is easy to totally reflect the torsional elastic wave, the distortion is not generated in the magnetostrictive wire, and unnecessary ultrasonic waves are not easily generated. The solder melting temperature (about 190 ° C) is Since the temperature is lower than the crystal temperature, there is an advantage that the magnetostriction effect is not deteriorated.

【0014】永久磁石の部位で発生した超音波信号が受
信器で受信された後、磁歪線の始端部で反射して再び受
信器で受信されると、反射部材で反射した超音波信号と
混同する恐れがある。そのため、磁歪線の始端側、特に
受信器の背後にゴムなどのダンピング材を設け、不要な
波形を吸収するのが望ましい。
After the ultrasonic signal generated at the permanent magnet portion is received by the receiver and then reflected at the beginning of the magnetostrictive line and received again by the receiver, it is confused with the ultrasonic signal reflected by the reflecting member. There is a risk of For this reason, it is desirable to provide a damping material such as rubber on the starting end side of the magnetostrictive wire, especially behind the receiver to absorb unnecessary waveforms.

【0015】[0015]

【発明の実施の形態】図3は本発明にかかる磁歪式変位
検出装置の一例を示し、図4は受信器で受信された波形
を示す。磁歪線1の始端は、基台2上に固定された押板
3と支持板4との間に、シリコーンゴムなどのダンピン
グ材5,6を介して圧着されている。ダンピング材5,
6は超音波(捩り弾性波)を吸収し、始端からの超音波
の反射を抑制している。また、ダンピング材5,6を絶
縁材料で構成すれば、磁歪線1の始端側に供給される電
流パルスが他の部位へ流れるのを防止でき、全ての電流
を磁歪線1に効果的に流すことができる。磁歪線1の終
端はスプリング7を介して終端固定具8によって支持さ
れ、磁歪線1には常に一定の張力が与えられる。スプリ
ング7の直前、即ち磁歪線1のスプリング7より始端側
の部位には、超音波を反射させる反射部材9が固着され
ている。固着方法は、半田、クランプ、溶接など如何な
る方法でもよい。磁歪線1を終端側へ伝播した超音波は
反射部材9で殆ど全反射するため、スプリング7側へは
超音波が殆ど伝播しない。
DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 3 shows an example of a magnetostrictive displacement detecting device according to the present invention, and FIG. 4 shows a waveform received by a receiver. The starting end of the magnetostrictive wire 1 is pressure-bonded between the pressing plate 3 fixed on the base 2 and the support plate 4 via damping materials 5 and 6 such as silicone rubber. Damping material 5,
Reference numeral 6 absorbs ultrasonic waves (torsional elastic waves) and suppresses reflection of ultrasonic waves from the start end. Further, if the damping materials 5 and 6 are made of an insulating material, the current pulse supplied to the starting end side of the magnetostrictive wire 1 can be prevented from flowing to other parts, and all the current can be effectively passed through the magnetostrictive wire 1. be able to. The end of the magnetostrictive wire 1 is supported by the end fixture 8 via the spring 7, and a constant tension is always applied to the magnetostrictive wire 1. A reflecting member 9 that reflects ultrasonic waves is fixed immediately before the spring 7, that is, at the portion of the magnetostrictive wire 1 that is closer to the starting end than the spring 7. The fixing method may be any method such as soldering, clamping, and welding. The ultrasonic waves propagated through the magnetostrictive line 1 to the terminal side are almost totally reflected by the reflecting member 9, so that the ultrasonic waves hardly propagate to the spring 7 side.

【0016】磁歪線1の始端部、特にダンピング材5,
6より終端部側の近傍には、受信器10が配置されてお
り、受信器10に内蔵したコイル10aの中心部を磁歪
線1が非接触で貫通している。コイル10aは逆磁歪効
果を利用して磁歪線1を伝播する超音波の到来を検出す
る。コイル10aの負極は接地され、正極は増幅器11
に接続される。なお、受信器10としては、コイル10
aに限るものではなく、例えば触子を磁歪線に対してほ
ぼ直交して接触させ、捩り弾性波を触子の軸方向力に変
換し、触子の端部に取り付けた圧電素子やコイル等で捩
り弾性波の到来を検出するものであってもよい。
The starting end of the magnetostrictive wire 1, especially the damping material 5,
A receiver 10 is arranged in the vicinity of the end portion side of 6 and a magnetostrictive wire 1 penetrates the central portion of a coil 10a incorporated in the receiver 10 in a non-contact manner. The coil 10a detects the arrival of ultrasonic waves propagating through the magnetostrictive line 1 by utilizing the inverse magnetostrictive effect. The negative electrode of the coil 10a is grounded, and the positive electrode is the amplifier 11
Connected to. The receiver 10 is the coil 10
It is not limited to “a”, but for example, a piezoelectric element or a coil attached to the end portion of the contactor by contacting the contactor substantially perpendicular to the magnetostrictive line to convert the torsional elastic wave into an axial force of the contactor Alternatively, the arrival of the torsional elastic wave may be detected.

【0017】磁歪線1の中間部には円環状の永久磁石1
2が軸線方向に移動自在に挿通されている。この実施例
では、永久磁石12の両側面にN,S極を着磁した軸方
向着磁磁石を用いている。
An annular permanent magnet 1 is provided in the middle of the magnetostrictive wire 1.
2 is inserted movably in the axial direction. In this embodiment, axially magnetized magnets having N and S poles magnetized on both sides of the permanent magnet 12 are used.

【0018】ダンピング材5,6から突出した磁歪線1
の始端にはパルス発生回路13から電流パルスが供給さ
れ、磁歪線1の終端はアースされている。具体的には、
電流パルスはスプリング7を介してパルス発生回路13
のアース側に戻される。電流パルスが供給されると、ビ
ーデマン効果により永久磁石12の近接する磁歪線1の
部位で超音波(捩り弾性波)が発生し、この超音波は磁
歪線1の始端側と終端側とに同時に伝播する。始端側へ
伝播した第1超音波は受信器10で受信され、終端側へ
伝播した超音波は反射部材9で反射した後、永久磁石1
2の近接する部位を通過し、受信器10で受信される。
永久磁石12として軸方向着磁磁石を用いた場合、永久
磁石12の部位から磁歪線1の始端側へ伝播した第1超
音波と終端側へ伝播した第2超音波の位相は互いに逆転
しているが、第2超音波が反射部材9で反射した時に再
度位相が逆転するので、受信器10で検出される2つの
波形は図4のように同相となる。そのため、各波形のト
リガーが非常に容易となる。
Magnetostrictive wire 1 protruding from the damping materials 5 and 6
A current pulse is supplied from the pulse generation circuit 13 to the start end of the magnetoresistive wire 1, and the end of the magnetostrictive wire 1 is grounded. In particular,
The current pulse is transmitted through the spring 7 to the pulse generation circuit 13
Returned to the ground side of. When a current pulse is supplied, an ultrasonic wave (torsional elastic wave) is generated at a portion of the magnetostrictive line 1 in the vicinity of the permanent magnet 12 due to the Biedemann effect, and the ultrasonic wave is simultaneously generated on the start end side and the end side of the magnetostrictive line 1. Propagate. The first ultrasonic wave propagating to the start side is received by the receiver 10, and the ultrasonic wave propagating to the end side is reflected by the reflecting member 9 and then the permanent magnet 1
It passes through two adjacent parts and is received by the receiver 10.
When an axially magnetized magnet is used as the permanent magnet 12, the phases of the first ultrasonic wave propagating from the part of the permanent magnet 12 to the starting end side of the magnetostrictive wire 1 and the second ultrasonic wave propagating to the terminal end side are mutually reversed. However, since the phase is inverted again when the second ultrasonic wave is reflected by the reflecting member 9, the two waveforms detected by the receiver 10 have the same phase as shown in FIG. Therefore, it becomes very easy to trigger each waveform.

【0019】図4において、波形pは電流パルス、波形
nは電流パルス印加時の電磁的ノイズ、波形aは永久磁
石12で発生した第1超音波信号、bは反射部材9で反
射した第2超音波信号である。信号a,bの伝播時間T
a ,Tb の測定点は、図4では所定電位Vでトリガーし
ているが、波形のゼロクロス点あるいは波形の頂点で測
定してもよい。いずれにしても、各波形の定点で波形の
到着を検出すればよく、公知の方法で時間Ta ,Tb
測定できる。
In FIG. 4, a waveform p is a current pulse, a waveform n is electromagnetic noise when a current pulse is applied, a waveform a is a first ultrasonic signal generated by the permanent magnet 12, and b is a second ultrasonic signal reflected by the reflecting member 9. It is an ultrasonic signal. Propagation time T of signals a and b
Although the measurement points of a and T b are triggered by the predetermined potential V in FIG. 4, they may be measured at the zero cross point of the waveform or the apex of the waveform. In any case, the arrival of the waveform may be detected at the fixed point of each waveform, and the times T a and T b can be measured by a known method.

【0020】増幅器11の出力は検出回路14に入力さ
れ、検出回路14は入力された信号を波形成形するとと
もに、伝播時間差ΔT(=Tb −Ta )を求め、永久磁
石12に与えられる機械的変位xを検出する。また、検
出回路14は、一定時間毎に電流パルスを発生するよ
う、パルス発生回路13を駆動する機能を有していても
よい。
The output of the amplifier 11 is input to the detection circuit 14, which detects the propagation time difference ΔT (= T b −T a ) while waveform-shaping the input signal, and applies it to the permanent magnet 12. The dynamic displacement x is detected. Further, the detection circuit 14 may have a function of driving the pulse generation circuit 13 so as to generate a current pulse at regular time intervals.

【0021】次に、永久磁石12に与えられる機械的変
位xを求める方法を説明する。まず、反射部材9と永久
磁石12との距離をx、受信器10と反射部材9との距
離をL(一定)、永久磁石12で発生した第1超音波a
の到達時間をTa 、反射部材9で反射した第2超音波b
の到達時間をTb 、超音波の伝播速度をvとすると、到
達時間Ta ,Tb は次式で与えられる。 Ta =(L−x)/v Tb =(L+x)/v 到達時間Tb とTa の差を求めると、 ΔT=Tb −Ta =2x/v となる。超音波の伝播速度vは既知であるから、 x=v(Tb −Ta )/2 のようにして、変位xを求めることができる。
Next, a method for obtaining the mechanical displacement x given to the permanent magnet 12 will be described. First, the distance between the reflecting member 9 and the permanent magnet 12 is x, the distance between the receiver 10 and the reflecting member 9 is L (constant), and the first ultrasonic wave a generated by the permanent magnet 12 is generated.
Arrival time of T a is the second ultrasonic wave b reflected by the reflecting member 9.
Of the arrival time T b, when the propagation speed of the ultrasonic v, the arrival time T a, T b is given by the following equation. T a = (L−x) / v T b = (L + x) / v When the difference between the arrival times T b and T a is calculated, ΔT = T b −T a = 2x / v. Propagation velocity v of the ultrasonic wave because it is known, as x = v (T b -T a ) / 2, it is possible to obtain the displacement x.

【0022】ところで、永久磁石12が始端側へ若干移
動すると、その検出波形は図4の破線で示すようにな
る。つまり、第1超音波aの到達時間Ta はΔtだけ短
くなり、第2超音波bの到達時間Tb はΔtだけ長くな
る。そのため、到達時間差ΔTを計測すれば、2×Δt
が時間差となって測定できることになる。したがって、
従前と同等な発振周波数の水晶発振器を用いても、分解
能が1/2、即ち0.0275mmとなり、高精度な変
位検出が可能となる。
By the way, when the permanent magnet 12 is slightly moved to the starting end side, the detected waveform becomes as shown by the broken line in FIG. That is, the arrival time T a of the first ultrasound a is shortened by Delta] t, the arrival time T b of second ultrasound b is longer by Delta] t. Therefore, if the arrival time difference ΔT is measured, 2 × Δt
Will be a time difference and can be measured. Therefore,
Even if a crystal oscillator having the same oscillation frequency as before is used, the resolution becomes 1/2, that is, 0.0275 mm, and the displacement can be detected with high accuracy.

【0023】図5は本発明の第2実施例を示す。20は
例えば恒弾性金属よりなる磁歪線で、銅,黄銅あるいは
アルミニウムなどの非磁性でかつ導電性の金属パイプよ
りなる中筒21の中心部に挿通され、中筒21の右端で
反射部材である終端固定具22によって固定されてい
る。終端固定具22は超音波(捩り弾性波)を全反射さ
せるものであればよい。磁歪線20の始端部は受信器で
ある検出コイル23の中心部を貫通しており、検出コイ
ル23は逆磁歪効果を利用して磁歪線20を伝播する超
音波の到来を検出する。検出コイル23を貫通した磁歪
線20の始端部は、シリコーンゴムなどのダンピング材
24を経てばね受けを兼ねる始端固定具25に接続され
ている。ダンピング材24によって超音波が吸収され、
始端固定具25からの超音波の反射が抑制される。検出
コイル23と始端固定具25との間にはスプリング26
が配置され、周囲温度の変化による磁歪線20の伸縮を
吸収している。磁歪線20の中間部には、軸方向に適当
間隔でゴム等からなる支持部材27が設けられ、機械的
振動によって磁歪線20と中筒21の内壁とが接触する
のを防止している。
FIG. 5 shows a second embodiment of the present invention. Reference numeral 20 denotes a magnetostrictive wire made of, for example, a constant elastic metal, which is inserted through the center portion of a middle cylinder 21 made of a non-magnetic and conductive metal pipe such as copper, brass or aluminum, and a reflecting member at the right end of the middle cylinder 21. It is fixed by a terminal fixing tool 22. The terminal fixture 22 may be any device that totally reflects ultrasonic waves (torsional elastic waves). The starting end of the magnetostrictive wire 20 penetrates through the center of the detection coil 23 that is a receiver, and the detection coil 23 detects the arrival of ultrasonic waves propagating through the magnetostrictive wire 20 by utilizing the inverse magnetostrictive effect. A starting end portion of the magnetostrictive wire 20 penetrating the detection coil 23 is connected to a starting end fixture 25 that also serves as a spring receiver via a damping material 24 such as silicone rubber. Ultrasonic waves are absorbed by the damping material 24,
The reflection of ultrasonic waves from the starting end fixture 25 is suppressed. A spring 26 is provided between the detection coil 23 and the starting end fixture 25.
Are arranged to absorb expansion and contraction of the magnetostrictive wire 20 due to changes in ambient temperature. A support member 27 made of rubber or the like is provided at an intermediate portion of the magnetostrictive wire 20 at an appropriate interval in the axial direction to prevent the magnetostrictive wire 20 and the inner wall of the middle cylinder 21 from coming into contact with each other due to mechanical vibration.

【0024】外筒30は非磁性体よりなる金属パイプよ
りなり、中筒21の外周を非接触状態で取り囲んでい
る。外筒30の終端側は閉じられ、始端側にはヘッドハ
ウジング31が一体的に設けられている。上記検出コイ
ル23、ダンピング材24、始端固定具25およびスプ
リング26などの部品は、このヘッドハウジング31内
に収容されている。
The outer cylinder 30 is made of a metal pipe made of a non-magnetic material, and surrounds the outer circumference of the middle cylinder 21 in a non-contact state. The end side of the outer cylinder 30 is closed, and the head housing 31 is integrally provided on the start end side. Components such as the detection coil 23, the damping material 24, the starting end fixture 25, and the spring 26 are housed in the head housing 31.

【0025】中筒21と外筒30の間の環状空間には、
中筒21を外筒30の中心部に保持し、かつ内筒21と
外筒30とを電気的に絶縁させる絶縁チューブ32が配
置されている。
In the annular space between the middle cylinder 21 and the outer cylinder 30,
An insulating tube 32 that holds the middle cylinder 21 at the center of the outer cylinder 30 and electrically insulates the inner cylinder 21 and the outer cylinder 30 from each other is arranged.

【0026】外筒30の外周には、第1と第2の永久磁
石33,34がそれぞれ個別に軸方向移動自在に挿通さ
れている。この実施例の永久磁石33,34も、両側面
にN,S極を着磁した軸方向着磁の円環状磁石である。
First and second permanent magnets 33 and 34 are individually inserted through the outer periphery of the outer cylinder 30 so as to be movable in the axial direction. The permanent magnets 33, 34 of this embodiment are also annular magnets that are magnetized in the axial direction and have N and S poles magnetized on both sides.

【0027】電流パルスPはパルス発生回路35から始
端固定具25を介して磁歪線20に供給される。検出コ
イル23の出力信号は増幅器36に送られ、増幅器36
の出力信号Bはコンパレータなどの波形成形回路37で
波形成形されて最終出力信号Cとなる。なお、図5では
理解を容易にするため、パルス発生回路35、増幅器3
6および波形成形回路37などの回路を外部に配置した
が、ヘッドハウジング31の内部に収納してもよい。
The current pulse P is supplied from the pulse generating circuit 35 to the magnetostrictive wire 20 via the starting end fixture 25. The output signal of the detection coil 23 is sent to the amplifier 36,
Output signal B is waveform-shaped by a waveform-shaping circuit 37 such as a comparator to become a final output signal C. Note that in FIG. 5, in order to facilitate understanding, the pulse generation circuit 35 and the amplifier 3
Although the circuits such as 6 and the waveform shaping circuit 37 are arranged outside, they may be housed inside the head housing 31.

【0028】電流パルスPが磁歪線20に供給される
と、既に述べたように磁歪線20の終端は終端固定具2
2で固定されているので、この終端固定具22を中筒2
1の終端部に電気的に導通させ、中筒21の始端側をパ
ルス発生回路35に接続すれば、磁歪線20に供給され
た電流パルスPをパルス発生回路35へ戻す回路が構成
される。なお、この実施例では中筒21を金属パイプと
したが、プラスチックやセラミックなどの非金属材料で
構成してもよい。この場合には、磁歪線20に供給され
た電流パルスの戻り用リード線を磁歪線20に平行に配
設すればよい。
When the current pulse P is supplied to the magnetostrictive wire 20, the end of the magnetostrictive wire 20 is terminated by the end fixture 2 as described above.
Since it is fixed at 2, the end fixing tool 22 is
A circuit for returning the current pulse P supplied to the magnetostrictive wire 20 to the pulse generating circuit 35 is configured by electrically connecting the terminal end of 1 and connecting the starting end side of the middle cylinder 21 to the pulse generating circuit 35. Although the middle cylinder 21 is a metal pipe in this embodiment, it may be made of a non-metal material such as plastic or ceramic. In this case, the lead wire for returning the current pulse supplied to the magnetostrictive wire 20 may be arranged parallel to the magnetostrictive wire 20.

【0029】図6は図5に示す変位検出装置の検出波形
図である。波形nは電流パルス印加時の電磁的ノイズ、
波形cは第1永久磁石33で発生した第1超音波信号、
dは第2永久磁石34で発生した第2超音波信号、eは
第2永久磁石34で発生した第2超音波が反射部材22
で反射した後、検出コイル23で検出された信号、fは
第1永久磁石33で発生した第1超音波が反射部材22
で反射した後、検出コイル23で検出された信号であ
る。
FIG. 6 is a detection waveform diagram of the displacement detecting device shown in FIG. Waveform n is the electromagnetic noise when a current pulse is applied,
The waveform c is the first ultrasonic signal generated by the first permanent magnet 33,
d is the second ultrasonic wave signal generated by the second permanent magnet 34, and e is the second ultrasonic wave signal generated by the second permanent magnet 34.
The signal detected by the detection coil 23 after being reflected by the first ultrasonic wave generated by the first permanent magnet 33 is f.
It is a signal detected by the detection coil 23 after being reflected by.

【0030】信号c〜fの各伝播時間をTc ,Td ,T
e ,Tf とすると、信号cとfの伝播時間差ΔT1 は第
1永久磁石33と反射部材22との距離x1 の2倍に比
例する。また、信号dとeの伝播時間差ΔT2 は第2永
久磁石34と反射部材22との距離x2 の2倍に比例す
る。これを式で表すと、次のようになる。 ΔT1 =Tf −Tc =2x1 /v ΔT2 =Te −Td =2x2 /v 超音波の伝播速度vは既知であるから、 x1 =v(Tf −Tc )/2 x2 =v(Te −Td )/2 のようにして、変位x1 ,x2 を求めることができる。
この実施例の場合も、第1実施例(図3,図4参照)と
同様に、第1永久磁石33と第2永久磁石34のそれぞ
れの移動量の2倍が時間差として検出できるので、従来
の変位検出に比べて分解能が1/2となる。
The propagation times of the signals c to f are represented by T c , T d , and T
Assuming e and T f , the propagation time difference ΔT 1 between the signals c and f is proportional to twice the distance x 1 between the first permanent magnet 33 and the reflecting member 22. The propagation time difference ΔT 2 between the signals d and e is proportional to twice the distance x 2 between the second permanent magnet 34 and the reflecting member 22. This can be expressed as follows. ΔT 1 = T f −T c = 2x 1 / v ΔT 2 = T e −T d = 2x 2 / v Since the ultrasonic propagation velocity v is known, x 1 = v (T f −T c ) / The displacements x 1 and x 2 can be obtained as in 2 x 2 = v (T e −T d ) / 2.
Also in the case of this embodiment, as in the first embodiment (see FIGS. 3 and 4), twice the amount of movement of each of the first permanent magnet 33 and the second permanent magnet 34 can be detected as a time difference, so The resolution is halved as compared with the displacement detection.

【0031】図7は図5の変位検出装置をガソリンタン
ク内の液面検出に用いた例を示す。40はタンク、41
は第1の浮子、42は第2の浮子であり、これら浮子4
1,42には第1,第2の永久磁石33,34がそれぞ
れ内蔵されている。浮子41,42は、それぞれガソリ
ン43の液面と水44の液面とを検出できるように、そ
の比重が設定されている。外筒30はその終端側が下方
になるように、液体の中に垂直に挿入され、浮子41,
42の変位が検出される。
FIG. 7 shows an example in which the displacement detecting device of FIG. 5 is used to detect the liquid level in a gasoline tank. 40 is a tank, 41
Is a first float, 42 is a second float, and these floats 4
The first and second permanent magnets 33 and 34 are incorporated in the reference numerals 1 and 42, respectively. The floats 41 and 42 are set to have a specific gravity so that the liquid level of the gasoline 43 and the liquid level of the water 44 can be detected. The outer cylinder 30 is vertically inserted into the liquid so that the end side thereof faces downward, and the float 41,
The displacement of 42 is detected.

【0032】ガソリンのような発火性液体の液面を検出
するには、検出装置を防爆構造にする必要があり、その
消費電流を少なくする必要がある。そのため、水晶発振
器の発振周波数を高くできず、検出の分解能が低い。こ
れに対し、本発明では、水晶発振器の発振周波数を高く
せずに分解能を高めることができるので、消費電力が少
なく、防爆構造でかつ高精度の変位検出装置を得ること
が可能となる。
In order to detect the liquid level of an ignitable liquid such as gasoline, the detection device must have an explosion-proof structure and its current consumption must be reduced. Therefore, the oscillation frequency of the crystal oscillator cannot be increased, and the detection resolution is low. On the other hand, according to the present invention, since the resolution can be increased without increasing the oscillation frequency of the crystal oscillator, it is possible to obtain a displacement detection device with low power consumption, an explosion-proof structure, and high accuracy.

【0033】従来のような反射を利用しない変位検出装
置を液面検出に用いると、液面が下がると、超音波の伝
播時間(計測時間)が長くなり、液面の位置と計測時間
との対応関係が逆になり、減算処理などの余計な回路が
必要であった。これに対し、本発明では反射部材22と
永久磁石33,34との距離を測定するので、液面が下
がると伝播時間も短くなり、液面と計測時間とが一対一
に対応し、減算処理などの余計な回路が不要となる。
When a conventional displacement detecting device that does not utilize reflection is used for liquid level detection, the propagation time (measurement time) of ultrasonic waves becomes longer when the liquid level drops, and the position of the liquid level and the measurement time are The correspondence was reversed, and an extra circuit such as subtraction processing was required. On the other hand, in the present invention, since the distance between the reflecting member 22 and the permanent magnets 33 and 34 is measured, the propagation time becomes shorter when the liquid surface drops, and the liquid surface and the measurement time correspond one-to-one. No extra circuit is needed.

【0034】ガソリンタンクの底には水が溜まる場合が
あるが、第2実施例のように複数の永久磁石33,34
の変位を個別に検出するようにすれば、1台の変位検出
装置で、ガソリンと水の液面を同時に検出することも可
能である。なお、永久磁石の個数は2個に限るものでは
なく、隣合う永久磁石同士の近接による干渉を防止でき
れば、永久磁石の個数は限定されない。
Although water may collect at the bottom of the gasoline tank, a plurality of permanent magnets 33, 34 are used as in the second embodiment.
It is also possible to detect the liquid level of gasoline and water at the same time with one displacement detection device by individually detecting the displacements of. The number of permanent magnets is not limited to two, and the number of permanent magnets is not limited as long as it is possible to prevent interference due to the proximity of adjacent permanent magnets.

【0035】なお、上記実施例は本発明の一例に過ぎ
ず、本発明の要旨を逸脱しない範囲で変更可能である。
上記実施例では、水晶発振器などのクロックパルスを用
いて捩り弾性波の到達時間をデジタル信号で計測する場
合について説明したが、これに限らないことは勿論であ
る。例えば、電流パルスの供給によって立ち上がる三角
波状の電圧をスタートさせ、捩り弾性波の到達によって
電圧値をサンプルーホールドすれば、アナログ信号とし
て検出できる。その他、如何なる方法を用いて検出して
もよい。上記実施例では、電流パルスを磁歪線に流し、
この磁歪線を伝播する捩り弾性波を検出するようにした
が、特開昭59−162412号公報に記載のように、
磁歪線をチューブ状とし、この磁歪線の中央に電流パル
スを流すための導線を別に挿通することにより、電流パ
ルスを流す媒体と捩り弾性波が伝播する媒体が異なるよ
うにしてもよい。上記実施例では、永久磁石の両側面に
N,S極を着磁した軸方向着磁磁石を用いたが、内周面
と外周面とにそれぞれN,S極を着磁した径方向着磁磁
石を用いてもよい。ただし、径方向着磁の場合には、軸
方向着磁と異なり、永久磁石から磁歪線の始端側および
終端側へ伝播する超音波の波形が同相であるため、反射
部材で反射した際に波形が逆転し、結局、受信器で検出
される第1超音波と第2超音波の波形が逆相となる。ま
た、永久磁石の形状は円環状に限らず、直方体形、U字
形など如何なる形状でもよい。
The above embodiment is merely an example of the present invention, and can be modified within the scope of the present invention.
In the above embodiment, the case where the arrival time of the torsional elastic wave is measured by a digital signal using a clock pulse of a crystal oscillator or the like has been described, but the invention is not limited to this. For example, if a triangular wave voltage rising by the supply of a current pulse is started and the voltage value is sampled and held by the arrival of the torsional elastic wave, it can be detected as an analog signal. Alternatively, any method may be used for detection. In the above embodiment, a current pulse is passed through the magnetostrictive wire,
The torsional elastic wave propagating through the magnetostrictive line is detected. However, as described in JP-A-59-162412,
The magnetostrictive wire may be formed in a tube shape, and a conducting wire for flowing a current pulse may be separately inserted in the center of the magnetostrictive wire so that the medium through which the current pulse flows and the medium through which the torsional elastic wave propagates may be different. In the above embodiment, the axial magnetized magnets having the N and S poles magnetized on both sides of the permanent magnet are used, but the magnetized in the radial direction with the N and S poles magnetized on the inner peripheral surface and the outer peripheral surface, respectively. A magnet may be used. However, in the case of radial magnetization, unlike the axial magnetization, the waveforms of ultrasonic waves propagating from the permanent magnet to the start side and the end side of the magnetostrictive line are in phase, so the waveform when reflected by the reflecting member Is reversed, and eventually the waveforms of the first ultrasonic wave and the second ultrasonic wave detected by the receiver have opposite phases. Further, the shape of the permanent magnet is not limited to the annular shape, and may be any shape such as a rectangular parallelepiped shape and a U shape.

【0036】[0036]

【発明の効果】以上の説明で明らかなように、本発明に
よれば、磁歪線の終端部側の特定位置に捩り弾性波を反
射する反射部材を設け、永久磁石の近接する磁歪線の部
位で発生した後受信器へ到達した第1捩り弾性波の到達
時間と、反射部材で反射した後受信器に到達した第2捩
り弾性波の到達時間との差によって、永久磁石の機械的
変位を求めるようにしたので、この到達時間差が永久磁
石と反射部材との距離の2倍に比例することから、従来
のように第1の捩り弾性波の到達時間のみで検出する場
合に比べて、分解能は1/2倍となり、格段に検出精度
が向上する。また、伝播時間を水晶発振器などを用いて
計測する場合には、発振周波数を高くせずに分解能を高
めることができるので、安価であり、かつ消費電流を少
なくできる。さらに、本発明では永久磁石と反射部材と
の距離を計測するので、液面検出に用いると、液面と計
測結果とが一対一に対応でき、減算処理回路が不要とな
り、計測回路を簡素化できる。
As is apparent from the above description, according to the present invention, a reflecting member that reflects a torsional elastic wave is provided at a specific position on the terminal end side of the magnetostrictive wire, and a portion of the magnetostrictive wire adjacent to the permanent magnet is provided. The mechanical displacement of the permanent magnet is determined by the difference between the arrival time of the first torsional elastic wave that has arrived at the receiver after being generated in step 1 and the arrival time of the second torsional elastic wave that has reached the receiver after being reflected by the reflecting member. Since the arrival time difference is proportional to twice the distance between the permanent magnet and the reflecting member, the resolution is higher than that in the case of detecting only the arrival time of the first torsion elastic wave as in the conventional case. Is 1/2 times, and the detection accuracy is significantly improved. Further, when measuring the propagation time using a crystal oscillator or the like, the resolution can be improved without increasing the oscillation frequency, so that the cost is low and the current consumption can be reduced. Further, in the present invention, since the distance between the permanent magnet and the reflecting member is measured, when used for liquid level detection, the liquid level and the measurement result can correspond one-to-one, and the subtraction processing circuit becomes unnecessary, simplifying the measurement circuit. it can.

【図面の簡単な説明】[Brief description of drawings]

【図1】一般的な変位検出装置の概略構成図である。FIG. 1 is a schematic configuration diagram of a general displacement detection device.

【図2】図1の変位検出装置における受信波形図であ
る。
FIG. 2 is a received waveform diagram in the displacement detection device of FIG.

【図3】本発明にかかる変位検出装置の第1実施例の概
略構成図である。
FIG. 3 is a schematic configuration diagram of a first embodiment of a displacement detection device according to the present invention.

【図4】図3の変位検出装置における受信波形図であ
る。
FIG. 4 is a received waveform diagram in the displacement detection device of FIG.

【図5】本発明にかかる変位検出装置の第2実施例の構
造図である。
FIG. 5 is a structural diagram of a second embodiment of the displacement detecting device according to the present invention.

【図6】図5の変位検出装置における受信波形図であ
る。
6 is a received waveform diagram in the displacement detection device of FIG.

【図7】図5の変位検出装置を液面検出に用いた例の配
置図である。
FIG. 7 is a layout diagram of an example in which the displacement detection device of FIG. 5 is used for liquid level detection.

【符号の説明】[Explanation of symbols]

1 磁歪線 9 反射部材 10 受信器 12 永久磁石 13 パルス発生回路 14 検出回路 1 Magnetostrictive Line 9 Reflecting Member 10 Receiver 12 Permanent Magnet 13 Pulse Generation Circuit 14 Detection Circuit

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】磁歪線の始端部側よりその軸線方向に電流
パルスを流し、磁歪線に沿って移動可能な永久磁石の近
接する磁歪線の部位で捩り弾性波を発生させ、磁歪線の
始端部側に配置した受信器で捩り弾性波を受信すること
により、永久磁石に与えられる機械的変位を検出する装
置において、 上記磁歪線の終端部側の特定位置に捩り弾性波を反射す
る反射部材を設け、 上記受信器は、永久磁石で発生し、そのまま受信器に到
達した第1の捩り弾性波と、永久磁石で発生し、反射部
材で反射した後、受信器に到達した第2の捩り弾性波と
を受信し、 第1の捩り弾性波と第2の捩り弾性波との到達時間差か
ら、永久磁石に与えられる機械的変位を検出する検出回
路を設けたことを特徴とする変位検出装置。
1. A starting point of a magnetostrictive line is generated by causing a current pulse to flow from the starting end side of the magnetostrictive line in the axial direction thereof to generate a torsional elastic wave at a portion of the magnetostrictive line adjacent to a permanent magnet movable along the magnetostrictive line. In a device for detecting a mechanical displacement applied to a permanent magnet by receiving a torsional elastic wave by a receiver arranged on the side of the magnetostrictive line, a reflection member for reflecting the torsional elastic wave to a specific position on the terminal end side of the magnetostrictive wire. In the receiver, the first torsional elastic wave generated by the permanent magnet and reaching the receiver as it is and the second torsional elastic wave generated by the permanent magnet and reflected by the reflecting member and then reaching the receiver are provided. A displacement detection device, which is provided with a detection circuit that receives an elastic wave and detects a mechanical displacement applied to the permanent magnet based on a difference in arrival time between the first torsion elastic wave and the second torsion elastic wave. .
【請求項2】請求項1に記載の変位検出装置において、 上記永久磁石は、軸方向の両側面に異極を着磁した軸方
向着磁磁石であることを特徴とする変位検出装置。
2. The displacement detecting device according to claim 1, wherein the permanent magnet is an axially magnetized magnet having opposite poles magnetized on both side surfaces in the axial direction.
【請求項3】請求項1または2に記載の変位検出装置に
おいて、 上記磁歪線にそって個別に移動可能な複数の永久磁石が
設けられていることを特徴とする変位検出装置。
3. The displacement detecting device according to claim 1 or 2, wherein a plurality of permanent magnets that are individually movable along the magnetostrictive line are provided.
JP23605695A 1995-08-21 1995-08-21 Displacement detection apparatus Pending JPH0961143A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23605695A JPH0961143A (en) 1995-08-21 1995-08-21 Displacement detection apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23605695A JPH0961143A (en) 1995-08-21 1995-08-21 Displacement detection apparatus

Publications (1)

Publication Number Publication Date
JPH0961143A true JPH0961143A (en) 1997-03-07

Family

ID=16995092

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23605695A Pending JPH0961143A (en) 1995-08-21 1995-08-21 Displacement detection apparatus

Country Status (1)

Country Link
JP (1) JPH0961143A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6192096B1 (en) 1998-10-20 2001-02-20 Mitsubishi Heavy Industries, Ltd. Magnetostrictive wire control rod position detector assembly

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6192096B1 (en) 1998-10-20 2001-02-20 Mitsubishi Heavy Industries, Ltd. Magnetostrictive wire control rod position detector assembly

Similar Documents

Publication Publication Date Title
US4678993A (en) Distance measuring device operating with torsional ultrasonic waves detected without mode conversion
KR960000341B1 (en) Compact head, signal enhancing magnetostrictive transducer
US5017867A (en) Magnetostrictive linear position detector with reflection termination
US5196791A (en) Magnetostrictive linear position detector and a dual pole position magnet therefor
US4011473A (en) Ultrasonic transducer with improved transient response and method for utilizing transducer to increase accuracy of measurement of an ultrasonic flow meter
US5998991A (en) Pickupless magnetostrictive position measurement apparatus
US5412316A (en) Magnetostrictive linear position detector with axial coil torsional strain transducer
JPH0350285B2 (en)
US5821743A (en) Magnetostrictive waveguide position measurement apparatus with piezoceramic element
JP3177700B2 (en) Measuring device using magnetostrictive wire
JPH0961143A (en) Displacement detection apparatus
JP5303100B2 (en) Ultrasonic measuring device
JPH10246620A (en) Magneto-strictive displacement detector
JPH07306030A (en) Displacement detector
RU2298156C1 (en) Level meter-indicator
JP3799415B2 (en) Magnetostrictive displacement detector
RU195795U1 (en) LEVEL
JPH08285563A (en) Displacement detector
JP3799416B2 (en) Magnetostrictive displacement detector
RU2299407C2 (en) Ultrasound gage-indicator
RU2298154C1 (en) Ultrasound level meter
RU2121664C1 (en) Ultrasonic device for determination of boundary of two immiscible liquid media
JP3100729B2 (en) Magnetostrictive displacement detector
JPH05172555A (en) Magnetostrictive type displacement detector
JPH0449593Y2 (en)